Effect of side group on mechanically induced conductance switching in 4,4′-dipyridyl-based single-molecule junctions
The forming processes of 4,4′-dipyridyl-based single-molecule junctions and mechanically induced conductance switching as well as the side-group effects are systematically investigated by applying the ab initio -based adiabatic geometric optimization method and the one-dimensional transmission combi...
Saved in:
Published in | Chinese physics B Vol. 34; no. 8; pp. 87202 - 87208 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/adce98 |
Cover
Abstract | The forming processes of 4,4′-dipyridyl-based single-molecule junctions and mechanically induced conductance switching as well as the side-group effects are systematically investigated by applying the ab initio -based adiabatic geometric optimization method and the one-dimensional transmission combined with three-dimensional correction approximation (OTCTCA) method. The numerical results show that for the 4,4′-dipyridyl with a π -conjugated phenyl-phosphoryl or diphenylsilyl side group, the pyridyl vertically anchors on the second atomic layer of the pyramid-shaped Au tip electrode at small inter-electrode distances by laterally pushing the apical Au atom aside, which induces stronger pyridyl-electrode coupling and high-conductance state of the formed junctions. As the inter-electrode distance increases, the pyridyl shifts to the apical Au atom of the tip electrode. This apical Au atom introduces additional scatterings to the tunneling electrons and significantly decreases the conductance of the junctions. Furthermore, for the 4,4′-dipyridyl with a phenyl-phosphoryl side group, the probability of manifesting the high-conductance state is decreased due to the oxygen atom reducing the probability of the pyridyl adsorbing on the second layer of Au tip electrode. In contrast, for the 4,4′-dipyridyl with a non-conjugated cyclohexyl-phosphoryl side group, the steric hindrance from the bulky cyclohexyl group leads the molecule to preferentially form the O–Au contact, which prevents both the high conductance and mechanically induced conductance switching of the junction. Our results provide a theoretical understanding of the side-group effects on electronic transport properties of single-molecule junctions, offering an alternative explanation for the experimental observations. |
---|---|
AbstractList | The forming processes of 4,4′-dipyridyl-based single-molecule junctions and mechanically induced conductance switching as well as the side-group effects are systematically investigated by applying the ab initio -based adiabatic geometric optimization method and the one-dimensional transmission combined with three-dimensional correction approximation (OTCTCA) method. The numerical results show that for the 4,4′-dipyridyl with a π -conjugated phenyl-phosphoryl or diphenylsilyl side group, the pyridyl vertically anchors on the second atomic layer of the pyramid-shaped Au tip electrode at small inter-electrode distances by laterally pushing the apical Au atom aside, which induces stronger pyridyl-electrode coupling and high-conductance state of the formed junctions. As the inter-electrode distance increases, the pyridyl shifts to the apical Au atom of the tip electrode. This apical Au atom introduces additional scatterings to the tunneling electrons and significantly decreases the conductance of the junctions. Furthermore, for the 4,4′-dipyridyl with a phenyl-phosphoryl side group, the probability of manifesting the high-conductance state is decreased due to the oxygen atom reducing the probability of the pyridyl adsorbing on the second layer of Au tip electrode. In contrast, for the 4,4′-dipyridyl with a non-conjugated cyclohexyl-phosphoryl side group, the steric hindrance from the bulky cyclohexyl group leads the molecule to preferentially form the O–Au contact, which prevents both the high conductance and mechanically induced conductance switching of the junction. Our results provide a theoretical understanding of the side-group effects on electronic transport properties of single-molecule junctions, offering an alternative explanation for the experimental observations. |
Author | Qiu, Shuai Li, Zong-Liang Zheng, Chang-Feng Wang, Hui Ge, Yun-Long Zhang, Guang-Ping Wan, Zhen Liu, Lin |
Author_xml | – sequence: 1 givenname: Zhen surname: Wan fullname: Wan, Zhen organization: Shandong Normal University Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Jinan 250358, China – sequence: 2 givenname: Chang-Feng surname: Zheng fullname: Zheng, Chang-Feng organization: Shandong Normal University Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Jinan 250358, China – sequence: 3 givenname: Lin surname: Liu fullname: Liu, Lin organization: Shandong Normal University Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Jinan 250358, China – sequence: 4 givenname: Yun-Long surname: Ge fullname: Ge, Yun-Long organization: Shandong Normal University Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Jinan 250358, China – sequence: 5 givenname: Guang-Ping surname: Zhang fullname: Zhang, Guang-Ping organization: Shandong Normal University Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Jinan 250358, China – sequence: 6 givenname: Shuai surname: Qiu fullname: Qiu, Shuai organization: Shandong Normal University Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Jinan 250358, China – sequence: 7 givenname: Hui surname: Wang fullname: Wang, Hui organization: Qilu Normal University College of Physics and Electronic Engineering, Jinan 250200, China – sequence: 8 givenname: Zong-Liang surname: Li fullname: Li, Zong-Liang organization: Shandong Normal University Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Jinan 250358, China |
BookMark | eNp1kE1OwzAQRi1UJNrCnqUP0FA7Thx3iaryI1ViA-vIGY9bV6ldxQkoO87EkTgJiYrYsZqR3veNRm9GJj54JOSWszvOlFpyWWQJZ7lcagO4UhdkmrJcJUKJbEKmf_iKzGI8MCY5S8WUvG-sRWhpsDQ6g3TXhO5Eg6dHhL32DnRd99R50wEaCmFcWu0BafxwLeyd3w2UZovs-_MrMe7UN870dVLpOOTjgGtMjqFG6Gqkh85D64KP1-TS6jrize-ck7eHzev6Kdm-PD6v77cJpCJvE1UUK4kCja4QTA62AJFnVmZ6VakUQViQWVVZbSUUPGdFJSFNRaUw56AYiDlh57vQhBgbtOWpcUfd9CVn5eitHMWUo5jy7G2oLM4VF07lIXSNHx78P_4DUPd1Xg |
Cites_doi | 10.1038/s41565-018-0068-4 10.1016/j.synthmet.2009.07.036 10.1126/science.1087481 10.1038/nnano.2009.10 10.1088/1674-1056/25/12/128503 10.1002/adma.202202135 10.1038/nmat3403 10.1126/science.aaf6298 10.1021/jacs.7b05599 10.1002/anie.201709419 10.1103/PhysRevApplied.9.054023 10.1039/C6SC01360K 10.1063/1674-0068/cjcp2212176 10.1002/smll.201703815 10.1002/smm2.1280 10.1021/nl401067x 10.1038/nnano.2013.105 10.1126/science.278.5336.252 10.1039/D3NR00505D 10.1002/adma.202005883 10.1021/ja512523r 10.1088/1674-1056/ab84cf 10.1021/ja209844r 10.1016/j.physe.2020.114542 10.7498/aps.69.20201297 10.1038/nature14570 10.1038/srep21946 10.1021/acs.jpclett.0c03765 10.1021/jp200017x 10.1021/ja038949j 10.1016/j.physe.2022.115186 10.1088/1674-1056/26/9/098508 10.7498/aps.72.20222081 10.1088/0957-4484/22/38/385502 10.1021/acs.jpclett.0c02185 10.1063/1674-0068/cjcp2310096 10.1039/D4SC06614F 10.1038/nchem.2480 10.1021/acsnano.1c11433 10.1021/acs.chemrev.5b00680 10.1021/ja1015348 10.1021/nl404143v 10.1021/nl050860j 10.1016/j.physleta.2018.12.001 10.1039/C5NR04420K 10.1016/j.physe.2018.12.032 10.1088/1674-1056/ad1e65 10.7498/aps.73.20231999 10.1021/jacs.3c13752 10.1021/jacs.8b10296 |
ContentType | Journal Article |
Copyright | 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | AAYXX CITATION |
DOI | 10.1088/1674-1056/adce98 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
ExternalDocumentID | 10_1088_1674_1056_adce98 cpb_34_8_087202 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP ADEQX AEFHF AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO KOT N5L PJBAE RIN RNS ROL RPA SY9 TCJ TGP U1G U5K W28 AAYXX CITATION |
ID | FETCH-LOGICAL-c235t-87796e3edabecd5cf7c354f64a9b82ec3fc64bbfaf6c71507b6c223b8e51c80c3 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Wed Sep 03 16:42:59 EDT 2025 Wed Sep 10 00:43:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c235t-87796e3edabecd5cf7c354f64a9b82ec3fc64bbfaf6c71507b6c223b8e51c80c3 |
PageCount | 7 |
ParticipantIDs | iop_journals_10_1088_1674_1056_adce98 crossref_primary_10_1088_1674_1056_adce98 |
PublicationCentury | 2000 |
PublicationDate | 20250801 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 20250801 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationYear | 2025 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Suo (cpb_34_8_087202bib37) 2020; 69 Guo (cpb_34_8_087202bib18) 2016; 8 Zhao (cpb_34_8_087202bib49) 2024; 5 Li (cpb_34_8_087202bib14) 2018; 140 Zhang (cpb_34_8_087202bib24) 2019; 109 Bai (cpb_34_8_087202bib32) 2021; 33 Liu (cpb_34_8_087202bib45) 2023; 72 Mezei (cpb_34_8_087202bib42) 2020; 11 Liu (cpb_34_8_087202bib11) 2018; 9 Hong (cpb_34_8_087202bib39) 2012; 134 Tan (cpb_34_8_087202bib13) 2024; 146 Frisch (cpb_34_8_087202bib50) 2016 Jia (cpb_34_8_087202bib8) 2016; 352 Metzger (cpb_34_8_087202bib17) 2009; 159 Wang (cpb_34_8_087202bib31) 2020; 29 Zheng (cpb_34_8_087202bib25) 2024; 37 Sun (cpb_34_8_087202bib44) 2023; 15 Shankar (cpb_34_8_087202bib52) 1994 Yan (cpb_34_8_087202bib12) 2024; 73 Xu (cpb_34_8_087202bib34) 2003; 301 Ismael (cpb_34_8_087202bib46) 2017; 56 Fu (cpb_34_8_087202bib20) 2019; 383 Liu (cpb_34_8_087202bib16) 2022; 34 Sun (cpb_34_8_087202bib19) 2022; 140 Lörtscher (cpb_34_8_087202bib1) 2013; 8 Aradhya (cpb_34_8_087202bib40) 2012; 11 Li (cpb_34_8_087202bib28) 2017; 26 Li (cpb_34_8_087202bib23) 2016; 7 Vezzoli (cpb_34_8_087202bib6) 2015; 7 Li (cpb_34_8_087202bib47) 2011; 115 Li (cpb_34_8_087202bib10) 2017; 139 Zhou (cpb_34_8_087202bib29) 2011; 22 Niu (cpb_34_8_087202bib21) 2021; 128 Xiang (cpb_34_8_087202bib7) 2016; 116 Kim (cpb_34_8_087202bib41) 2014; 14 Haedler (cpb_34_8_087202bib2) 2015; 523 Li (cpb_34_8_087202bib22) 2015; 137 Zhang (cpb_34_8_087202bib26) 2025; 16 Zhang (cpb_34_8_087202bib33) 2023; 36 Xu (cpb_34_8_087202bib4) 2005; 5 Xu (cpb_34_8_087202bib35) 2003; 125 Zhao (cpb_34_8_087202bib48) 2018; 14 Reed (cpb_34_8_087202bib3) 1997; 278 Xiang (cpb_34_8_087202bib5) 2013; 13 Yuan (cpb_34_8_087202bib30) 2018; 13 Xie (cpb_34_8_087202bib15) 2022; 16 Yi (cpb_34_8_087202bib27) 2016; 25 Liu (cpb_34_8_087202bib51) 2016; 6 Quek (cpb_34_8_087202bib36) 2009; 4 Chen (cpb_34_8_087202bib9) 2024; 33 Kamenetska (cpb_34_8_087202bib38) 2010; 132 Magyarkuti (cpb_34_8_087202bib43) 2021; 12 |
References_xml | – volume: 13 start-page: 322 year: 2018 ident: cpb_34_8_087202bib30 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0068-4 – volume: 159 start-page: 2277 year: 2009 ident: cpb_34_8_087202bib17 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2009.07.036 – volume: 301 start-page: 1221 year: 2003 ident: cpb_34_8_087202bib34 publication-title: Science doi: 10.1126/science.1087481 – volume: 4 start-page: 230 year: 2009 ident: cpb_34_8_087202bib36 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.10 – volume: 25 year: 2016 ident: cpb_34_8_087202bib27 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/25/12/128503 – volume: 34 year: 2022 ident: cpb_34_8_087202bib16 publication-title: Adv. Mater. doi: 10.1002/adma.202202135 – volume: 11 start-page: 872 year: 2012 ident: cpb_34_8_087202bib40 publication-title: Nat. Mater. doi: 10.1038/nmat3403 – volume: 352 start-page: 1443 year: 2016 ident: cpb_34_8_087202bib8 publication-title: Science doi: 10.1126/science.aaf6298 – volume: 139 year: 2017 ident: cpb_34_8_087202bib10 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05599 – volume: 56 year: 2017 ident: cpb_34_8_087202bib46 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201709419 – volume: 9 year: 2018 ident: cpb_34_8_087202bib11 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.9.054023 – volume: 7 start-page: 5657 year: 2016 ident: cpb_34_8_087202bib23 publication-title: Chem. Sci. doi: 10.1039/C6SC01360K – volume: 36 start-page: 707 year: 2023 ident: cpb_34_8_087202bib33 publication-title: Chin. J. Chem. Phys. doi: 10.1063/1674-0068/cjcp2212176 – volume: 14 year: 2018 ident: cpb_34_8_087202bib48 publication-title: Small doi: 10.1002/smll.201703815 – volume: 5 year: 2024 ident: cpb_34_8_087202bib49 publication-title: SmartMat doi: 10.1002/smm2.1280 – volume: 13 start-page: 2809 year: 2013 ident: cpb_34_8_087202bib5 publication-title: Nano Lett. doi: 10.1021/nl401067x – volume: 8 start-page: 381 year: 2013 ident: cpb_34_8_087202bib1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.105 – volume: 278 start-page: 252 year: 1997 ident: cpb_34_8_087202bib3 publication-title: Science doi: 10.1126/science.278.5336.252 – start-page: 164 year: 1994 ident: cpb_34_8_087202bib52 – volume: 15 year: 2023 ident: cpb_34_8_087202bib44 publication-title: Nanoscale doi: 10.1039/D3NR00505D – volume: 33 year: 2021 ident: cpb_34_8_087202bib32 publication-title: Adv. Mater. doi: 10.1002/adma.202005883 – volume: 137 start-page: 5028 year: 2015 ident: cpb_34_8_087202bib22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512523r – volume: 29 year: 2020 ident: cpb_34_8_087202bib31 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ab84cf – volume: 134 start-page: 2292 year: 2012 ident: cpb_34_8_087202bib39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja209844r – volume: 128 year: 2021 ident: cpb_34_8_087202bib21 publication-title: Physica E doi: 10.1016/j.physe.2020.114542 – volume: 69 year: 2020 ident: cpb_34_8_087202bib37 publication-title: Acta Phys. Sin. doi: 10.7498/aps.69.20201297 – volume: 523 start-page: 196 year: 2015 ident: cpb_34_8_087202bib2 publication-title: Nature doi: 10.1038/nature14570 – volume: 6 year: 2016 ident: cpb_34_8_087202bib51 publication-title: Sci. Rep. doi: 10.1038/srep21946 – volume: 12 start-page: 1759 year: 2021 ident: cpb_34_8_087202bib43 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c03765 – volume: 115 year: 2011 ident: cpb_34_8_087202bib47 publication-title: J. Phys. Chem. C doi: 10.1021/jp200017x – volume: 125 year: 2003 ident: cpb_34_8_087202bib35 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja038949j – volume: 140 year: 2022 ident: cpb_34_8_087202bib19 publication-title: Physica E doi: 10.1016/j.physe.2022.115186 – volume: 26 year: 2017 ident: cpb_34_8_087202bib28 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/26/9/098508 – volume: 72 year: 2023 ident: cpb_34_8_087202bib45 publication-title: Acta Phys. Sin. doi: 10.7498/aps.72.20222081 – volume: 22 year: 2011 ident: cpb_34_8_087202bib29 publication-title: Nanotechnology doi: 10.1088/0957-4484/22/38/385502 – volume: 11 start-page: 8053 year: 2020 ident: cpb_34_8_087202bib42 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c02185 – volume: 37 start-page: 644 year: 2024 ident: cpb_34_8_087202bib25 publication-title: Chin. J. Chem. Phys. doi: 10.1063/1674-0068/cjcp2310096 – volume: 16 start-page: 1353 year: 2025 ident: cpb_34_8_087202bib26 publication-title: Chem. Sci. doi: 10.1039/D4SC06614F – volume: 8 start-page: 484 year: 2016 ident: cpb_34_8_087202bib18 publication-title: Nat. Chem. doi: 10.1038/nchem.2480 – volume: 16 start-page: 3476 year: 2022 ident: cpb_34_8_087202bib15 publication-title: ACS Nano doi: 10.1021/acsnano.1c11433 – volume: 116 start-page: 4318 year: 2016 ident: cpb_34_8_087202bib7 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00680 – volume: 132 start-page: 6817 year: 2010 ident: cpb_34_8_087202bib38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1015348 – volume: 14 start-page: 794 year: 2014 ident: cpb_34_8_087202bib41 publication-title: Nano Lett. doi: 10.1021/nl404143v – year: 2016 ident: cpb_34_8_087202bib50 – volume: 5 start-page: 1491 year: 2005 ident: cpb_34_8_087202bib4 publication-title: Nano Lett. doi: 10.1021/nl050860j – volume: 383 start-page: 867 year: 2019 ident: cpb_34_8_087202bib20 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2018.12.001 – volume: 7 year: 2015 ident: cpb_34_8_087202bib6 publication-title: Nanoscale doi: 10.1039/C5NR04420K – volume: 109 start-page: 1 year: 2019 ident: cpb_34_8_087202bib24 publication-title: Physica E doi: 10.1016/j.physe.2018.12.032 – volume: 33 year: 2024 ident: cpb_34_8_087202bib9 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ad1e65 – volume: 73 year: 2024 ident: cpb_34_8_087202bib12 publication-title: Acta Phys. Sin. doi: 10.7498/aps.73.20231999 – volume: 146 start-page: 6856 year: 2024 ident: cpb_34_8_087202bib13 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c13752 – volume: 140 year: 2018 ident: cpb_34_8_087202bib14 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10296 |
SSID | ssj0061023 |
Score | 2.3762472 |
Snippet | The forming processes of 4,4′-dipyridyl-based single-molecule junctions and mechanically induced conductance switching as well as the side-group effects are... |
SourceID | crossref iop |
SourceType | Index Database Publisher |
StartPage | 87202 |
SubjectTerms | conductance switching electron transport properties side-group effects single-molecule junction |
Title | Effect of side group on mechanically induced conductance switching in 4,4′-dipyridyl-based single-molecule junctions |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/adce98 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qRfDiW6wv9qAHwe1rN8kGTyKWIvg4WOhBCNkXVPuiTZV68jf5k_wlziSpqCiIh0Agk2SZmcwjO_MNIQeCax_i1BrTVoVMiJgzpXnAlHQBHDWwm9jvfHnlN1viou21C-TkoxdmMMxNfxlOM6DgjIV5QZysYN08w4HxldhoG8o5Ms9xkhJ2713fzMywj5gEmG3NqPM9yp-e8MUnzcF7P7mYxjK5my0uqyx5KE8SVdbP33Ab_7n6FbKUh570NCNdJQXbXyMLaQmoHq-TxwzImA4cxRGeNO33oIM-7VnsDkZhdqcUUnhQBkMhjUakWNQZOn7qJGlJJlyl4li8vbwy0xlORx0z7TL0k4biL4muZb1sGq-l9-BPU5XfIK3G-e1Zk-VTGZiucy8B8xmEvuXWxCB-42kXaO4J54s4VLJuNXfaF0q52Pk6wHBT-RpiECWtV9OyqvkmKfYHfbtFKFdOytCAD0UUeweZX2xCuD90rlp3mpfI0Uwu0TAD34jSTXMpI-RjhHyMMj6WyCGwPMq_wPGvdNt_pNshi3Uc9ZvW-u2SYjKa2D2IPxK1n-rZO0KG13Y |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSsRAEG2cEcWLu7jbBz0I9mzdSTpHUQd3PSjMLaY3GJ0NJ6OMJ7_JT_JLrEoyoKIgeAgEUp2lurqWdNUrQrYF1z74qVWmrQqZEDFnSvOAKekCOKqgN7He-eLSP74Vpw2vkfc5TWthur1c9ZfgNAMKzliYJ8TJMubNM2wYX46NtqEs94wrkHGPewGuzJOr65Eq9hGXACOu0Yh8n_Knu3yxSwV49iczU58hd6MXzLJLHkqDRJX0yzfsxn98wSyZzl1Qup-Rz5Ex25knE2kqqO4vkKcM0Jh2HcVWnjSt-6DdDm1brBLGSW0NKYTyIBSGQjiNiLEoO7T_3EzS1Ey4SsWeeH99Y6bZGz42zbDF0F4air8mWpa1s668lt6DXU1Ff5Hc1o9uDo5Z3p2B6Rr3ElCjQehbbk0MYmA87QLNPeF8EYdK1qzmTvtCKRc7Xwfodipfgy-ipPWqWlY0XyLFTrdjlwnlykkZGrCliGbvIAKMTQjjQ-cqNaf5CtkdzU3Uy0A4onTzXMoIeRkhL6OMlytkB9ge5Sux_yvd6h_ptsjk9WE9Oj-5PFsjUzXs_pum_62TYvI4sBvgkiRqMxW7D4WE3OA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+side+group+on+mechanically+induced+conductance+switching+in+4%2C4%E2%80%B2-dipyridyl-based+single-molecule+junctions&rft.jtitle=Chinese+physics+B&rft.au=Wan%2C+Zhen&rft.au=Zheng%2C+Chang-Feng&rft.au=Liu%2C+Lin&rft.au=Ge%2C+Yun-Long&rft.date=2025-08-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=34&rft.issue=8&rft_id=info:doi/10.1088%2F1674-1056%2Fadce98&rft.externalDocID=cpb_34_8_087202 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon |