Privacy BERT-LSTM: a novel NLP algorithm for sensitive information detection in textual documents

In this modern digital era, the increasing volume of textual data and the widespread adoption of natural language processing (NLP) techniques have presented a critical challenge in safeguarding sensitive privacy information. As a result, there is a pressing demand to design robust and accurate NLP-b...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 36; no. 25; pp. 15439 - 15454
Main Authors Muralitharan, Janani, Arumugam, Chandrasekar
Format Journal Article
LanguageEnglish
Published London Springer London 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-024-09707-w

Cover

Abstract In this modern digital era, the increasing volume of textual data and the widespread adoption of natural language processing (NLP) techniques have presented a critical challenge in safeguarding sensitive privacy information. As a result, there is a pressing demand to design robust and accurate NLP-based techniques to perform efficient sensitive information detection in textual data. This research paper focuses on the detection and classification of sensitive privacy information in textual documents using NLP by proposing a novel algorithm named Privacy BERT-LSTM. The proposed Privacy BERT-LSTM algorithm employs BERT for obtaining contextual embeddings and LSTM for sequential information processing, facilitating efficient sensitive information detection in textual documents. The BERT with its bidirectional characteristics captures the nuances and meaning of the textual documents, while the LSTM derives the long-range dependencies in the textual data. Moreover, the proposed Privacy BERT-LSTM algorithm with its attention mechanism highlights the important regions of the textual documents, contributing to efficient sensitive information detection. The comprehensive performance evaluation is conducted by employing the SMS Spam Collection dataset in terms of standard performance metrics and comparing it with different state-of-the-art techniques, namely, CASSED, PRIVAFRAME, CNN-LSTM, Conv-FFD, GCSA, TSIIP, and, C-PIIM. The experimental outcomes clearly illustrate that the Privacy BERT-LSTM algorithm demonstrates superior performance in identifying various types of sensitive information by achieving an accuracy of 92.50%, F1-score of 85.02%, and Precision of 89.36%. The proposed algorithm outperforms existing baseline models, providing valuable advancements in sensitive information detection using NLP. Therefore, this research contributes to the advancement of privacy protection in NLP applications and opens avenues for future investigations in the domain of sensitive information detection. Additionally, the proposed algorithm provides valuable insights for researchers and practitioners working on privacy-sensitive NLP tasks.
AbstractList In this modern digital era, the increasing volume of textual data and the widespread adoption of natural language processing (NLP) techniques have presented a critical challenge in safeguarding sensitive privacy information. As a result, there is a pressing demand to design robust and accurate NLP-based techniques to perform efficient sensitive information detection in textual data. This research paper focuses on the detection and classification of sensitive privacy information in textual documents using NLP by proposing a novel algorithm named Privacy BERT-LSTM. The proposed Privacy BERT-LSTM algorithm employs BERT for obtaining contextual embeddings and LSTM for sequential information processing, facilitating efficient sensitive information detection in textual documents. The BERT with its bidirectional characteristics captures the nuances and meaning of the textual documents, while the LSTM derives the long-range dependencies in the textual data. Moreover, the proposed Privacy BERT-LSTM algorithm with its attention mechanism highlights the important regions of the textual documents, contributing to efficient sensitive information detection. The comprehensive performance evaluation is conducted by employing the SMS Spam Collection dataset in terms of standard performance metrics and comparing it with different state-of-the-art techniques, namely, CASSED, PRIVAFRAME, CNN-LSTM, Conv-FFD, GCSA, TSIIP, and, C-PIIM. The experimental outcomes clearly illustrate that the Privacy BERT-LSTM algorithm demonstrates superior performance in identifying various types of sensitive information by achieving an accuracy of 92.50%, F1-score of 85.02%, and Precision of 89.36%. The proposed algorithm outperforms existing baseline models, providing valuable advancements in sensitive information detection using NLP. Therefore, this research contributes to the advancement of privacy protection in NLP applications and opens avenues for future investigations in the domain of sensitive information detection. Additionally, the proposed algorithm provides valuable insights for researchers and practitioners working on privacy-sensitive NLP tasks.
Author Arumugam, Chandrasekar
Muralitharan, Janani
Author_xml – sequence: 1
  givenname: Janani
  surname: Muralitharan
  fullname: Muralitharan, Janani
  email: jananim@stjosephs.ac.in
  organization: Department of Information Technology, St.Joseph’s College of Engineering
– sequence: 2
  givenname: Chandrasekar
  surname: Arumugam
  fullname: Arumugam, Chandrasekar
  organization: Department of Computer Science and Engineering, St.Joseph’s College of Engineering
BookMark eNp9kE1PGzEQhq2KSiS0f4CTpZ63zK7X63VvENGClEIE6dlyvLOp0camtpM0_x6TICFxyMEaj-Z95uMdkxPnHRJyXsL3EkBcRABelQVUdQFSgCi2n8iorBkrGPD2hIxA1rnc1OyUjGN8AoC6afmI6FmwG2129Or6YV5MH-e_f1BNnd_gQO-mM6qHpQ82_V3R3gca0UWb7AapdTlf6WS9ox0mNPufdTTh_7TWA-28Wa_QpfiFfO71EPHrWzwjf35ezyc3xfT-1-3kclqYitXbwpS8wwYXopTa5AdaSsmbXnaNNAIYctajMJJXteaLfK0xpu1R1yigLRcdOyPfDn2fg_-3xpjUk18Hl0cqBpILKQSHrGoPKhN8jAF7ZWzan5GCtoMqQb0aqg6Gqmyo2huqthmtPqDPwa502B2H2AGKWeyWGN63OkK9AHOGi-o
CitedBy_id crossref_primary_10_3390_app14209343
crossref_primary_10_1007_s10489_024_05954_5
crossref_primary_10_1007_s41870_024_02248_4
Cites_doi 10.1049/cje.2021.05.007
10.1016/j.eswa.2023.119924
10.4018/IJGHPC.2020070101
10.1016/j.aej.2021.02.009
10.3390/app13063383
10.1155/2022/3498123
10.24432/C5CC84
10.1016/j.patrec.2023.02.026
10.1016/j.aei.2022.101535
10.1109/ACCESS.2022.3213033
10.3390/app10114009
10.3390/app11031125
10.3390/bdcc6030090
10.1016/j.inffus.2023.102186
10.1016/j.ymssp.2022.108826
10.1016/j.cose.2020.102156
10.1007/s40747-022-00760-3
10.1016/j.csl.2020.101182
10.3390/electronics11244147
10.1109/JSTARS.2020.2988324
10.3233/IDA-205154
10.1109/TMECH.2023.3314215
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-024-09707-w
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 15454
ExternalDocumentID 10_1007_s00521_024_09707_w
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c234w-c15de6eb719ac19a0a99956f9d69c703e53fe7c9524a5b052ccc8fea4e7081bd3
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Sat Oct 25 08:17:44 EDT 2025
Wed Oct 01 03:43:42 EDT 2025
Thu Apr 24 23:11:46 EDT 2025
Fri Feb 21 02:38:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 25
Keywords Textual documents
BERT
NLP
LSTM
Class imbalance
Sensitive information detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c234w-c15de6eb719ac19a0a99956f9d69c703e53fe7c9524a5b052ccc8fea4e7081bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3095797750
PQPubID 2043988
PageCount 16
ParticipantIDs proquest_journals_3095797750
crossref_citationtrail_10_1007_s00521_024_09707_w
crossref_primary_10_1007_s00521_024_09707_w
springer_journals_10_1007_s00521_024_09707_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Yuan, Lin, Huo, Kong, Zhou, Wu, Jia (CR25) 2020; 13
Kužina, Petric, Barišić, Jović (CR28) 2023; 223
Gambarelli, Gangemi (CR5) 2022; 6
CR12
Luo (CR16) 2021; 60
Butt, Amin, Aldabbas, Mohan, Alouffi, Ahmadian (CR29) 2023; 9
Huo, Jiang (CR11) 2023; 13
Almeida, Hidalgo (CR27) 2012
Aubaid, Mishra (CR10) 2020; 10
Victor, Lopez (CR20) 2020; 12
Zhang, Guo, Zhu, Vijayakumar, Castiglione, Gupta (CR30) 2023; 168
Ohata, Mattos, Gomes, Rebouças, Rego (CR1) 2022; 10
Zhao, Zhu, Liu, Hu, Gao, Zhao, Yao, Liu (CR7) 2024; 104
Hassan, Sánchez, Domingo-Ferrer (CR2) 2021; 35
CR9
Liu, Yang, Yang (CR18) 2021; 2021
Khan, Yasin, Usman, Hussain, Khalid, Ullah (CR4) 2022; 11
Kulkarni, Cauvery (CR17) 2021; 12
CR24
Guo, Liu, Tang, Huang (CR22) 2021; 102
Zhao, Yao, Deng, Jia, Liu (CR8) 2022; 170
Qasim, Bangyal, Alqarni, Ali Almazroi (CR23) 2022; 2022
CR21
Zhuohao, Dong, Qing (CR15) 2021; 30
Roslan, Foozy (CR19) 2022; 3
Deng, Cheng, Wang (CR26) 2021; 68
Zhao, Fu, Zhang, Meng, Tang (CR6) 2022; 51
Lynn, Kim, Pan (CR3) 2021; 11
García, Maldonado, Vairetti (CR13) 2021; 25
Barve, Saini, Pal, Kotecha (CR14) 2022; 13
P Kulkarni (9707_CR17) 2021; 12
G Gambarelli (9707_CR5) 2022; 6
Y Guo (9707_CR22) 2021; 102
Y Yuan (9707_CR25) 2020; 13
9707_CR12
Y Liu (9707_CR18) 2021; 2021
X Luo (9707_CR16) 2021; 60
WANG Zhuohao (9707_CR15) 2021; 30
NIM Roslan (9707_CR19) 2022; 3
AR Khan (9707_CR4) 2022; 11
X Zhao (9707_CR8) 2022; 170
F Hassan (9707_CR2) 2021; 35
9707_CR9
M García (9707_CR13) 2021; 25
N Victor (9707_CR20) 2020; 12
HM Lynn (9707_CR3) 2021; 11
R Qasim (9707_CR23) 2022; 2022
J Deng (9707_CR26) 2021; 68
X Zhao (9707_CR7) 2024; 104
V Kužina (9707_CR28) 2023; 223
EF Ohata (9707_CR1) 2022; 10
9707_CR21
M Zhao (9707_CR6) 2022; 51
9707_CR24
T Almeida (9707_CR27) 2012
AM Aubaid (9707_CR10) 2020; 10
Y Barve (9707_CR14) 2022; 13
Q Zhang (9707_CR30) 2023; 168
UA Butt (9707_CR29) 2023; 9
L Huo (9707_CR11) 2023; 13
References_xml – volume: 35
  start-page: 1058
  issue: 1
  year: 2021
  end-page: 1071
  ident: CR2
  article-title: Utility-preserving privacy protection of textual documents via word embeddings
  publication-title: IEEE Trans Knowl Data Eng
– volume: 30
  start-page: 652
  issue: 4
  year: 2021
  end-page: 657
  ident: CR15
  article-title: Keyword extraction from scientific research projects based on SRP-TF-IDF
  publication-title: Chin J Electron
  doi: 10.1049/cje.2021.05.007
– volume: 223
  year: 2023
  ident: CR28
  article-title: CASSED: context-based approach for structured sensitive data detection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119924
– volume: 3
  start-page: 92
  issue: 2
  year: 2022
  end-page: 103
  ident: CR19
  article-title: A comparison of sensitive information detection framework using LSTM and RNN techniques
  publication-title: J Soft Comput Data Min
– ident: CR12
– volume: 12
  start-page: 1
  issue: 3
  year: 2020
  end-page: 16
  ident: CR20
  article-title: Sl-LSTM: a Bi-directional LSTM with stochastic gradient descent optimization for sequence labeling tasks in big data
  publication-title: Int J Grid High Perform Comput (IJGHPC)
  doi: 10.4018/IJGHPC.2020070101
– volume: 13
  start-page: 266
  issue: 4
  year: 2022
  end-page: 275
  ident: CR14
  article-title: A novel evolving sentimental bag-of-words approach for feature extraction to detect misinformation
  publication-title: Int J Adv Comput Sci Appl
– volume: 60
  start-page: 3401
  issue: 3
  year: 2021
  end-page: 3409
  ident: CR16
  article-title: Efficient English text classification using selected machine learning techniques
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2021.02.009
– volume: 13
  start-page: 3383
  issue: 6
  year: 2023
  ident: CR11
  article-title: Research on intelligent perception algorithm for sensitive information
  publication-title: Appl Sci
  doi: 10.3390/app13063383
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 17
  ident: CR23
  article-title: A fine-tuned BERT-based transfer learning approach for text classification
  publication-title: J Healthc Eng
  doi: 10.1155/2022/3498123
– year: 2012
  ident: CR27
  article-title: SMS spam collection
  publication-title: UCI Mach Learn Repos
  doi: 10.24432/C5CC84
– volume: 168
  start-page: 31
  year: 2023
  end-page: 38
  ident: CR30
  article-title: A deep learning-based fast fake news detection model for cyber-physical social services
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2023.02.026
– volume: 51
  year: 2022
  ident: CR6
  article-title: Highly imbalanced fault diagnosis of mechanical systems based on wavelet packet distortion and convolutional neural networks
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101535
– ident: CR21
– volume: 10
  start-page: 108413
  year: 2022
  end-page: 108421
  ident: CR1
  article-title: A text classification methodology to assist a large technical support system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3213033
– volume: 10
  start-page: 4009
  issue: 11
  year: 2020
  ident: CR10
  article-title: A rule-based approach to embedding techniques for text document classification
  publication-title: Appl Sci
  doi: 10.3390/app10114009
– volume: 11
  start-page: 1125
  issue: 3
  year: 2021
  ident: CR3
  article-title: Data independent acquisition based bi-directional deep networks for biometric ECG authentication
  publication-title: Appl Sci
  doi: 10.3390/app11031125
– volume: 6
  start-page: 90
  issue: 3
  year: 2022
  ident: CR5
  article-title: PRIVAFRAME: a frame-based knowledge graph for sensitive personal data
  publication-title: Big Data Cognit Comput
  doi: 10.3390/bdcc6030090
– volume: 104
  year: 2024
  ident: CR7
  article-title: Model-assisted multi-source fusion hypergraph convolutional neural networks for intelligent few-shot fault diagnosis to electro-hydrostatic actuator
  publication-title: Inf Fus
  doi: 10.1016/j.inffus.2023.102186
– volume: 170
  year: 2022
  ident: CR8
  article-title: Normalized conditional variational auto-encoder with adaptive focal loss for imbalanced fault diagnosis of bearing-rotor system
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.108826
– volume: 102
  year: 2021
  ident: CR22
  article-title: Exsense: extract sensitive information from unstructured data
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2020.102156
– volume: 9
  start-page: 3043
  issue: 3
  year: 2023
  end-page: 3070
  ident: CR29
  article-title: Cloud-based email phishing attack using machine and deep learning algorithm
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-022-00760-3
– ident: CR9
– volume: 68
  year: 2021
  ident: CR26
  article-title: Attention-based BiLSTM fused CNN with gating mechanism model for Chinese long text classification
  publication-title: Comput Speech Lang
  doi: 10.1016/j.csl.2020.101182
– volume: 11
  start-page: 4147
  issue: 24
  year: 2022
  ident: CR4
  article-title: Exploring lightweight deep learning solution for malware detection in IoT constraint environment
  publication-title: Electronics
  doi: 10.3390/electronics11244147
– volume: 13
  start-page: 1819
  year: 2020
  end-page: 1832
  ident: CR25
  article-title: Using an attention-based LSTM encoder–decoder network for near real-time disturbance detection
  publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens
  doi: 10.1109/JSTARS.2020.2988324
– volume: 25
  start-page: 509
  issue: 3
  year: 2021
  end-page: 525
  ident: CR13
  article-title: Efficient n-gram construction for text categorization using feature selection techniques
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-205154
– volume: 12
  start-page: 508
  issue: 9
  year: 2021
  end-page: 517
  ident: CR17
  article-title: Personally identifiable information (pii) detection in the unstructured large text corpus using natural language processing and unsupervised learning technique
  publication-title: Int J Adv Comput Sci Appl
– ident: CR24
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 8
  ident: CR18
  article-title: A graph convolutional network-based sensitive information detection algorithm
  publication-title: Complexity
– volume: 51
  year: 2022
  ident: 9707_CR6
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2022.101535
– volume: 10
  start-page: 4009
  issue: 11
  year: 2020
  ident: 9707_CR10
  publication-title: Appl Sci
  doi: 10.3390/app10114009
– volume: 170
  year: 2022
  ident: 9707_CR8
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.108826
– ident: 9707_CR24
– volume: 10
  start-page: 108413
  year: 2022
  ident: 9707_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3213033
– volume: 35
  start-page: 1058
  issue: 1
  year: 2021
  ident: 9707_CR2
  publication-title: IEEE Trans Knowl Data Eng
– volume: 30
  start-page: 652
  issue: 4
  year: 2021
  ident: 9707_CR15
  publication-title: Chin J Electron
  doi: 10.1049/cje.2021.05.007
– volume: 102
  year: 2021
  ident: 9707_CR22
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2020.102156
– volume: 9
  start-page: 3043
  issue: 3
  year: 2023
  ident: 9707_CR29
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-022-00760-3
– volume: 168
  start-page: 31
  year: 2023
  ident: 9707_CR30
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2023.02.026
– volume: 11
  start-page: 1125
  issue: 3
  year: 2021
  ident: 9707_CR3
  publication-title: Appl Sci
  doi: 10.3390/app11031125
– year: 2012
  ident: 9707_CR27
  publication-title: UCI Mach Learn Repos
  doi: 10.24432/C5CC84
– volume: 13
  start-page: 3383
  issue: 6
  year: 2023
  ident: 9707_CR11
  publication-title: Appl Sci
  doi: 10.3390/app13063383
– volume: 13
  start-page: 1819
  year: 2020
  ident: 9707_CR25
  publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens
  doi: 10.1109/JSTARS.2020.2988324
– volume: 11
  start-page: 4147
  issue: 24
  year: 2022
  ident: 9707_CR4
  publication-title: Electronics
  doi: 10.3390/electronics11244147
– volume: 12
  start-page: 1
  issue: 3
  year: 2020
  ident: 9707_CR20
  publication-title: Int J Grid High Perform Comput (IJGHPC)
  doi: 10.4018/IJGHPC.2020070101
– ident: 9707_CR21
– volume: 25
  start-page: 509
  issue: 3
  year: 2021
  ident: 9707_CR13
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-205154
– volume: 2021
  start-page: 1
  year: 2021
  ident: 9707_CR18
  publication-title: Complexity
– volume: 68
  year: 2021
  ident: 9707_CR26
  publication-title: Comput Speech Lang
  doi: 10.1016/j.csl.2020.101182
– ident: 9707_CR9
  doi: 10.1109/TMECH.2023.3314215
– volume: 104
  year: 2024
  ident: 9707_CR7
  publication-title: Inf Fus
  doi: 10.1016/j.inffus.2023.102186
– volume: 3
  start-page: 92
  issue: 2
  year: 2022
  ident: 9707_CR19
  publication-title: J Soft Comput Data Min
– volume: 12
  start-page: 508
  issue: 9
  year: 2021
  ident: 9707_CR17
  publication-title: Int J Adv Comput Sci Appl
– volume: 2022
  start-page: 1
  year: 2022
  ident: 9707_CR23
  publication-title: J Healthc Eng
  doi: 10.1155/2022/3498123
– volume: 6
  start-page: 90
  issue: 3
  year: 2022
  ident: 9707_CR5
  publication-title: Big Data Cognit Comput
  doi: 10.3390/bdcc6030090
– ident: 9707_CR12
– volume: 223
  year: 2023
  ident: 9707_CR28
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119924
– volume: 13
  start-page: 266
  issue: 4
  year: 2022
  ident: 9707_CR14
  publication-title: Int J Adv Comput Sci Appl
– volume: 60
  start-page: 3401
  issue: 3
  year: 2021
  ident: 9707_CR16
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2021.02.009
SSID ssj0004685
Score 2.3600554
Snippet In this modern digital era, the increasing volume of textual data and the widespread adoption of natural language processing (NLP) techniques have presented a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15439
SubjectTerms Algorithms
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Data processing
Documents
Image Processing and Computer Vision
Natural language processing
Original Article
Performance evaluation
Performance measurement
Privacy
Probability and Statistics in Computer Science
Short message service
State-of-the-art reviews
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gXLjwRgwGyoEbROq7DbeBNk1omybYpN2qxE0BabRoT_HvcbJ2AwRIHHppk1SyndiO7c-EXKaeBOUAMFv62kGxOOOCCybBTZ1ERBEYUJ9ON2gNvPuhPyyKwiZltnsZkjQn9arYTd9gouvreMzioRWyxSbZ8jWcF0rxwKl_qoY0jTjRb9E5PZ5blMr8vMZXdbS2Mb-FRY22ae6RncJMpPUlX_fJhsoOyG7ZgoEWO_KQiN74ZS7gnd42Hvqs_djv3FBBs3yuRrTb7lExesrR_X9-pWic0onOVtfnGy3wUjVXaKKmJh8rw7dUJ4LM8M9JDjNT_XZEBs1G_67Fiq4JDBzXWzCw_UQFSoY2F4CPJbiuXk15EnDA_a18N1UhcN_xhC-RHgAQpUp4KkTzQCbuMalkeaZOCFU4DVzUWF6AjoSUkdLXpimPANU652GV2CXxYiggxXVni1G8AkM2BI-R4LEheLyokqvVnLcloMafo2slT-Jic01i19KxxRBtnSq5Lvm0_vz7aqf_G35Gtp2lqDDLrpHKdDxT52iCTOWFkbgP8fvS1A
  priority: 102
  providerName: Springer Nature
Title Privacy BERT-LSTM: a novel NLP algorithm for sensitive information detection in textual documents
URI https://link.springer.com/article/10.1007/s00521-024-09707-w
https://www.proquest.com/docview/3095797750
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB5BcumFAm1FWoh84NZa7DO7RkIooATEI4ogkehpZc96ASlsKCRE_HvGjpcUJDjsxbv2yjO2Z2zPfB_AdhEp1AEi91VsNiie4EIKyRWGRZDLNEUL6nPeax0Po5Or-GoJelUujAmrrNZEu1DnYzRn5DuhZy6UEjJw-_f_uGGNMrerFYWGdNQK-Z6FGFuGemCQsWpQP-j0-hf_ZUpakk7a05h4nyh0aTQ2mc6ckFJpEHFPJF7CZ29N1cL_fHdlai1RdxVWnAvJ2nOdr8GSLtfha0XPwNxs_Qay_3D7JPGZHXQuBvzscnC-yyQrx096xHpnfSZH19TByc0dI8eVPZpIdrP2MYelajTGcj2xsVollTITJDKlP5OwpjYz7jsMu53B4TF3jAocgzCacfTjXLe0SnwhkR5PCpPZWoi8JZDmvo7DQico4iCSsSJ5IGJaaBnphFwHlYc_oFaOS70BTFM1DMmaRS3aZCiVanOkWogUyeQLkTTAr4SXoYMbN6wXo-wVKNkKPCOBZ1bg2awBv1_r3M_BNj79erPSSeYm3mO2GCYN-FPpafH649Z-ft7aL_gSzIcG9_xNqE0epnqL3JGJasJy2j1qQr199Pe003QjjkqHQfsFb2vfaQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xOMCFUigiNG19gBNY7MObXVdCVYGgAEkU0SBxW2yvF5DCBvIg4s_1tzF2vKStVG4c9uJde7Uzs_OwZ-YD2M6ZVDpQivoyMgGKxykXXFCpwjzIRJIo29Sn1a41LtnZVXQ1B7_LWhiTVlnqRKuos74ye-T7oWcOlGI0cD8eHqlBjTKnqyWEhnDQCtmBbTHmCjvO9fMEQ7jhwekx8nsnCE7q3aMGdSgDVAUhm1DlR5muaRn7XCi8PMFNtWfOsxpX-D_oKMx1rHgUMBFJL8IPU0muBdMxmlOZhbjuPCyykHEM_hYP6-3OxR-VmRYUFGMok1_EQle2Y4v3zI4sjgaMejz2Yjr52zTO_N1_jmit5TtZhRXnspKfUxn7CHO6WIMPJRwEcdphHURncPck1DM5rF90afNXt_WdCFL0n3SPtJsdIno3SNDR7T1BR5kMTea80bXE9W41EkIyPbK5YQWOEpOUMsY3I3PGthLvE1y-C203YKHoF3oTiMZpKkTryWoY1EiZaLOFm_NEoYvBeVwBvyReqlx7c4Oy0UtfGzNbgqdI8NQSPJ1UYPd1zsO0ucebT1dLnqTuRx-mM7GswF7Jp9nt_6-29fZq32Cp0W010-Zp-_wzLAdTMaGeX4WF0WCsv6ArNJJfnbwRuH5vEX8Bl9EaFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO6KsPnADiyxOE3MrS8VSqgpaiVtkTxxAKikqKRV_z9hNyiJA4pCLYzvSjJ2Zsee9IWQv5Qq0B8BcFZgAxRFMSCGZAj_1EhlFYEl9rlu18y6_vAvuPqH4bbZ7eSU5xjQYlqYsP3xO0sMJ8M2cZmIY7HHmiNAJ2WiazHBDlIAruuvVPyEjbVFOjGFMfg_3C9jMz3N8NU0f_ua3K1JreRqLZL5wGWl9rOMlMqWzZbJQlmOgxe5cIbI9eHyV8EaPz246rHnbuT6ikmb9V92jrWabyt59f_CYPzxRdFTpi8lcN_86WnCnGg3RROc2NyvDVmqSQob45aQPQ4uEWyXdxlnn5JwVFRQYeD4fMXCDRNe0Cl0hAR9HCoNkTUVSE4B7XQd-qkMQgcdloFAeABClWnIdoqugEn-NVLJ-ptcJ1TgMfLRevIZBhVKRNkeoqYgATbwQYZW4pfBiKOjFTZWLXjwhRrYCj1HgsRV4PKqS_cmY5zG5xp-9t0qdxMVGe4l9x9wzhuj3VMlBqaeP17_PtvG_7rtktn3aiJsXratNMueNVw1z3C1SyQdDvY2eSa527OJ7B3tU2fw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy+BERT-LSTM%3A+a+novel+NLP+algorithm+for+sensitive+information+detection+in+textual+documents&rft.jtitle=Neural+computing+%26+applications&rft.au=Muralitharan%2C+Janani&rft.au=Arumugam%2C+Chandrasekar&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=25&rft.spage=15439&rft.epage=15454&rft_id=info:doi/10.1007%2Fs00521-024-09707-w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon