An Efficient Hybrid Classifier for MRI Brain Images Classification Using Machine Learning Based Naive Bayes Algorithm
In recent days, advanced techniques are used to compare the analysis of medical images, identifying, pre-processing and interpreting the images. As a result, visualizing of images have greatly diversified in medical sciences domain. The magnetic resonance imaging (MRI) scanner is commonly used to id...
        Saved in:
      
    
          | Published in | SN computer science Vol. 4; no. 3; p. 223 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Singapore
          Springer Nature Singapore
    
        01.05.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2661-8907 2662-995X 2661-8907  | 
| DOI | 10.1007/s42979-022-01614-y | 
Cover
| Abstract | In recent days, advanced techniques are used to compare the analysis of medical images, identifying, pre-processing and interpreting the images. As a result, visualizing of images have greatly diversified in medical sciences domain. The magnetic resonance imaging (MRI) scanner is commonly used to identify and differentiate between normal and abnormal medical images. But in recent days, analysis of new variant of diseases is very difficult, hence adopting new advanced techniques in data pre-processing and analysis of medical images is very essential. This paper proposes a hybrid naive-Bayes classifier for MRI brain image differentiation process. The image quality of human body parts is enhanced including the brain images to improve classification accuracy rate by efficiently differentiating normal and abnormal images containing the disorders and injuries using a hybrid naive-based classifier in MRI brain images. The image pre-processing, feature extraction and noise reduction is achieved using proposed model. The proposed model is processed in four different steps such as image pre-processing, feature extraction and feature reduction using a naive Bayes classifier. The median filter is effectively utilized by a hybrid algorithm to remove noise such as scalp and skull. The performance analysis has been conducted by collecting a huge number of sample images and efficiently differentiating normal and abnormal images using the proposed algorithm. The comparative analysis has been conducted between proposed algorithm with existing methods like Random subspace with random forest (RS with RF), random subspace with Bayesian Network (RS with BN) and Feed Forward-ANN (FF-ANN). The aim of this work is to improve the classification accuracy with efficient and fast method which identifies the small number set of optimal parameters. The main purpose of the proposed mathematical model is to increase the accuracy rate of normal image classification and abnormal image classification with respect to classification methods like RS with RF, RS with BN and FF-ANN. The proposed hybrid naive Bayes classifier gives a 35–65% splitting ratio for training and splitting ratio. With respect to improvements in normal and abnormal classification of an image, samples are 2%, 3%, and 2.5% using methods (RS with RF), (RS with BN) and feed forward-ANN (FF-ANN), respectively. | 
    
|---|---|
| AbstractList | In recent days, advanced techniques are used to compare the analysis of medical images, identifying, pre-processing and interpreting the images. As a result, visualizing of images have greatly diversified in medical sciences domain. The magnetic resonance imaging (MRI) scanner is commonly used to identify and differentiate between normal and abnormal medical images. But in recent days, analysis of new variant of diseases is very difficult, hence adopting new advanced techniques in data pre-processing and analysis of medical images is very essential. This paper proposes a hybrid naive-Bayes classifier for MRI brain image differentiation process. The image quality of human body parts is enhanced including the brain images to improve classification accuracy rate by efficiently differentiating normal and abnormal images containing the disorders and injuries using a hybrid naive-based classifier in MRI brain images. The image pre-processing, feature extraction and noise reduction is achieved using proposed model. The proposed model is processed in four different steps such as image pre-processing, feature extraction and feature reduction using a naive Bayes classifier. The median filter is effectively utilized by a hybrid algorithm to remove noise such as scalp and skull. The performance analysis has been conducted by collecting a huge number of sample images and efficiently differentiating normal and abnormal images using the proposed algorithm. The comparative analysis has been conducted between proposed algorithm with existing methods like Random subspace with random forest (RS with RF), random subspace with Bayesian Network (RS with BN) and Feed Forward-ANN (FF-ANN). The aim of this work is to improve the classification accuracy with efficient and fast method which identifies the small number set of optimal parameters. The main purpose of the proposed mathematical model is to increase the accuracy rate of normal image classification and abnormal image classification with respect to classification methods like RS with RF, RS with BN and FF-ANN. The proposed hybrid naive Bayes classifier gives a 35–65% splitting ratio for training and splitting ratio. With respect to improvements in normal and abnormal classification of an image, samples are 2%, 3%, and 2.5% using methods (RS with RF), (RS with BN) and feed forward-ANN (FF-ANN), respectively. | 
    
| ArticleNumber | 223 | 
    
| Author | Nayak, Madhu M. Kengeri Anjanappa, Sumithra Devi  | 
    
| Author_xml | – sequence: 1 givenname: Madhu M. surname: Nayak fullname: Nayak, Madhu M. email: madhu.m@gsss.edu.in organization: GSSS Institute of Engineering & Technology for Women – sequence: 2 givenname: Sumithra Devi surname: Kengeri Anjanappa fullname: Kengeri Anjanappa, Sumithra Devi organization: Dayananda Sagar Academy of Technology and Management Bengaluru  | 
    
| BookMark | eNp9kE1PwzAMQCM0JMbYH-AUiXPBSb_S4zYNNmmAhNg5StOky9SlI-mQ-u_pVgSIw062bD_betdoYGurELolcE8A0gcf0SzNAqA0AJKQKGgv0JAmCQlYBungT36Fxt5vAYDGEEVJPESHicVzrY00yjZ40ebOFHhWCe-NNsphXTv8_LbEUyeMxcudKJX_6UvRmNritTe2xM9CboxVeKWEs8fCVHhV4BdhPlWXtx03qcramWazu0GXWlRejb_jCK0f5--zRbB6fVrOJqtA0jBqAxqzNCWaZVQWIi8gDiMWq4IIYFqCjCBPclBJJkNgqaChZiwJgWgaiVjHoMIRuuv37l39cVC-4dv64Gx3ktOMEkrTLA27KdpPSVd775Tme2d2wrWcAD8a5r1h3hnmJ8O87SD2D5KmOfloOlXVeTTsUd_dsaVyv1-dob4Au6GSJg | 
    
| CitedBy_id | crossref_primary_10_1007_s10462_024_10814_2 crossref_primary_10_1007_s44163_024_00214_4  | 
    
| Cites_doi | 10.1155/2022/9015778 10.1109/MSP.2003.1203207 10.1016/j.neunet.2022.02.008 10.1002/jmri.1139 10.1016/j.measen.2022.100412 10.1109/TCYB.2019.2933633 10.17485/IJST/v14i5.2171 10.17485/IJST/v14i24.604 10.1007/s40708-017-0075-5 10.1016/j.procs.2018.08.069 10.18280/ts.370321 10.1016/j.media.2010.05.010 10.1109/TMM.2019.2919431 10.1109/TMM.2020.2999182 10.1002/ima.22495 10.1016/j.neunet.2022.06.009 10.1016/j.neunet.2022.04.020 10.7717/peerj-cs.621 10.18280/ts.380114 10.1007/978-3-030-55340-1_18 10.1007/978-981-15-3992-3_1 10.1016/j.compmedimag.2022.102057 10.1109/ICSCDS53736.2022.9760962 10.1109/ICCISc52257.2021.9485022 10.14218/ERHM.2022.00013 10.1109/ICCSP.2018.8524235 10.13005/bpj/2409 10.1109/ICBSII51839.2021.9445126 10.1155/2014/747549 10.1007/978-3-319-10593-2_13 10.1007/978-3-030-01249-6_16 10.11591/ijeecs.v18.i1.pp56-63 10.5958/1945-919X.2016.00024.4 10.1016/j.neuroimage.2015.06.018 10.1109/IC3IOT53935.2022.9767996 10.1007/978-981-15-1100-4_3 10.1155/2022/5266054 10.1007/978-3-030-86976-2_8 10.3389/fnins.2021.679847 10.1016/j.nicl.2021.102719  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI  | 
    
| DOI | 10.1007/s42979-022-01614-y | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 2661-8907 | 
    
| ExternalDocumentID | 10_1007_s42979_022_01614_y | 
    
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ CCPQU DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI  | 
    
| ID | FETCH-LOGICAL-c234y-258771f892cdabd053485ed1a08fc0c40b6b0e69c3087a23f886301f24a5f50e3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2661-8907 2662-995X  | 
    
| IngestDate | Fri Jul 25 23:27:49 EDT 2025 Thu Apr 24 23:07:46 EDT 2025 Wed Oct 01 03:59:11 EDT 2025 Fri Feb 21 02:46:08 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Magnetic resonance imaging (MRI) Positron emanation tomography (PET) Random subspace (RS) Bayesian Network (BN) Random forest (RF) Feed forward-artificial neural network (FF-ANN)  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c234y-258771f892cdabd053485ed1a08fc0c40b6b0e69c3087a23f886301f24a5f50e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2921227973 | 
    
| PQPubID | 6623307 | 
    
| ParticipantIDs | proquest_journals_2921227973 crossref_primary_10_1007_s42979_022_01614_y crossref_citationtrail_10_1007_s42979_022_01614_y springer_journals_10_1007_s42979_022_01614_y  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-05-01 | 
    
| PublicationDateYYYYMMDD | 2023-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Singapore | 
    
| PublicationPlace_xml | – name: Singapore – name: Kolkata  | 
    
| PublicationTitle | SN computer science | 
    
| PublicationTitleAbbrev | SN COMPUT. SCI | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer Nature Singapore Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V  | 
    
| References | Park, Park, Kang (CR12) 2003; 20 Satish, Srikantaswamy, Ramaswamy (CR25) 2020; 37 Pooja, Mallikarjunaswamy, Sharmila (CR27) 2021; 14 CR17 CR39 CR38 Yang, Li, Wang, Ji, Pang, Cao (CR22) 2022; 152 CR37 CR14 Yang, Zhang, Tian, Wang, Xue (CR15) 2019; 21 CR36 Tian, Xu, Zuo, Zhang, Fei, Lin (CR21) 2021; 23 CR35 CR34 CR11 CR33 CR10 CR32 Chaitra, Rekha, Harisha, Madhu, Mallikarjunaswamy, Sharmila, Mahendra (CR28) 2021; 14 Ji, Zhu, Zhang, Yin, Wei, Xiao (CR18) 2022; 149 Bashir, Wang, Khan (CR16) 2021; 7 CR2 Zotin, Simonov, Kurako, Hamad, Kirillova (CR3) 2018; 126 Gering (CR24) 2001; 13 CR4 Vankdothu (CR30) 2022 CR6 Tian, Yuan, Zhang, Lin, Zuo, Zhang (CR19) 2022; 153 Kolla, Mishra, Zahoor ul Huq (CR31) 2022; 78 CR8 CR7 CR29 CR9 CR43 Manjón, Coupé, Buades, Fonov, Louis, Collins (CR13) 2010; 14 CR20 CR42 CR41 Li, Yu, Wang, Zhou, Yang, Qiao (CR23) 2021; 51 Hu, Razmjooy (CR1) 2021; 31 Chithambaram, Perumal (CR5) 2016; 1 Thazeen, Mallikarjunaswamy, Siddesh, Sharmila (CR26) 2021; 38 Varuna Shree, Kumar (CR40) 2018; 5 M Kolla (1614_CR31) 2022; 78 1614_CR41 A Hu (1614_CR1) 2021; 31 C Tian (1614_CR19) 2022; 153 1614_CR20 1614_CR42 1614_CR43 SC Park (1614_CR12) 2003; 20 Z Li (1614_CR23) 2021; 51 S Thazeen (1614_CR26) 2021; 38 1614_CR29 A Yang (1614_CR22) 2022; 152 S Pooja (1614_CR27) 2021; 14 R Vankdothu (1614_CR30) 2022 DT Gering (1614_CR24) 2001; 13 W Yang (1614_CR15) 2019; 21 L Ji (1614_CR18) 2022; 149 1614_CR6 1614_CR7 1614_CR8 1614_CR9 1614_CR10 1614_CR32 1614_CR11 1614_CR33 1614_CR34 1614_CR35 1614_CR14 1614_CR36 1614_CR37 1614_CR38 1614_CR17 1614_CR39 JV Manjón (1614_CR13) 2010; 14 A Zotin (1614_CR3) 2018; 126 N Varuna Shree (1614_CR40) 2018; 5 C Tian (1614_CR21) 2021; 23 T Chithambaram (1614_CR5) 2016; 1 P Satish (1614_CR25) 2020; 37 1614_CR2 SMA Bashir (1614_CR16) 2021; 7 S Chaitra (1614_CR28) 2021; 14 1614_CR4  | 
    
| References_xml | – volume: 78 start-page: 9 year: 2022 ident: CR31 article-title: CNN-based brain tumor detection model using local binary pattern and multilayered SVM classifier publication-title: Hindawi Comput Intell Neurosci doi: 10.1155/2022/9015778 – volume: 20 start-page: 21 year: 2003 end-page: 36 ident: CR12 article-title: Super-resolution image reconstruction: a technical overview publication-title: IEEE Acoust Speech Signal Process Newslett doi: 10.1109/MSP.2003.1203207 – ident: CR43 – volume: 1 start-page: 135 issue: 3 year: 2016 end-page: 140 ident: CR5 article-title: Edge detection algorithms using brain tumor detection and segmentation using artificial neural network techniques publication-title: Int Res J Adv Eng Sci – volume: 149 start-page: 84 year: 2022 end-page: 94 ident: CR18 article-title: Cross-domain heterogeneous residual network for single image super-resolution publication-title: Neural Netw Off J Int Neural Netw Soc doi: 10.1016/j.neunet.2022.02.008 – ident: CR4 – ident: CR14 – volume: 13 start-page: 967 issue: 6 year: 2001 end-page: 975 ident: CR24 article-title: An integrated visualization system for surgical planning and guidance using image fusion and an open MR publication-title: J Magn Reson Imag doi: 10.1002/jmri.1139 – year: 2022 ident: CR30 article-title: Brain tumor MRI images identification and classification based on the recurrent convolutional neural network publication-title: Meas Sens doi: 10.1016/j.measen.2022.100412 – ident: CR39 – ident: CR2 – volume: 51 start-page: 3441 issue: 7 year: 2021 end-page: 3454 ident: CR23 article-title: DeepVolume: brain structure and spatial connection-aware network for brain MRI super-resolution publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2933633 – volume: 14 start-page: 432 issue: 5 year: 2021 end-page: 444 ident: CR28 article-title: A comprehensive review of parallel concatenation of LDPC code techniques publication-title: Indian J Sci Technol doi: 10.17485/IJST/v14i5.2171 – ident: CR37 – ident: CR10 – ident: CR33 – volume: 14 start-page: 2051 issue: 24 year: 2021 end-page: 2068 ident: CR27 article-title: Adaptive sparsity through hybrid regularization for effective image deblurring publication-title: Indian J Sci Technol doi: 10.17485/IJST/v14i24.604 – ident: CR35 – ident: CR6 – ident: CR29 – ident: CR8 – volume: 5 start-page: 23 year: 2018 end-page: 30 ident: CR40 article-title: Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network publication-title: Brain Informatics. doi: 10.1007/s40708-017-0075-5 – ident: CR42 – volume: 126 start-page: 1261 year: 2018 end-page: 1270 ident: CR3 article-title: Edge detection in MRI brain tumor images based on fuzzy c-means clustering publication-title: Proc Comput Sci doi: 10.1016/j.procs.2018.08.069 – volume: 37 start-page: 527 issue: 3 year: 2020 end-page: 539 ident: CR25 article-title: A comprehensive review of blind deconvolution techniques for image deblurring publication-title: Traitement du Signal doi: 10.18280/ts.370321 – volume: 14 start-page: 784 year: 2010 end-page: 792 ident: CR13 article-title: Robles non-local MRI upsampling publication-title: Med Image Anal doi: 10.1016/j.media.2010.05.010 – ident: CR38 – volume: 21 start-page: 3106 year: 2019 end-page: 3121 ident: CR15 article-title: Deep learning for single image super-resolution: a brief Review publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2019.2919431 – ident: CR17 – volume: 23 start-page: 1489 year: 2021 end-page: 1502 ident: CR21 article-title: Coarse-to-fine CNN for image super-resolution publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2020.2999182 – ident: CR11 – volume: 31 start-page: 657 issue: 2 year: 2021 end-page: 669 ident: CR1 article-title: Brain tumor diagnosis based on metaheuristics and deep learning publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22495 – ident: CR9 – ident: CR32 – ident: CR34 – ident: CR36 – volume: 153 start-page: 373 year: 2022 end-page: 385 ident: CR19 article-title: Image super-resolution with an enhanced group convolutional neural network publication-title: Neural Netw doi: 10.1016/j.neunet.2022.06.009 – ident: CR7 – volume: 152 start-page: 201 year: 2022 end-page: 211 ident: CR22 article-title: Non-linear perceptual multi-scale network for single image super-resolution publication-title: Neural Netw doi: 10.1016/j.neunet.2022.04.020 – ident: CR41 – volume: 7 start-page: e621 year: 2021 ident: CR16 article-title: A comprehensive review of deep learning-based single image super-resolution publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.621 – volume: 38 start-page: 135 issue: 1 year: 2021 end-page: 145 ident: CR26 article-title: Conventional and subspace algorithms for mobile source detection and radiation formation publication-title: Traitement du Signal doi: 10.18280/ts.380114 – ident: CR20 – ident: 1614_CR36 doi: 10.1007/978-3-030-55340-1_18 – volume: 7 start-page: e621 year: 2021 ident: 1614_CR16 publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.621 – volume: 13 start-page: 967 issue: 6 year: 2001 ident: 1614_CR24 publication-title: J Magn Reson Imag doi: 10.1002/jmri.1139 – ident: 1614_CR10 doi: 10.1007/978-981-15-3992-3_1 – volume: 153 start-page: 373 year: 2022 ident: 1614_CR19 publication-title: Neural Netw doi: 10.1016/j.neunet.2022.06.009 – ident: 1614_CR42 doi: 10.1016/j.compmedimag.2022.102057 – ident: 1614_CR38 doi: 10.1109/ICSCDS53736.2022.9760962 – ident: 1614_CR2 doi: 10.1109/ICCISc52257.2021.9485022 – volume: 20 start-page: 21 year: 2003 ident: 1614_CR12 publication-title: IEEE Acoust Speech Signal Process Newslett doi: 10.1109/MSP.2003.1203207 – ident: 1614_CR33 doi: 10.14218/ERHM.2022.00013 – ident: 1614_CR6 doi: 10.1109/ICCSP.2018.8524235 – volume: 1 start-page: 135 issue: 3 year: 2016 ident: 1614_CR5 publication-title: Int Res J Adv Eng Sci – volume: 152 start-page: 201 year: 2022 ident: 1614_CR22 publication-title: Neural Netw doi: 10.1016/j.neunet.2022.04.020 – volume: 78 start-page: 9 year: 2022 ident: 1614_CR31 publication-title: Hindawi Comput Intell Neurosci doi: 10.1155/2022/9015778 – ident: 1614_CR41 doi: 10.13005/bpj/2409 – year: 2022 ident: 1614_CR30 publication-title: Meas Sens doi: 10.1016/j.measen.2022.100412 – ident: 1614_CR7 doi: 10.1109/ICBSII51839.2021.9445126 – ident: 1614_CR39 doi: 10.1155/2014/747549 – ident: 1614_CR17 doi: 10.1007/978-3-319-10593-2_13 – volume: 126 start-page: 1261 year: 2018 ident: 1614_CR3 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2018.08.069 – ident: 1614_CR8 doi: 10.1109/ICBSII51839.2021.9445126 – ident: 1614_CR20 doi: 10.1007/978-3-030-01249-6_16 – volume: 38 start-page: 135 issue: 1 year: 2021 ident: 1614_CR26 publication-title: Traitement du Signal doi: 10.18280/ts.380114 – ident: 1614_CR37 doi: 10.11591/ijeecs.v18.i1.pp56-63 – ident: 1614_CR35 doi: 10.5958/1945-919X.2016.00024.4 – volume: 51 start-page: 3441 issue: 7 year: 2021 ident: 1614_CR23 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2933633 – volume: 14 start-page: 2051 issue: 24 year: 2021 ident: 1614_CR27 publication-title: Indian J Sci Technol doi: 10.17485/IJST/v14i24.604 – ident: 1614_CR14 doi: 10.1016/j.neuroimage.2015.06.018 – volume: 31 start-page: 657 issue: 2 year: 2021 ident: 1614_CR1 publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22495 – volume: 149 start-page: 84 year: 2022 ident: 1614_CR18 publication-title: Neural Netw Off J Int Neural Netw Soc doi: 10.1016/j.neunet.2022.02.008 – volume: 14 start-page: 784 year: 2010 ident: 1614_CR13 publication-title: Med Image Anal doi: 10.1016/j.media.2010.05.010 – ident: 1614_CR29 doi: 10.1109/IC3IOT53935.2022.9767996 – ident: 1614_CR11 doi: 10.1007/978-981-15-1100-4_3 – ident: 1614_CR34 doi: 10.1155/2022/5266054 – volume: 37 start-page: 527 issue: 3 year: 2020 ident: 1614_CR25 publication-title: Traitement du Signal doi: 10.18280/ts.370321 – volume: 5 start-page: 23 year: 2018 ident: 1614_CR40 publication-title: Brain Informatics. doi: 10.1007/s40708-017-0075-5 – volume: 14 start-page: 432 issue: 5 year: 2021 ident: 1614_CR28 publication-title: Indian J Sci Technol doi: 10.17485/IJST/v14i5.2171 – ident: 1614_CR4 – ident: 1614_CR9 doi: 10.1007/978-3-030-86976-2_8 – volume: 21 start-page: 3106 year: 2019 ident: 1614_CR15 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2019.2919431 – ident: 1614_CR32 doi: 10.3389/fnins.2021.679847 – ident: 1614_CR43 doi: 10.1016/j.nicl.2021.102719 – volume: 23 start-page: 1489 year: 2021 ident: 1614_CR21 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2020.2999182  | 
    
| SSID | ssj0002504465 | 
    
| Score | 2.2421253 | 
    
| Snippet | In recent days, advanced techniques are used to compare the analysis of medical images, identifying, pre-processing and interpreting the images. As a result,... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 223 | 
    
| SubjectTerms | Accuracy Advances in Computational Intelligence for Artificial Intelligence Algorithms Bayesian analysis Body parts Brain Brain cancer Classification Classifiers Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Datasets Discriminant analysis Feature extraction Image classification Image enhancement Image quality Information Systems and Communication Service Internet of Things and Data Analytics Machine Learning Magnetic resonance imaging Mathematical models Medical imaging Medical science Neural networks Neuroimaging Noise reduction Original Research Parameter identification Pattern Recognition and Graphics Software Engineering/Programming and Operating Systems Splitting Support vector machines Tomography Tumors Vision Wavelet transforms  | 
    
| Title | An Efficient Hybrid Classifier for MRI Brain Images Classification Using Machine Learning Based Naive Bayes Algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s42979-022-01614-y https://www.proquest.com/docview/2921227973  | 
    
| Volume | 4 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: AFBBN dateStart: 20190625 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2661-8907 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BThsxEB1BuPRSURXUtDTyoTew2HjtXfuAqqRKCEiJKlSk3FbetU2RIFBIDvv3zDi7iYoEt5W89mFsvxnbM-8B_Aj9srKayn5DsJwYwHipUjy4OidzS2wwiuqdp7Nsci0v52q-A7O2FobSKltMjEDtHiq6Iz8VBkFW5CZPfz7-46QaRa-rrYSGbaQV3FmkGNuFPUHMWB3YG45mv682ty5E2CWjviQ6JsGNUfOmkibW0yE454ZTgjtFQpLX_3urbQj66tU0OqPxPnxsokg2WE_7J9jxi8-wGizYKDJCoCNhk5pqsVgUvbwN6PwYhqdsenXBhqQKwS7uEUmeN-3rmzsWMwjYNGZYetaQr96wIfo6x2YWoRG_a-w3uLtB6yz_3h_A9Xj059eEN6oKvBKprLlQOs_7QRtROVs63IRSK-_6NtGhSiqZlFmZ-MxUxBVoRRq0zhAFgpBWBZX49BA6i4eF_wLMp4lxxNYjNUaGSWYU7m-duJCFXPjSdaHfWq-oGspxUr64KzZkydHiBVq8iBYv6i4cb_o8rgk33v37qJ2Uotl8z8V2qXThpJ2obfPbo319f7Rv8IHE5tfpjkfQWT6t_HcMSZZlD3b1-LzXrLYXisjcGA | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYoHNoLoqJVU14-tKfW6sZr79oHVCU0KAESVQik3LbetU2RIDwShPbP9bcx43gTtVK5cVvJax9mxjNje-b7CPnk22VlFLb9em8YIoCxUqZwcLVW5AbRYCT2Ow9HWf9cHI3leIX8aXphsKyy8YnBUdubCu_Iv3ENTpbnOk-_394xZI3C19WGQsNEagW7HyDGYmPHsasf4Qg33R_8AH1_5vywd3bQZ5FlgFU8FTXjUuV52yvNK2tKC0YplHS2bRLlq6QSSZmVict0hdh5hqdeqQx2hefCSC8Tl8K6r8iaSIWGw99atzf6ebq45UGAMBH4LCEQcqa1HMfOndC_B8Eg1wwL6jHzEqz-OzouU95_XmlD8DvcIOsxa6WduZm9JStuskkeOhPaCwgUELhov8beLxpINi89BFsK6TAdng5oF1ko6OAaPNd0MT6_KaShYoEOQ0WnoxHs9YJ2IbZaOjLgiuG7hnmdqwvQxuz39Tty_iLyfU9WJzcT94FQlybaIjqQUJCJJpmW4E9UYn3mc-5K2yLtRnpFFSHOkWnjqliAMweJFyDxIki8qFvky2LO7Rzg49m_txulFHGzT4ulabbI10ZRy-H_r_bx-dX2yOv-2fCkOBmMjrfIGyS6n5dabpPV2f2D24F0aFbuRpuj5NdLm_kTheAXMQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Hybrid+Classifier+for+MRI+Brain+Images+Classification+Using+Machine+Learning+Based+Naive+Bayes+Algorithm&rft.jtitle=SN+computer+science&rft.au=Nayak%2C+Madhu+M.&rft.au=Kengeri+Anjanappa%2C+Sumithra+Devi&rft.date=2023-05-01&rft.issn=2661-8907&rft.eissn=2661-8907&rft.volume=4&rft.issue=3&rft_id=info:doi/10.1007%2Fs42979-022-01614-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42979_022_01614_y | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |