An Efficient Hybrid Classifier for MRI Brain Images Classification Using Machine Learning Based Naive Bayes Algorithm

In recent days, advanced techniques are used to compare the analysis of medical images, identifying, pre-processing and interpreting the images. As a result, visualizing of images have greatly diversified in medical sciences domain. The magnetic resonance imaging (MRI) scanner is commonly used to id...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 4; no. 3; p. 223
Main Authors Nayak, Madhu M., Kengeri Anjanappa, Sumithra Devi
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.05.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2661-8907
2662-995X
2661-8907
DOI10.1007/s42979-022-01614-y

Cover

Abstract In recent days, advanced techniques are used to compare the analysis of medical images, identifying, pre-processing and interpreting the images. As a result, visualizing of images have greatly diversified in medical sciences domain. The magnetic resonance imaging (MRI) scanner is commonly used to identify and differentiate between normal and abnormal medical images. But in recent days, analysis of new variant of diseases is very difficult, hence adopting new advanced techniques in data pre-processing and analysis of medical images is very essential. This paper proposes a hybrid naive-Bayes classifier for MRI brain image differentiation process. The image quality of human body parts is enhanced including the brain images to improve classification accuracy rate by efficiently differentiating normal and abnormal images containing the disorders and injuries using a hybrid naive-based classifier in MRI brain images. The image pre-processing, feature extraction and noise reduction is achieved using proposed model. The proposed model is processed in four different steps such as image pre-processing, feature extraction and feature reduction using a naive Bayes classifier. The median filter is effectively utilized by a hybrid algorithm to remove noise such as scalp and skull. The performance analysis has been conducted by collecting a huge number of sample images and efficiently differentiating normal and abnormal images using the proposed algorithm. The comparative analysis has been conducted between proposed algorithm with existing methods like Random subspace with random forest (RS with RF), random subspace with Bayesian Network (RS with BN) and Feed Forward-ANN (FF-ANN). The aim of this work is to improve the classification accuracy with efficient and fast method which identifies the small number set of optimal parameters. The main purpose of the proposed mathematical model is to increase the accuracy rate of normal image classification and abnormal image classification with respect to classification methods like RS with RF, RS with BN and FF-ANN. The proposed hybrid naive Bayes classifier gives a 35–65% splitting ratio for training and splitting ratio. With respect to improvements in normal and abnormal classification of an image, samples are 2%, 3%, and 2.5% using methods (RS with RF), (RS with BN) and feed forward-ANN (FF-ANN), respectively.
AbstractList In recent days, advanced techniques are used to compare the analysis of medical images, identifying, pre-processing and interpreting the images. As a result, visualizing of images have greatly diversified in medical sciences domain. The magnetic resonance imaging (MRI) scanner is commonly used to identify and differentiate between normal and abnormal medical images. But in recent days, analysis of new variant of diseases is very difficult, hence adopting new advanced techniques in data pre-processing and analysis of medical images is very essential. This paper proposes a hybrid naive-Bayes classifier for MRI brain image differentiation process. The image quality of human body parts is enhanced including the brain images to improve classification accuracy rate by efficiently differentiating normal and abnormal images containing the disorders and injuries using a hybrid naive-based classifier in MRI brain images. The image pre-processing, feature extraction and noise reduction is achieved using proposed model. The proposed model is processed in four different steps such as image pre-processing, feature extraction and feature reduction using a naive Bayes classifier. The median filter is effectively utilized by a hybrid algorithm to remove noise such as scalp and skull. The performance analysis has been conducted by collecting a huge number of sample images and efficiently differentiating normal and abnormal images using the proposed algorithm. The comparative analysis has been conducted between proposed algorithm with existing methods like Random subspace with random forest (RS with RF), random subspace with Bayesian Network (RS with BN) and Feed Forward-ANN (FF-ANN). The aim of this work is to improve the classification accuracy with efficient and fast method which identifies the small number set of optimal parameters. The main purpose of the proposed mathematical model is to increase the accuracy rate of normal image classification and abnormal image classification with respect to classification methods like RS with RF, RS with BN and FF-ANN. The proposed hybrid naive Bayes classifier gives a 35–65% splitting ratio for training and splitting ratio. With respect to improvements in normal and abnormal classification of an image, samples are 2%, 3%, and 2.5% using methods (RS with RF), (RS with BN) and feed forward-ANN (FF-ANN), respectively.
ArticleNumber 223
Author Nayak, Madhu M.
Kengeri Anjanappa, Sumithra Devi
Author_xml – sequence: 1
  givenname: Madhu M.
  surname: Nayak
  fullname: Nayak, Madhu M.
  email: madhu.m@gsss.edu.in
  organization: GSSS Institute of Engineering & Technology for Women
– sequence: 2
  givenname: Sumithra Devi
  surname: Kengeri Anjanappa
  fullname: Kengeri Anjanappa, Sumithra Devi
  organization: Dayananda Sagar Academy of Technology and Management Bengaluru
BookMark eNp9kE1PwzAMQCM0JMbYH-AUiXPBSb_S4zYNNmmAhNg5StOky9SlI-mQ-u_pVgSIw062bD_betdoYGurELolcE8A0gcf0SzNAqA0AJKQKGgv0JAmCQlYBungT36Fxt5vAYDGEEVJPESHicVzrY00yjZ40ebOFHhWCe-NNsphXTv8_LbEUyeMxcudKJX_6UvRmNritTe2xM9CboxVeKWEs8fCVHhV4BdhPlWXtx03qcramWazu0GXWlRejb_jCK0f5--zRbB6fVrOJqtA0jBqAxqzNCWaZVQWIi8gDiMWq4IIYFqCjCBPclBJJkNgqaChZiwJgWgaiVjHoMIRuuv37l39cVC-4dv64Gx3ktOMEkrTLA27KdpPSVd775Tme2d2wrWcAD8a5r1h3hnmJ8O87SD2D5KmOfloOlXVeTTsUd_dsaVyv1-dob4Au6GSJg
CitedBy_id crossref_primary_10_1007_s10462_024_10814_2
crossref_primary_10_1007_s44163_024_00214_4
Cites_doi 10.1155/2022/9015778
10.1109/MSP.2003.1203207
10.1016/j.neunet.2022.02.008
10.1002/jmri.1139
10.1016/j.measen.2022.100412
10.1109/TCYB.2019.2933633
10.17485/IJST/v14i5.2171
10.17485/IJST/v14i24.604
10.1007/s40708-017-0075-5
10.1016/j.procs.2018.08.069
10.18280/ts.370321
10.1016/j.media.2010.05.010
10.1109/TMM.2019.2919431
10.1109/TMM.2020.2999182
10.1002/ima.22495
10.1016/j.neunet.2022.06.009
10.1016/j.neunet.2022.04.020
10.7717/peerj-cs.621
10.18280/ts.380114
10.1007/978-3-030-55340-1_18
10.1007/978-981-15-3992-3_1
10.1016/j.compmedimag.2022.102057
10.1109/ICSCDS53736.2022.9760962
10.1109/ICCISc52257.2021.9485022
10.14218/ERHM.2022.00013
10.1109/ICCSP.2018.8524235
10.13005/bpj/2409
10.1109/ICBSII51839.2021.9445126
10.1155/2014/747549
10.1007/978-3-319-10593-2_13
10.1007/978-3-030-01249-6_16
10.11591/ijeecs.v18.i1.pp56-63
10.5958/1945-919X.2016.00024.4
10.1016/j.neuroimage.2015.06.018
10.1109/IC3IOT53935.2022.9767996
10.1007/978-981-15-1100-4_3
10.1155/2022/5266054
10.1007/978-3-030-86976-2_8
10.3389/fnins.2021.679847
10.1016/j.nicl.2021.102719
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s42979-022-01614-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_022_01614_y
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
CCPQU
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c234y-258771f892cdabd053485ed1a08fc0c40b6b0e69c3087a23f886301f24a5f50e3
IEDL.DBID BENPR
ISSN 2661-8907
2662-995X
IngestDate Fri Jul 25 23:27:49 EDT 2025
Thu Apr 24 23:07:46 EDT 2025
Wed Oct 01 03:59:11 EDT 2025
Fri Feb 21 02:46:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Magnetic resonance imaging (MRI)
Positron emanation tomography (PET)
Random subspace (RS)
Bayesian Network (BN)
Random forest (RF)
Feed forward-artificial neural network (FF-ANN)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c234y-258771f892cdabd053485ed1a08fc0c40b6b0e69c3087a23f886301f24a5f50e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2921227973
PQPubID 6623307
ParticipantIDs proquest_journals_2921227973
crossref_primary_10_1007_s42979_022_01614_y
crossref_citationtrail_10_1007_s42979_022_01614_y
springer_journals_10_1007_s42979_022_01614_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Park, Park, Kang (CR12) 2003; 20
Satish, Srikantaswamy, Ramaswamy (CR25) 2020; 37
Pooja, Mallikarjunaswamy, Sharmila (CR27) 2021; 14
CR17
CR39
CR38
Yang, Li, Wang, Ji, Pang, Cao (CR22) 2022; 152
CR37
CR14
Yang, Zhang, Tian, Wang, Xue (CR15) 2019; 21
CR36
Tian, Xu, Zuo, Zhang, Fei, Lin (CR21) 2021; 23
CR35
CR34
CR11
CR33
CR10
CR32
Chaitra, Rekha, Harisha, Madhu, Mallikarjunaswamy, Sharmila, Mahendra (CR28) 2021; 14
Ji, Zhu, Zhang, Yin, Wei, Xiao (CR18) 2022; 149
Bashir, Wang, Khan (CR16) 2021; 7
CR2
Zotin, Simonov, Kurako, Hamad, Kirillova (CR3) 2018; 126
Gering (CR24) 2001; 13
CR4
Vankdothu (CR30) 2022
CR6
Tian, Yuan, Zhang, Lin, Zuo, Zhang (CR19) 2022; 153
Kolla, Mishra, Zahoor ul Huq (CR31) 2022; 78
CR8
CR7
CR29
CR9
CR43
Manjón, Coupé, Buades, Fonov, Louis, Collins (CR13) 2010; 14
CR20
CR42
CR41
Li, Yu, Wang, Zhou, Yang, Qiao (CR23) 2021; 51
Hu, Razmjooy (CR1) 2021; 31
Chithambaram, Perumal (CR5) 2016; 1
Thazeen, Mallikarjunaswamy, Siddesh, Sharmila (CR26) 2021; 38
Varuna Shree, Kumar (CR40) 2018; 5
M Kolla (1614_CR31) 2022; 78
1614_CR41
A Hu (1614_CR1) 2021; 31
C Tian (1614_CR19) 2022; 153
1614_CR20
1614_CR42
1614_CR43
SC Park (1614_CR12) 2003; 20
Z Li (1614_CR23) 2021; 51
S Thazeen (1614_CR26) 2021; 38
1614_CR29
A Yang (1614_CR22) 2022; 152
S Pooja (1614_CR27) 2021; 14
R Vankdothu (1614_CR30) 2022
DT Gering (1614_CR24) 2001; 13
W Yang (1614_CR15) 2019; 21
L Ji (1614_CR18) 2022; 149
1614_CR6
1614_CR7
1614_CR8
1614_CR9
1614_CR10
1614_CR32
1614_CR11
1614_CR33
1614_CR34
1614_CR35
1614_CR14
1614_CR36
1614_CR37
1614_CR38
1614_CR17
1614_CR39
JV Manjón (1614_CR13) 2010; 14
A Zotin (1614_CR3) 2018; 126
N Varuna Shree (1614_CR40) 2018; 5
C Tian (1614_CR21) 2021; 23
T Chithambaram (1614_CR5) 2016; 1
P Satish (1614_CR25) 2020; 37
1614_CR2
SMA Bashir (1614_CR16) 2021; 7
S Chaitra (1614_CR28) 2021; 14
1614_CR4
References_xml – volume: 78
  start-page: 9
  year: 2022
  ident: CR31
  article-title: CNN-based brain tumor detection model using local binary pattern and multilayered SVM classifier
  publication-title: Hindawi Comput Intell Neurosci
  doi: 10.1155/2022/9015778
– volume: 20
  start-page: 21
  year: 2003
  end-page: 36
  ident: CR12
  article-title: Super-resolution image reconstruction: a technical overview
  publication-title: IEEE Acoust Speech Signal Process Newslett
  doi: 10.1109/MSP.2003.1203207
– ident: CR43
– volume: 1
  start-page: 135
  issue: 3
  year: 2016
  end-page: 140
  ident: CR5
  article-title: Edge detection algorithms using brain tumor detection and segmentation using artificial neural network techniques
  publication-title: Int Res J Adv Eng Sci
– volume: 149
  start-page: 84
  year: 2022
  end-page: 94
  ident: CR18
  article-title: Cross-domain heterogeneous residual network for single image super-resolution
  publication-title: Neural Netw Off J Int Neural Netw Soc
  doi: 10.1016/j.neunet.2022.02.008
– ident: CR4
– ident: CR14
– volume: 13
  start-page: 967
  issue: 6
  year: 2001
  end-page: 975
  ident: CR24
  article-title: An integrated visualization system for surgical planning and guidance using image fusion and an open MR
  publication-title: J Magn Reson Imag
  doi: 10.1002/jmri.1139
– year: 2022
  ident: CR30
  article-title: Brain tumor MRI images identification and classification based on the recurrent convolutional neural network
  publication-title: Meas Sens
  doi: 10.1016/j.measen.2022.100412
– ident: CR39
– ident: CR2
– volume: 51
  start-page: 3441
  issue: 7
  year: 2021
  end-page: 3454
  ident: CR23
  article-title: DeepVolume: brain structure and spatial connection-aware network for brain MRI super-resolution
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2933633
– volume: 14
  start-page: 432
  issue: 5
  year: 2021
  end-page: 444
  ident: CR28
  article-title: A comprehensive review of parallel concatenation of LDPC code techniques
  publication-title: Indian J Sci Technol
  doi: 10.17485/IJST/v14i5.2171
– ident: CR37
– ident: CR10
– ident: CR33
– volume: 14
  start-page: 2051
  issue: 24
  year: 2021
  end-page: 2068
  ident: CR27
  article-title: Adaptive sparsity through hybrid regularization for effective image deblurring
  publication-title: Indian J Sci Technol
  doi: 10.17485/IJST/v14i24.604
– ident: CR35
– ident: CR6
– ident: CR29
– ident: CR8
– volume: 5
  start-page: 23
  year: 2018
  end-page: 30
  ident: CR40
  article-title: Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network
  publication-title: Brain Informatics.
  doi: 10.1007/s40708-017-0075-5
– ident: CR42
– volume: 126
  start-page: 1261
  year: 2018
  end-page: 1270
  ident: CR3
  article-title: Edge detection in MRI brain tumor images based on fuzzy c-means clustering
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2018.08.069
– volume: 37
  start-page: 527
  issue: 3
  year: 2020
  end-page: 539
  ident: CR25
  article-title: A comprehensive review of blind deconvolution techniques for image deblurring
  publication-title: Traitement du Signal
  doi: 10.18280/ts.370321
– volume: 14
  start-page: 784
  year: 2010
  end-page: 792
  ident: CR13
  article-title: Robles non-local MRI upsampling
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2010.05.010
– ident: CR38
– volume: 21
  start-page: 3106
  year: 2019
  end-page: 3121
  ident: CR15
  article-title: Deep learning for single image super-resolution: a brief Review
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2019.2919431
– ident: CR17
– volume: 23
  start-page: 1489
  year: 2021
  end-page: 1502
  ident: CR21
  article-title: Coarse-to-fine CNN for image super-resolution
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2020.2999182
– ident: CR11
– volume: 31
  start-page: 657
  issue: 2
  year: 2021
  end-page: 669
  ident: CR1
  article-title: Brain tumor diagnosis based on metaheuristics and deep learning
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22495
– ident: CR9
– ident: CR32
– ident: CR34
– ident: CR36
– volume: 153
  start-page: 373
  year: 2022
  end-page: 385
  ident: CR19
  article-title: Image super-resolution with an enhanced group convolutional neural network
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2022.06.009
– ident: CR7
– volume: 152
  start-page: 201
  year: 2022
  end-page: 211
  ident: CR22
  article-title: Non-linear perceptual multi-scale network for single image super-resolution
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2022.04.020
– ident: CR41
– volume: 7
  start-page: e621
  year: 2021
  ident: CR16
  article-title: A comprehensive review of deep learning-based single image super-resolution
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.621
– volume: 38
  start-page: 135
  issue: 1
  year: 2021
  end-page: 145
  ident: CR26
  article-title: Conventional and subspace algorithms for mobile source detection and radiation formation
  publication-title: Traitement du Signal
  doi: 10.18280/ts.380114
– ident: CR20
– ident: 1614_CR36
  doi: 10.1007/978-3-030-55340-1_18
– volume: 7
  start-page: e621
  year: 2021
  ident: 1614_CR16
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.621
– volume: 13
  start-page: 967
  issue: 6
  year: 2001
  ident: 1614_CR24
  publication-title: J Magn Reson Imag
  doi: 10.1002/jmri.1139
– ident: 1614_CR10
  doi: 10.1007/978-981-15-3992-3_1
– volume: 153
  start-page: 373
  year: 2022
  ident: 1614_CR19
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2022.06.009
– ident: 1614_CR42
  doi: 10.1016/j.compmedimag.2022.102057
– ident: 1614_CR38
  doi: 10.1109/ICSCDS53736.2022.9760962
– ident: 1614_CR2
  doi: 10.1109/ICCISc52257.2021.9485022
– volume: 20
  start-page: 21
  year: 2003
  ident: 1614_CR12
  publication-title: IEEE Acoust Speech Signal Process Newslett
  doi: 10.1109/MSP.2003.1203207
– ident: 1614_CR33
  doi: 10.14218/ERHM.2022.00013
– ident: 1614_CR6
  doi: 10.1109/ICCSP.2018.8524235
– volume: 1
  start-page: 135
  issue: 3
  year: 2016
  ident: 1614_CR5
  publication-title: Int Res J Adv Eng Sci
– volume: 152
  start-page: 201
  year: 2022
  ident: 1614_CR22
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2022.04.020
– volume: 78
  start-page: 9
  year: 2022
  ident: 1614_CR31
  publication-title: Hindawi Comput Intell Neurosci
  doi: 10.1155/2022/9015778
– ident: 1614_CR41
  doi: 10.13005/bpj/2409
– year: 2022
  ident: 1614_CR30
  publication-title: Meas Sens
  doi: 10.1016/j.measen.2022.100412
– ident: 1614_CR7
  doi: 10.1109/ICBSII51839.2021.9445126
– ident: 1614_CR39
  doi: 10.1155/2014/747549
– ident: 1614_CR17
  doi: 10.1007/978-3-319-10593-2_13
– volume: 126
  start-page: 1261
  year: 2018
  ident: 1614_CR3
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2018.08.069
– ident: 1614_CR8
  doi: 10.1109/ICBSII51839.2021.9445126
– ident: 1614_CR20
  doi: 10.1007/978-3-030-01249-6_16
– volume: 38
  start-page: 135
  issue: 1
  year: 2021
  ident: 1614_CR26
  publication-title: Traitement du Signal
  doi: 10.18280/ts.380114
– ident: 1614_CR37
  doi: 10.11591/ijeecs.v18.i1.pp56-63
– ident: 1614_CR35
  doi: 10.5958/1945-919X.2016.00024.4
– volume: 51
  start-page: 3441
  issue: 7
  year: 2021
  ident: 1614_CR23
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2933633
– volume: 14
  start-page: 2051
  issue: 24
  year: 2021
  ident: 1614_CR27
  publication-title: Indian J Sci Technol
  doi: 10.17485/IJST/v14i24.604
– ident: 1614_CR14
  doi: 10.1016/j.neuroimage.2015.06.018
– volume: 31
  start-page: 657
  issue: 2
  year: 2021
  ident: 1614_CR1
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22495
– volume: 149
  start-page: 84
  year: 2022
  ident: 1614_CR18
  publication-title: Neural Netw Off J Int Neural Netw Soc
  doi: 10.1016/j.neunet.2022.02.008
– volume: 14
  start-page: 784
  year: 2010
  ident: 1614_CR13
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2010.05.010
– ident: 1614_CR29
  doi: 10.1109/IC3IOT53935.2022.9767996
– ident: 1614_CR11
  doi: 10.1007/978-981-15-1100-4_3
– ident: 1614_CR34
  doi: 10.1155/2022/5266054
– volume: 37
  start-page: 527
  issue: 3
  year: 2020
  ident: 1614_CR25
  publication-title: Traitement du Signal
  doi: 10.18280/ts.370321
– volume: 5
  start-page: 23
  year: 2018
  ident: 1614_CR40
  publication-title: Brain Informatics.
  doi: 10.1007/s40708-017-0075-5
– volume: 14
  start-page: 432
  issue: 5
  year: 2021
  ident: 1614_CR28
  publication-title: Indian J Sci Technol
  doi: 10.17485/IJST/v14i5.2171
– ident: 1614_CR4
– ident: 1614_CR9
  doi: 10.1007/978-3-030-86976-2_8
– volume: 21
  start-page: 3106
  year: 2019
  ident: 1614_CR15
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2019.2919431
– ident: 1614_CR32
  doi: 10.3389/fnins.2021.679847
– ident: 1614_CR43
  doi: 10.1016/j.nicl.2021.102719
– volume: 23
  start-page: 1489
  year: 2021
  ident: 1614_CR21
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2020.2999182
SSID ssj0002504465
Score 2.2421253
Snippet In recent days, advanced techniques are used to compare the analysis of medical images, identifying, pre-processing and interpreting the images. As a result,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 223
SubjectTerms Accuracy
Advances in Computational Intelligence for Artificial Intelligence
Algorithms
Bayesian analysis
Body parts
Brain
Brain cancer
Classification
Classifiers
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Datasets
Discriminant analysis
Feature extraction
Image classification
Image enhancement
Image quality
Information Systems and Communication Service
Internet of Things and Data Analytics
Machine Learning
Magnetic resonance imaging
Mathematical models
Medical imaging
Medical science
Neural networks
Neuroimaging
Noise reduction
Original Research
Parameter identification
Pattern Recognition and Graphics
Software Engineering/Programming and Operating Systems
Splitting
Support vector machines
Tomography
Tumors
Vision
Wavelet transforms
Title An Efficient Hybrid Classifier for MRI Brain Images Classification Using Machine Learning Based Naive Bayes Algorithm
URI https://link.springer.com/article/10.1007/s42979-022-01614-y
https://www.proquest.com/docview/2921227973
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: AFBBN
  dateStart: 20190625
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2661-8907
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BThsxEB1BuPRSURXUtDTyoTew2HjtXfuAqqRKCEiJKlSk3FbetU2RIFBIDvv3zDi7iYoEt5W89mFsvxnbM-8B_Aj9srKayn5DsJwYwHipUjy4OidzS2wwiuqdp7Nsci0v52q-A7O2FobSKltMjEDtHiq6Iz8VBkFW5CZPfz7-46QaRa-rrYSGbaQV3FmkGNuFPUHMWB3YG45mv682ty5E2CWjviQ6JsGNUfOmkibW0yE454ZTgjtFQpLX_3urbQj66tU0OqPxPnxsokg2WE_7J9jxi8-wGizYKDJCoCNhk5pqsVgUvbwN6PwYhqdsenXBhqQKwS7uEUmeN-3rmzsWMwjYNGZYetaQr96wIfo6x2YWoRG_a-w3uLtB6yz_3h_A9Xj059eEN6oKvBKprLlQOs_7QRtROVs63IRSK-_6NtGhSiqZlFmZ-MxUxBVoRRq0zhAFgpBWBZX49BA6i4eF_wLMp4lxxNYjNUaGSWYU7m-duJCFXPjSdaHfWq-oGspxUr64KzZkydHiBVq8iBYv6i4cb_o8rgk33v37qJ2Uotl8z8V2qXThpJ2obfPbo319f7Rv8IHE5tfpjkfQWT6t_HcMSZZlD3b1-LzXrLYXisjcGA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYoHNoLoqJVU14-tKfW6sZr79oHVCU0KAESVQik3LbetU2RIDwShPbP9bcx43gTtVK5cVvJax9mxjNje-b7CPnk22VlFLb9em8YIoCxUqZwcLVW5AbRYCT2Ow9HWf9cHI3leIX8aXphsKyy8YnBUdubCu_Iv3ENTpbnOk-_394xZI3C19WGQsNEagW7HyDGYmPHsasf4Qg33R_8AH1_5vywd3bQZ5FlgFU8FTXjUuV52yvNK2tKC0YplHS2bRLlq6QSSZmVict0hdh5hqdeqQx2hefCSC8Tl8K6r8iaSIWGw99atzf6ebq45UGAMBH4LCEQcqa1HMfOndC_B8Eg1wwL6jHzEqz-OzouU95_XmlD8DvcIOsxa6WduZm9JStuskkeOhPaCwgUELhov8beLxpINi89BFsK6TAdng5oF1ko6OAaPNd0MT6_KaShYoEOQ0WnoxHs9YJ2IbZaOjLgiuG7hnmdqwvQxuz39Tty_iLyfU9WJzcT94FQlybaIjqQUJCJJpmW4E9UYn3mc-5K2yLtRnpFFSHOkWnjqliAMweJFyDxIki8qFvky2LO7Rzg49m_txulFHGzT4ulabbI10ZRy-H_r_bx-dX2yOv-2fCkOBmMjrfIGyS6n5dabpPV2f2D24F0aFbuRpuj5NdLm_kTheAXMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Hybrid+Classifier+for+MRI+Brain+Images+Classification+Using+Machine+Learning+Based+Naive+Bayes+Algorithm&rft.jtitle=SN+computer+science&rft.au=Nayak%2C+Madhu+M.&rft.au=Kengeri+Anjanappa%2C+Sumithra+Devi&rft.date=2023-05-01&rft.issn=2661-8907&rft.eissn=2661-8907&rft.volume=4&rft.issue=3&rft_id=info:doi/10.1007%2Fs42979-022-01614-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42979_022_01614_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon