Effect of side group on mechanically induced conductance switching in 4,4′-dipyridyl-based single-molecule junctions

The forming processes of 4,4′-dipyridyl-based single-molecule junctions and mechanically induced conductance switching as well as the side-group effects are systematically investigated by applying the ab initio -based adiabatic geometric optimization method and the one-dimensional transmission combi...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 34; no. 8; pp. 87202 - 87208
Main Authors Wan, Zhen, Zheng, Chang-Feng, Liu, Lin, Ge, Yun-Long, Zhang, Guang-Ping, Qiu, Shuai, Wang, Hui, Li, Zong-Liang
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.08.2025
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/adce98

Cover

Abstract The forming processes of 4,4′-dipyridyl-based single-molecule junctions and mechanically induced conductance switching as well as the side-group effects are systematically investigated by applying the ab initio -based adiabatic geometric optimization method and the one-dimensional transmission combined with three-dimensional correction approximation (OTCTCA) method. The numerical results show that for the 4,4′-dipyridyl with a π -conjugated phenyl-phosphoryl or diphenylsilyl side group, the pyridyl vertically anchors on the second atomic layer of the pyramid-shaped Au tip electrode at small inter-electrode distances by laterally pushing the apical Au atom aside, which induces stronger pyridyl-electrode coupling and high-conductance state of the formed junctions. As the inter-electrode distance increases, the pyridyl shifts to the apical Au atom of the tip electrode. This apical Au atom introduces additional scatterings to the tunneling electrons and significantly decreases the conductance of the junctions. Furthermore, for the 4,4′-dipyridyl with a phenyl-phosphoryl side group, the probability of manifesting the high-conductance state is decreased due to the oxygen atom reducing the probability of the pyridyl adsorbing on the second layer of Au tip electrode. In contrast, for the 4,4′-dipyridyl with a non-conjugated cyclohexyl-phosphoryl side group, the steric hindrance from the bulky cyclohexyl group leads the molecule to preferentially form the O–Au contact, which prevents both the high conductance and mechanically induced conductance switching of the junction. Our results provide a theoretical understanding of the side-group effects on electronic transport properties of single-molecule junctions, offering an alternative explanation for the experimental observations.
AbstractList The forming processes of 4,4′-dipyridyl-based single-molecule junctions and mechanically induced conductance switching as well as the side-group effects are systematically investigated by applying the ab initio -based adiabatic geometric optimization method and the one-dimensional transmission combined with three-dimensional correction approximation (OTCTCA) method. The numerical results show that for the 4,4′-dipyridyl with a π -conjugated phenyl-phosphoryl or diphenylsilyl side group, the pyridyl vertically anchors on the second atomic layer of the pyramid-shaped Au tip electrode at small inter-electrode distances by laterally pushing the apical Au atom aside, which induces stronger pyridyl-electrode coupling and high-conductance state of the formed junctions. As the inter-electrode distance increases, the pyridyl shifts to the apical Au atom of the tip electrode. This apical Au atom introduces additional scatterings to the tunneling electrons and significantly decreases the conductance of the junctions. Furthermore, for the 4,4′-dipyridyl with a phenyl-phosphoryl side group, the probability of manifesting the high-conductance state is decreased due to the oxygen atom reducing the probability of the pyridyl adsorbing on the second layer of Au tip electrode. In contrast, for the 4,4′-dipyridyl with a non-conjugated cyclohexyl-phosphoryl side group, the steric hindrance from the bulky cyclohexyl group leads the molecule to preferentially form the O–Au contact, which prevents both the high conductance and mechanically induced conductance switching of the junction. Our results provide a theoretical understanding of the side-group effects on electronic transport properties of single-molecule junctions, offering an alternative explanation for the experimental observations.
Author Qiu, Shuai
Li, Zong-Liang
Zheng, Chang-Feng
Wang, Hui
Ge, Yun-Long
Zhang, Guang-Ping
Wan, Zhen
Liu, Lin
Author_xml – sequence: 1
  givenname: Zhen
  surname: Wan
  fullname: Wan, Zhen
  organization: Shandong Normal University Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Jinan 250358, China
– sequence: 2
  givenname: Chang-Feng
  surname: Zheng
  fullname: Zheng, Chang-Feng
  organization: Shandong Normal University Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Jinan 250358, China
– sequence: 3
  givenname: Lin
  surname: Liu
  fullname: Liu, Lin
  organization: Shandong Normal University Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Jinan 250358, China
– sequence: 4
  givenname: Yun-Long
  surname: Ge
  fullname: Ge, Yun-Long
  organization: Shandong Normal University Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Jinan 250358, China
– sequence: 5
  givenname: Guang-Ping
  surname: Zhang
  fullname: Zhang, Guang-Ping
  organization: Shandong Normal University Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Jinan 250358, China
– sequence: 6
  givenname: Shuai
  surname: Qiu
  fullname: Qiu, Shuai
  organization: Shandong Normal University Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Jinan 250358, China
– sequence: 7
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  organization: Qilu Normal University College of Physics and Electronic Engineering, Jinan 250200, China
– sequence: 8
  givenname: Zong-Liang
  surname: Li
  fullname: Li, Zong-Liang
  organization: Shandong Normal University Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Jinan 250358, China
BookMark eNp1kE1OwzAQRi1UJNrCnqUP0FA7Thx3iaryI1ViA-vIGY9bV6ldxQkoO87EkTgJiYrYsZqR3veNRm9GJj54JOSWszvOlFpyWWQJZ7lcagO4UhdkmrJcJUKJbEKmf_iKzGI8MCY5S8WUvG-sRWhpsDQ6g3TXhO5Eg6dHhL32DnRd99R50wEaCmFcWu0BafxwLeyd3w2UZovs-_MrMe7UN870dVLpOOTjgGtMjqFG6Gqkh85D64KP1-TS6jrize-ck7eHzev6Kdm-PD6v77cJpCJvE1UUK4kCja4QTA62AJFnVmZ6VakUQViQWVVZbSUUPGdFJSFNRaUw56AYiDlh57vQhBgbtOWpcUfd9CVn5eitHMWUo5jy7G2oLM4VF07lIXSNHx78P_4DUPd1Xg
Cites_doi 10.1038/s41565-018-0068-4
10.1016/j.synthmet.2009.07.036
10.1126/science.1087481
10.1038/nnano.2009.10
10.1088/1674-1056/25/12/128503
10.1002/adma.202202135
10.1038/nmat3403
10.1126/science.aaf6298
10.1021/jacs.7b05599
10.1002/anie.201709419
10.1103/PhysRevApplied.9.054023
10.1039/C6SC01360K
10.1063/1674-0068/cjcp2212176
10.1002/smll.201703815
10.1002/smm2.1280
10.1021/nl401067x
10.1038/nnano.2013.105
10.1126/science.278.5336.252
10.1039/D3NR00505D
10.1002/adma.202005883
10.1021/ja512523r
10.1088/1674-1056/ab84cf
10.1021/ja209844r
10.1016/j.physe.2020.114542
10.7498/aps.69.20201297
10.1038/nature14570
10.1038/srep21946
10.1021/acs.jpclett.0c03765
10.1021/jp200017x
10.1021/ja038949j
10.1016/j.physe.2022.115186
10.1088/1674-1056/26/9/098508
10.7498/aps.72.20222081
10.1088/0957-4484/22/38/385502
10.1021/acs.jpclett.0c02185
10.1063/1674-0068/cjcp2310096
10.1039/D4SC06614F
10.1038/nchem.2480
10.1021/acsnano.1c11433
10.1021/acs.chemrev.5b00680
10.1021/ja1015348
10.1021/nl404143v
10.1021/nl050860j
10.1016/j.physleta.2018.12.001
10.1039/C5NR04420K
10.1016/j.physe.2018.12.032
10.1088/1674-1056/ad1e65
10.7498/aps.73.20231999
10.1021/jacs.3c13752
10.1021/jacs.8b10296
ContentType Journal Article
Copyright 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/1674-1056/adce98
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
ExternalDocumentID 10_1088_1674_1056_adce98
cpb_34_8_087202
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
W28
AAYXX
CITATION
ID FETCH-LOGICAL-c235t-87796e3edabecd5cf7c354f64a9b82ec3fc64bbfaf6c71507b6c223b8e51c80c3
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Wed Sep 03 16:42:59 EDT 2025
Wed Sep 10 00:43:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c235t-87796e3edabecd5cf7c354f64a9b82ec3fc64bbfaf6c71507b6c223b8e51c80c3
PageCount 7
ParticipantIDs iop_journals_10_1088_1674_1056_adce98
crossref_primary_10_1088_1674_1056_adce98
PublicationCentury 2000
PublicationDate 20250801
2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 20250801
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationYear 2025
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Suo (cpb_34_8_087202bib37) 2020; 69
Guo (cpb_34_8_087202bib18) 2016; 8
Zhao (cpb_34_8_087202bib49) 2024; 5
Li (cpb_34_8_087202bib14) 2018; 140
Zhang (cpb_34_8_087202bib24) 2019; 109
Bai (cpb_34_8_087202bib32) 2021; 33
Liu (cpb_34_8_087202bib45) 2023; 72
Mezei (cpb_34_8_087202bib42) 2020; 11
Liu (cpb_34_8_087202bib11) 2018; 9
Hong (cpb_34_8_087202bib39) 2012; 134
Tan (cpb_34_8_087202bib13) 2024; 146
Frisch (cpb_34_8_087202bib50) 2016
Jia (cpb_34_8_087202bib8) 2016; 352
Metzger (cpb_34_8_087202bib17) 2009; 159
Wang (cpb_34_8_087202bib31) 2020; 29
Zheng (cpb_34_8_087202bib25) 2024; 37
Sun (cpb_34_8_087202bib44) 2023; 15
Shankar (cpb_34_8_087202bib52) 1994
Yan (cpb_34_8_087202bib12) 2024; 73
Xu (cpb_34_8_087202bib34) 2003; 301
Ismael (cpb_34_8_087202bib46) 2017; 56
Fu (cpb_34_8_087202bib20) 2019; 383
Liu (cpb_34_8_087202bib16) 2022; 34
Sun (cpb_34_8_087202bib19) 2022; 140
Lörtscher (cpb_34_8_087202bib1) 2013; 8
Aradhya (cpb_34_8_087202bib40) 2012; 11
Li (cpb_34_8_087202bib28) 2017; 26
Li (cpb_34_8_087202bib23) 2016; 7
Vezzoli (cpb_34_8_087202bib6) 2015; 7
Li (cpb_34_8_087202bib47) 2011; 115
Li (cpb_34_8_087202bib10) 2017; 139
Zhou (cpb_34_8_087202bib29) 2011; 22
Niu (cpb_34_8_087202bib21) 2021; 128
Xiang (cpb_34_8_087202bib7) 2016; 116
Kim (cpb_34_8_087202bib41) 2014; 14
Haedler (cpb_34_8_087202bib2) 2015; 523
Li (cpb_34_8_087202bib22) 2015; 137
Zhang (cpb_34_8_087202bib26) 2025; 16
Zhang (cpb_34_8_087202bib33) 2023; 36
Xu (cpb_34_8_087202bib4) 2005; 5
Xu (cpb_34_8_087202bib35) 2003; 125
Zhao (cpb_34_8_087202bib48) 2018; 14
Reed (cpb_34_8_087202bib3) 1997; 278
Xiang (cpb_34_8_087202bib5) 2013; 13
Yuan (cpb_34_8_087202bib30) 2018; 13
Xie (cpb_34_8_087202bib15) 2022; 16
Yi (cpb_34_8_087202bib27) 2016; 25
Liu (cpb_34_8_087202bib51) 2016; 6
Quek (cpb_34_8_087202bib36) 2009; 4
Chen (cpb_34_8_087202bib9) 2024; 33
Kamenetska (cpb_34_8_087202bib38) 2010; 132
Magyarkuti (cpb_34_8_087202bib43) 2021; 12
References_xml – volume: 13
  start-page: 322
  year: 2018
  ident: cpb_34_8_087202bib30
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0068-4
– volume: 159
  start-page: 2277
  year: 2009
  ident: cpb_34_8_087202bib17
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2009.07.036
– volume: 301
  start-page: 1221
  year: 2003
  ident: cpb_34_8_087202bib34
  publication-title: Science
  doi: 10.1126/science.1087481
– volume: 4
  start-page: 230
  year: 2009
  ident: cpb_34_8_087202bib36
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.10
– volume: 25
  year: 2016
  ident: cpb_34_8_087202bib27
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/25/12/128503
– volume: 34
  year: 2022
  ident: cpb_34_8_087202bib16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202202135
– volume: 11
  start-page: 872
  year: 2012
  ident: cpb_34_8_087202bib40
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3403
– volume: 352
  start-page: 1443
  year: 2016
  ident: cpb_34_8_087202bib8
  publication-title: Science
  doi: 10.1126/science.aaf6298
– volume: 139
  year: 2017
  ident: cpb_34_8_087202bib10
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05599
– volume: 56
  year: 2017
  ident: cpb_34_8_087202bib46
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201709419
– volume: 9
  year: 2018
  ident: cpb_34_8_087202bib11
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.9.054023
– volume: 7
  start-page: 5657
  year: 2016
  ident: cpb_34_8_087202bib23
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC01360K
– volume: 36
  start-page: 707
  year: 2023
  ident: cpb_34_8_087202bib33
  publication-title: Chin. J. Chem. Phys.
  doi: 10.1063/1674-0068/cjcp2212176
– volume: 14
  year: 2018
  ident: cpb_34_8_087202bib48
  publication-title: Small
  doi: 10.1002/smll.201703815
– volume: 5
  year: 2024
  ident: cpb_34_8_087202bib49
  publication-title: SmartMat
  doi: 10.1002/smm2.1280
– volume: 13
  start-page: 2809
  year: 2013
  ident: cpb_34_8_087202bib5
  publication-title: Nano Lett.
  doi: 10.1021/nl401067x
– volume: 8
  start-page: 381
  year: 2013
  ident: cpb_34_8_087202bib1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.105
– volume: 278
  start-page: 252
  year: 1997
  ident: cpb_34_8_087202bib3
  publication-title: Science
  doi: 10.1126/science.278.5336.252
– start-page: 164
  year: 1994
  ident: cpb_34_8_087202bib52
– volume: 15
  year: 2023
  ident: cpb_34_8_087202bib44
  publication-title: Nanoscale
  doi: 10.1039/D3NR00505D
– volume: 33
  year: 2021
  ident: cpb_34_8_087202bib32
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005883
– volume: 137
  start-page: 5028
  year: 2015
  ident: cpb_34_8_087202bib22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512523r
– volume: 29
  year: 2020
  ident: cpb_34_8_087202bib31
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ab84cf
– volume: 134
  start-page: 2292
  year: 2012
  ident: cpb_34_8_087202bib39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja209844r
– volume: 128
  year: 2021
  ident: cpb_34_8_087202bib21
  publication-title: Physica E
  doi: 10.1016/j.physe.2020.114542
– volume: 69
  year: 2020
  ident: cpb_34_8_087202bib37
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.69.20201297
– volume: 523
  start-page: 196
  year: 2015
  ident: cpb_34_8_087202bib2
  publication-title: Nature
  doi: 10.1038/nature14570
– volume: 6
  year: 2016
  ident: cpb_34_8_087202bib51
  publication-title: Sci. Rep.
  doi: 10.1038/srep21946
– volume: 12
  start-page: 1759
  year: 2021
  ident: cpb_34_8_087202bib43
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c03765
– volume: 115
  year: 2011
  ident: cpb_34_8_087202bib47
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp200017x
– volume: 125
  year: 2003
  ident: cpb_34_8_087202bib35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja038949j
– volume: 140
  year: 2022
  ident: cpb_34_8_087202bib19
  publication-title: Physica E
  doi: 10.1016/j.physe.2022.115186
– volume: 26
  year: 2017
  ident: cpb_34_8_087202bib28
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/26/9/098508
– volume: 72
  year: 2023
  ident: cpb_34_8_087202bib45
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.72.20222081
– volume: 22
  year: 2011
  ident: cpb_34_8_087202bib29
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/38/385502
– volume: 11
  start-page: 8053
  year: 2020
  ident: cpb_34_8_087202bib42
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c02185
– volume: 37
  start-page: 644
  year: 2024
  ident: cpb_34_8_087202bib25
  publication-title: Chin. J. Chem. Phys.
  doi: 10.1063/1674-0068/cjcp2310096
– volume: 16
  start-page: 1353
  year: 2025
  ident: cpb_34_8_087202bib26
  publication-title: Chem. Sci.
  doi: 10.1039/D4SC06614F
– volume: 8
  start-page: 484
  year: 2016
  ident: cpb_34_8_087202bib18
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2480
– volume: 16
  start-page: 3476
  year: 2022
  ident: cpb_34_8_087202bib15
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c11433
– volume: 116
  start-page: 4318
  year: 2016
  ident: cpb_34_8_087202bib7
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00680
– volume: 132
  start-page: 6817
  year: 2010
  ident: cpb_34_8_087202bib38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1015348
– volume: 14
  start-page: 794
  year: 2014
  ident: cpb_34_8_087202bib41
  publication-title: Nano Lett.
  doi: 10.1021/nl404143v
– year: 2016
  ident: cpb_34_8_087202bib50
– volume: 5
  start-page: 1491
  year: 2005
  ident: cpb_34_8_087202bib4
  publication-title: Nano Lett.
  doi: 10.1021/nl050860j
– volume: 383
  start-page: 867
  year: 2019
  ident: cpb_34_8_087202bib20
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2018.12.001
– volume: 7
  year: 2015
  ident: cpb_34_8_087202bib6
  publication-title: Nanoscale
  doi: 10.1039/C5NR04420K
– volume: 109
  start-page: 1
  year: 2019
  ident: cpb_34_8_087202bib24
  publication-title: Physica E
  doi: 10.1016/j.physe.2018.12.032
– volume: 33
  year: 2024
  ident: cpb_34_8_087202bib9
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ad1e65
– volume: 73
  year: 2024
  ident: cpb_34_8_087202bib12
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.73.20231999
– volume: 146
  start-page: 6856
  year: 2024
  ident: cpb_34_8_087202bib13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c13752
– volume: 140
  year: 2018
  ident: cpb_34_8_087202bib14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10296
SSID ssj0061023
Score 2.3762472
Snippet The forming processes of 4,4′-dipyridyl-based single-molecule junctions and mechanically induced conductance switching as well as the side-group effects are...
SourceID crossref
iop
SourceType Index Database
Publisher
StartPage 87202
SubjectTerms conductance switching
electron transport properties
side-group effects
single-molecule junction
Title Effect of side group on mechanically induced conductance switching in 4,4′-dipyridyl-based single-molecule junctions
URI https://iopscience.iop.org/article/10.1088/1674-1056/adce98
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qRfDiW6wv9qAHwe1rN8kGTyKWIvg4WOhBCNkXVPuiTZV68jf5k_wlziSpqCiIh0Agk2SZmcwjO_MNIQeCax_i1BrTVoVMiJgzpXnAlHQBHDWwm9jvfHnlN1viou21C-TkoxdmMMxNfxlOM6DgjIV5QZysYN08w4HxldhoG8o5Ms9xkhJ2713fzMywj5gEmG3NqPM9yp-e8MUnzcF7P7mYxjK5my0uqyx5KE8SVdbP33Ab_7n6FbKUh570NCNdJQXbXyMLaQmoHq-TxwzImA4cxRGeNO33oIM-7VnsDkZhdqcUUnhQBkMhjUakWNQZOn7qJGlJJlyl4li8vbwy0xlORx0z7TL0k4biL4muZb1sGq-l9-BPU5XfIK3G-e1Zk-VTGZiucy8B8xmEvuXWxCB-42kXaO4J54s4VLJuNXfaF0q52Pk6wHBT-RpiECWtV9OyqvkmKfYHfbtFKFdOytCAD0UUeweZX2xCuD90rlp3mpfI0Uwu0TAD34jSTXMpI-RjhHyMMj6WyCGwPMq_wPGvdNt_pNshi3Uc9ZvW-u2SYjKa2D2IPxK1n-rZO0KG13Y
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSsRAEG2cEcWLu7jbBz0I9mzdSTpHUQd3PSjMLaY3GJ0NJ6OMJ7_JT_JLrEoyoKIgeAgEUp2lurqWdNUrQrYF1z74qVWmrQqZEDFnSvOAKekCOKqgN7He-eLSP74Vpw2vkfc5TWthur1c9ZfgNAMKzliYJ8TJMubNM2wYX46NtqEs94wrkHGPewGuzJOr65Eq9hGXACOu0Yh8n_Knu3yxSwV49iczU58hd6MXzLJLHkqDRJX0yzfsxn98wSyZzl1Qup-Rz5Ex25knE2kqqO4vkKcM0Jh2HcVWnjSt-6DdDm1brBLGSW0NKYTyIBSGQjiNiLEoO7T_3EzS1Ey4SsWeeH99Y6bZGz42zbDF0F4air8mWpa1s668lt6DXU1Ff5Hc1o9uDo5Z3p2B6Rr3ElCjQehbbk0MYmA87QLNPeF8EYdK1qzmTvtCKRc7Xwfodipfgy-ipPWqWlY0XyLFTrdjlwnlykkZGrCliGbvIAKMTQjjQ-cqNaf5CtkdzU3Uy0A4onTzXMoIeRkhL6OMlytkB9ge5Sux_yvd6h_ptsjk9WE9Oj-5PFsjUzXs_pum_62TYvI4sBvgkiRqMxW7D4WE3OA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+side+group+on+mechanically+induced+conductance+switching+in+4%2C4%E2%80%B2-dipyridyl-based+single-molecule+junctions&rft.jtitle=Chinese+physics+B&rft.au=Wan%2C+Zhen&rft.au=Zheng%2C+Chang-Feng&rft.au=Liu%2C+Lin&rft.au=Ge%2C+Yun-Long&rft.date=2025-08-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=34&rft.issue=8&rft_id=info:doi/10.1088%2F1674-1056%2Fadce98&rft.externalDocID=cpb_34_8_087202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon