Privacy BERT-LSTM: a novel NLP algorithm for sensitive information detection in textual documents
In this modern digital era, the increasing volume of textual data and the widespread adoption of natural language processing (NLP) techniques have presented a critical challenge in safeguarding sensitive privacy information. As a result, there is a pressing demand to design robust and accurate NLP-b...
Saved in:
| Published in | Neural computing & applications Vol. 36; no. 25; pp. 15439 - 15454 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.09.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 |
| DOI | 10.1007/s00521-024-09707-w |
Cover
| Abstract | In this modern digital era, the increasing volume of textual data and the widespread adoption of natural language processing (NLP) techniques have presented a critical challenge in safeguarding sensitive privacy information. As a result, there is a pressing demand to design robust and accurate NLP-based techniques to perform efficient sensitive information detection in textual data. This research paper focuses on the detection and classification of sensitive privacy information in textual documents using NLP by proposing a novel algorithm named Privacy BERT-LSTM. The proposed Privacy BERT-LSTM algorithm employs BERT for obtaining contextual embeddings and LSTM for sequential information processing, facilitating efficient sensitive information detection in textual documents. The BERT with its bidirectional characteristics captures the nuances and meaning of the textual documents, while the LSTM derives the long-range dependencies in the textual data. Moreover, the proposed Privacy BERT-LSTM algorithm with its attention mechanism highlights the important regions of the textual documents, contributing to efficient sensitive information detection. The comprehensive performance evaluation is conducted by employing the SMS Spam Collection dataset in terms of standard performance metrics and comparing it with different state-of-the-art techniques, namely, CASSED, PRIVAFRAME, CNN-LSTM, Conv-FFD, GCSA, TSIIP, and, C-PIIM. The experimental outcomes clearly illustrate that the Privacy BERT-LSTM algorithm demonstrates superior performance in identifying various types of sensitive information by achieving an accuracy of 92.50%, F1-score of 85.02%, and Precision of 89.36%. The proposed algorithm outperforms existing baseline models, providing valuable advancements in sensitive information detection using NLP. Therefore, this research contributes to the advancement of privacy protection in NLP applications and opens avenues for future investigations in the domain of sensitive information detection. Additionally, the proposed algorithm provides valuable insights for researchers and practitioners working on privacy-sensitive NLP tasks. |
|---|---|
| AbstractList | In this modern digital era, the increasing volume of textual data and the widespread adoption of natural language processing (NLP) techniques have presented a critical challenge in safeguarding sensitive privacy information. As a result, there is a pressing demand to design robust and accurate NLP-based techniques to perform efficient sensitive information detection in textual data. This research paper focuses on the detection and classification of sensitive privacy information in textual documents using NLP by proposing a novel algorithm named Privacy BERT-LSTM. The proposed Privacy BERT-LSTM algorithm employs BERT for obtaining contextual embeddings and LSTM for sequential information processing, facilitating efficient sensitive information detection in textual documents. The BERT with its bidirectional characteristics captures the nuances and meaning of the textual documents, while the LSTM derives the long-range dependencies in the textual data. Moreover, the proposed Privacy BERT-LSTM algorithm with its attention mechanism highlights the important regions of the textual documents, contributing to efficient sensitive information detection. The comprehensive performance evaluation is conducted by employing the SMS Spam Collection dataset in terms of standard performance metrics and comparing it with different state-of-the-art techniques, namely, CASSED, PRIVAFRAME, CNN-LSTM, Conv-FFD, GCSA, TSIIP, and, C-PIIM. The experimental outcomes clearly illustrate that the Privacy BERT-LSTM algorithm demonstrates superior performance in identifying various types of sensitive information by achieving an accuracy of 92.50%, F1-score of 85.02%, and Precision of 89.36%. The proposed algorithm outperforms existing baseline models, providing valuable advancements in sensitive information detection using NLP. Therefore, this research contributes to the advancement of privacy protection in NLP applications and opens avenues for future investigations in the domain of sensitive information detection. Additionally, the proposed algorithm provides valuable insights for researchers and practitioners working on privacy-sensitive NLP tasks. |
| Author | Arumugam, Chandrasekar Muralitharan, Janani |
| Author_xml | – sequence: 1 givenname: Janani surname: Muralitharan fullname: Muralitharan, Janani email: jananim@stjosephs.ac.in organization: Department of Information Technology, St.Joseph’s College of Engineering – sequence: 2 givenname: Chandrasekar surname: Arumugam fullname: Arumugam, Chandrasekar organization: Department of Computer Science and Engineering, St.Joseph’s College of Engineering |
| BookMark | eNp9kE1PGzEQhq2KSiS0f4CTpZ63zK7X63VvENGClEIE6dlyvLOp0camtpM0_x6TICFxyMEaj-Z95uMdkxPnHRJyXsL3EkBcRABelQVUdQFSgCi2n8iorBkrGPD2hIxA1rnc1OyUjGN8AoC6afmI6FmwG2129Or6YV5MH-e_f1BNnd_gQO-mM6qHpQ82_V3R3gca0UWb7AapdTlf6WS9ox0mNPufdTTh_7TWA-28Wa_QpfiFfO71EPHrWzwjf35ezyc3xfT-1-3kclqYitXbwpS8wwYXopTa5AdaSsmbXnaNNAIYctajMJJXteaLfK0xpu1R1yigLRcdOyPfDn2fg_-3xpjUk18Hl0cqBpILKQSHrGoPKhN8jAF7ZWzan5GCtoMqQb0aqg6Gqmyo2huqthmtPqDPwa502B2H2AGKWeyWGN63OkK9AHOGi-o |
| CitedBy_id | crossref_primary_10_3390_app14209343 crossref_primary_10_1007_s10489_024_05954_5 crossref_primary_10_1007_s41870_024_02248_4 |
| Cites_doi | 10.1049/cje.2021.05.007 10.1016/j.eswa.2023.119924 10.4018/IJGHPC.2020070101 10.1016/j.aej.2021.02.009 10.3390/app13063383 10.1155/2022/3498123 10.24432/C5CC84 10.1016/j.patrec.2023.02.026 10.1016/j.aei.2022.101535 10.1109/ACCESS.2022.3213033 10.3390/app10114009 10.3390/app11031125 10.3390/bdcc6030090 10.1016/j.inffus.2023.102186 10.1016/j.ymssp.2022.108826 10.1016/j.cose.2020.102156 10.1007/s40747-022-00760-3 10.1016/j.csl.2020.101182 10.3390/electronics11244147 10.1109/JSTARS.2020.2988324 10.3233/IDA-205154 10.1109/TMECH.2023.3314215 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-024-09707-w |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 15454 |
| ExternalDocumentID | 10_1007_s00521_024_09707_w |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c234w-c15de6eb719ac19a0a99956f9d69c703e53fe7c9524a5b052ccc8fea4e7081bd3 |
| IEDL.DBID | BENPR |
| ISSN | 0941-0643 |
| IngestDate | Sat Oct 25 08:17:44 EDT 2025 Wed Oct 01 03:43:42 EDT 2025 Thu Apr 24 23:11:46 EDT 2025 Fri Feb 21 02:38:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Keywords | Textual documents BERT NLP LSTM Class imbalance Sensitive information detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c234w-c15de6eb719ac19a0a99956f9d69c703e53fe7c9524a5b052ccc8fea4e7081bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3095797750 |
| PQPubID | 2043988 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3095797750 crossref_citationtrail_10_1007_s00521_024_09707_w crossref_primary_10_1007_s00521_024_09707_w springer_journals_10_1007_s00521_024_09707_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240900 2024-09-00 20240901 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2024 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Yuan, Lin, Huo, Kong, Zhou, Wu, Jia (CR25) 2020; 13 Kužina, Petric, Barišić, Jović (CR28) 2023; 223 Gambarelli, Gangemi (CR5) 2022; 6 CR12 Luo (CR16) 2021; 60 Butt, Amin, Aldabbas, Mohan, Alouffi, Ahmadian (CR29) 2023; 9 Huo, Jiang (CR11) 2023; 13 Almeida, Hidalgo (CR27) 2012 Aubaid, Mishra (CR10) 2020; 10 Victor, Lopez (CR20) 2020; 12 Zhang, Guo, Zhu, Vijayakumar, Castiglione, Gupta (CR30) 2023; 168 Ohata, Mattos, Gomes, Rebouças, Rego (CR1) 2022; 10 Zhao, Zhu, Liu, Hu, Gao, Zhao, Yao, Liu (CR7) 2024; 104 Hassan, Sánchez, Domingo-Ferrer (CR2) 2021; 35 CR9 Liu, Yang, Yang (CR18) 2021; 2021 Khan, Yasin, Usman, Hussain, Khalid, Ullah (CR4) 2022; 11 Kulkarni, Cauvery (CR17) 2021; 12 CR24 Guo, Liu, Tang, Huang (CR22) 2021; 102 Zhao, Yao, Deng, Jia, Liu (CR8) 2022; 170 Qasim, Bangyal, Alqarni, Ali Almazroi (CR23) 2022; 2022 CR21 Zhuohao, Dong, Qing (CR15) 2021; 30 Roslan, Foozy (CR19) 2022; 3 Deng, Cheng, Wang (CR26) 2021; 68 Zhao, Fu, Zhang, Meng, Tang (CR6) 2022; 51 Lynn, Kim, Pan (CR3) 2021; 11 García, Maldonado, Vairetti (CR13) 2021; 25 Barve, Saini, Pal, Kotecha (CR14) 2022; 13 P Kulkarni (9707_CR17) 2021; 12 G Gambarelli (9707_CR5) 2022; 6 Y Guo (9707_CR22) 2021; 102 Y Yuan (9707_CR25) 2020; 13 9707_CR12 Y Liu (9707_CR18) 2021; 2021 X Luo (9707_CR16) 2021; 60 WANG Zhuohao (9707_CR15) 2021; 30 NIM Roslan (9707_CR19) 2022; 3 AR Khan (9707_CR4) 2022; 11 X Zhao (9707_CR8) 2022; 170 F Hassan (9707_CR2) 2021; 35 9707_CR9 M García (9707_CR13) 2021; 25 N Victor (9707_CR20) 2020; 12 HM Lynn (9707_CR3) 2021; 11 R Qasim (9707_CR23) 2022; 2022 J Deng (9707_CR26) 2021; 68 X Zhao (9707_CR7) 2024; 104 V Kužina (9707_CR28) 2023; 223 EF Ohata (9707_CR1) 2022; 10 9707_CR21 M Zhao (9707_CR6) 2022; 51 9707_CR24 T Almeida (9707_CR27) 2012 AM Aubaid (9707_CR10) 2020; 10 Y Barve (9707_CR14) 2022; 13 Q Zhang (9707_CR30) 2023; 168 UA Butt (9707_CR29) 2023; 9 L Huo (9707_CR11) 2023; 13 |
| References_xml | – volume: 35 start-page: 1058 issue: 1 year: 2021 end-page: 1071 ident: CR2 article-title: Utility-preserving privacy protection of textual documents via word embeddings publication-title: IEEE Trans Knowl Data Eng – volume: 30 start-page: 652 issue: 4 year: 2021 end-page: 657 ident: CR15 article-title: Keyword extraction from scientific research projects based on SRP-TF-IDF publication-title: Chin J Electron doi: 10.1049/cje.2021.05.007 – volume: 223 year: 2023 ident: CR28 article-title: CASSED: context-based approach for structured sensitive data detection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.119924 – volume: 3 start-page: 92 issue: 2 year: 2022 end-page: 103 ident: CR19 article-title: A comparison of sensitive information detection framework using LSTM and RNN techniques publication-title: J Soft Comput Data Min – ident: CR12 – volume: 12 start-page: 1 issue: 3 year: 2020 end-page: 16 ident: CR20 article-title: Sl-LSTM: a Bi-directional LSTM with stochastic gradient descent optimization for sequence labeling tasks in big data publication-title: Int J Grid High Perform Comput (IJGHPC) doi: 10.4018/IJGHPC.2020070101 – volume: 13 start-page: 266 issue: 4 year: 2022 end-page: 275 ident: CR14 article-title: A novel evolving sentimental bag-of-words approach for feature extraction to detect misinformation publication-title: Int J Adv Comput Sci Appl – volume: 60 start-page: 3401 issue: 3 year: 2021 end-page: 3409 ident: CR16 article-title: Efficient English text classification using selected machine learning techniques publication-title: Alex Eng J doi: 10.1016/j.aej.2021.02.009 – volume: 13 start-page: 3383 issue: 6 year: 2023 ident: CR11 article-title: Research on intelligent perception algorithm for sensitive information publication-title: Appl Sci doi: 10.3390/app13063383 – volume: 2022 start-page: 1 year: 2022 end-page: 17 ident: CR23 article-title: A fine-tuned BERT-based transfer learning approach for text classification publication-title: J Healthc Eng doi: 10.1155/2022/3498123 – year: 2012 ident: CR27 article-title: SMS spam collection publication-title: UCI Mach Learn Repos doi: 10.24432/C5CC84 – volume: 168 start-page: 31 year: 2023 end-page: 38 ident: CR30 article-title: A deep learning-based fast fake news detection model for cyber-physical social services publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2023.02.026 – volume: 51 year: 2022 ident: CR6 article-title: Highly imbalanced fault diagnosis of mechanical systems based on wavelet packet distortion and convolutional neural networks publication-title: Adv Eng Inform doi: 10.1016/j.aei.2022.101535 – ident: CR21 – volume: 10 start-page: 108413 year: 2022 end-page: 108421 ident: CR1 article-title: A text classification methodology to assist a large technical support system publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3213033 – volume: 10 start-page: 4009 issue: 11 year: 2020 ident: CR10 article-title: A rule-based approach to embedding techniques for text document classification publication-title: Appl Sci doi: 10.3390/app10114009 – volume: 11 start-page: 1125 issue: 3 year: 2021 ident: CR3 article-title: Data independent acquisition based bi-directional deep networks for biometric ECG authentication publication-title: Appl Sci doi: 10.3390/app11031125 – volume: 6 start-page: 90 issue: 3 year: 2022 ident: CR5 article-title: PRIVAFRAME: a frame-based knowledge graph for sensitive personal data publication-title: Big Data Cognit Comput doi: 10.3390/bdcc6030090 – volume: 104 year: 2024 ident: CR7 article-title: Model-assisted multi-source fusion hypergraph convolutional neural networks for intelligent few-shot fault diagnosis to electro-hydrostatic actuator publication-title: Inf Fus doi: 10.1016/j.inffus.2023.102186 – volume: 170 year: 2022 ident: CR8 article-title: Normalized conditional variational auto-encoder with adaptive focal loss for imbalanced fault diagnosis of bearing-rotor system publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2022.108826 – volume: 102 year: 2021 ident: CR22 article-title: Exsense: extract sensitive information from unstructured data publication-title: Comput Secur doi: 10.1016/j.cose.2020.102156 – volume: 9 start-page: 3043 issue: 3 year: 2023 end-page: 3070 ident: CR29 article-title: Cloud-based email phishing attack using machine and deep learning algorithm publication-title: Complex Intell Syst doi: 10.1007/s40747-022-00760-3 – ident: CR9 – volume: 68 year: 2021 ident: CR26 article-title: Attention-based BiLSTM fused CNN with gating mechanism model for Chinese long text classification publication-title: Comput Speech Lang doi: 10.1016/j.csl.2020.101182 – volume: 11 start-page: 4147 issue: 24 year: 2022 ident: CR4 article-title: Exploring lightweight deep learning solution for malware detection in IoT constraint environment publication-title: Electronics doi: 10.3390/electronics11244147 – volume: 13 start-page: 1819 year: 2020 end-page: 1832 ident: CR25 article-title: Using an attention-based LSTM encoder–decoder network for near real-time disturbance detection publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens doi: 10.1109/JSTARS.2020.2988324 – volume: 25 start-page: 509 issue: 3 year: 2021 end-page: 525 ident: CR13 article-title: Efficient n-gram construction for text categorization using feature selection techniques publication-title: Intell Data Anal doi: 10.3233/IDA-205154 – volume: 12 start-page: 508 issue: 9 year: 2021 end-page: 517 ident: CR17 article-title: Personally identifiable information (pii) detection in the unstructured large text corpus using natural language processing and unsupervised learning technique publication-title: Int J Adv Comput Sci Appl – ident: CR24 – volume: 2021 start-page: 1 year: 2021 end-page: 8 ident: CR18 article-title: A graph convolutional network-based sensitive information detection algorithm publication-title: Complexity – volume: 51 year: 2022 ident: 9707_CR6 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2022.101535 – volume: 10 start-page: 4009 issue: 11 year: 2020 ident: 9707_CR10 publication-title: Appl Sci doi: 10.3390/app10114009 – volume: 170 year: 2022 ident: 9707_CR8 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2022.108826 – ident: 9707_CR24 – volume: 10 start-page: 108413 year: 2022 ident: 9707_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3213033 – volume: 35 start-page: 1058 issue: 1 year: 2021 ident: 9707_CR2 publication-title: IEEE Trans Knowl Data Eng – volume: 30 start-page: 652 issue: 4 year: 2021 ident: 9707_CR15 publication-title: Chin J Electron doi: 10.1049/cje.2021.05.007 – volume: 102 year: 2021 ident: 9707_CR22 publication-title: Comput Secur doi: 10.1016/j.cose.2020.102156 – volume: 9 start-page: 3043 issue: 3 year: 2023 ident: 9707_CR29 publication-title: Complex Intell Syst doi: 10.1007/s40747-022-00760-3 – volume: 168 start-page: 31 year: 2023 ident: 9707_CR30 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2023.02.026 – volume: 11 start-page: 1125 issue: 3 year: 2021 ident: 9707_CR3 publication-title: Appl Sci doi: 10.3390/app11031125 – year: 2012 ident: 9707_CR27 publication-title: UCI Mach Learn Repos doi: 10.24432/C5CC84 – volume: 13 start-page: 3383 issue: 6 year: 2023 ident: 9707_CR11 publication-title: Appl Sci doi: 10.3390/app13063383 – volume: 13 start-page: 1819 year: 2020 ident: 9707_CR25 publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens doi: 10.1109/JSTARS.2020.2988324 – volume: 11 start-page: 4147 issue: 24 year: 2022 ident: 9707_CR4 publication-title: Electronics doi: 10.3390/electronics11244147 – volume: 12 start-page: 1 issue: 3 year: 2020 ident: 9707_CR20 publication-title: Int J Grid High Perform Comput (IJGHPC) doi: 10.4018/IJGHPC.2020070101 – ident: 9707_CR21 – volume: 25 start-page: 509 issue: 3 year: 2021 ident: 9707_CR13 publication-title: Intell Data Anal doi: 10.3233/IDA-205154 – volume: 2021 start-page: 1 year: 2021 ident: 9707_CR18 publication-title: Complexity – volume: 68 year: 2021 ident: 9707_CR26 publication-title: Comput Speech Lang doi: 10.1016/j.csl.2020.101182 – ident: 9707_CR9 doi: 10.1109/TMECH.2023.3314215 – volume: 104 year: 2024 ident: 9707_CR7 publication-title: Inf Fus doi: 10.1016/j.inffus.2023.102186 – volume: 3 start-page: 92 issue: 2 year: 2022 ident: 9707_CR19 publication-title: J Soft Comput Data Min – volume: 12 start-page: 508 issue: 9 year: 2021 ident: 9707_CR17 publication-title: Int J Adv Comput Sci Appl – volume: 2022 start-page: 1 year: 2022 ident: 9707_CR23 publication-title: J Healthc Eng doi: 10.1155/2022/3498123 – volume: 6 start-page: 90 issue: 3 year: 2022 ident: 9707_CR5 publication-title: Big Data Cognit Comput doi: 10.3390/bdcc6030090 – ident: 9707_CR12 – volume: 223 year: 2023 ident: 9707_CR28 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.119924 – volume: 13 start-page: 266 issue: 4 year: 2022 ident: 9707_CR14 publication-title: Int J Adv Comput Sci Appl – volume: 60 start-page: 3401 issue: 3 year: 2021 ident: 9707_CR16 publication-title: Alex Eng J doi: 10.1016/j.aej.2021.02.009 |
| SSID | ssj0004685 |
| Score | 2.3600554 |
| Snippet | In this modern digital era, the increasing volume of textual data and the widespread adoption of natural language processing (NLP) techniques have presented a... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 15439 |
| SubjectTerms | Algorithms Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Data processing Documents Image Processing and Computer Vision Natural language processing Original Article Performance evaluation Performance measurement Privacy Probability and Statistics in Computer Science Short message service State-of-the-art reviews |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gXLjwRgwGyoEbROq7DbeBNk1omybYpN2qxE0BabRoT_HvcbJ2AwRIHHppk1SyndiO7c-EXKaeBOUAMFv62kGxOOOCCybBTZ1ERBEYUJ9ON2gNvPuhPyyKwiZltnsZkjQn9arYTd9gouvreMzioRWyxSbZ8jWcF0rxwKl_qoY0jTjRb9E5PZ5blMr8vMZXdbS2Mb-FRY22ae6RncJMpPUlX_fJhsoOyG7ZgoEWO_KQiN74ZS7gnd42Hvqs_djv3FBBs3yuRrTb7lExesrR_X9-pWic0onOVtfnGy3wUjVXaKKmJh8rw7dUJ4LM8M9JDjNT_XZEBs1G_67Fiq4JDBzXWzCw_UQFSoY2F4CPJbiuXk15EnDA_a18N1UhcN_xhC-RHgAQpUp4KkTzQCbuMalkeaZOCFU4DVzUWF6AjoSUkdLXpimPANU652GV2CXxYiggxXVni1G8AkM2BI-R4LEheLyokqvVnLcloMafo2slT-Jic01i19KxxRBtnSq5Lvm0_vz7aqf_G35Gtp2lqDDLrpHKdDxT52iCTOWFkbgP8fvS1A priority: 102 providerName: Springer Nature |
| Title | Privacy BERT-LSTM: a novel NLP algorithm for sensitive information detection in textual documents |
| URI | https://link.springer.com/article/10.1007/s00521-024-09707-w https://www.proquest.com/docview/3095797750 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB5BcumFAm1FWoh84NZa7DO7RkIooATEI4ogkehpZc96ASlsKCRE_HvGjpcUJDjsxbv2yjO2Z2zPfB_AdhEp1AEi91VsNiie4EIKyRWGRZDLNEUL6nPeax0Po5Or-GoJelUujAmrrNZEu1DnYzRn5DuhZy6UEjJw-_f_uGGNMrerFYWGdNQK-Z6FGFuGemCQsWpQP-j0-hf_ZUpakk7a05h4nyh0aTQ2mc6ckFJpEHFPJF7CZ29N1cL_fHdlai1RdxVWnAvJ2nOdr8GSLtfha0XPwNxs_Qay_3D7JPGZHXQuBvzscnC-yyQrx096xHpnfSZH19TByc0dI8eVPZpIdrP2MYelajTGcj2xsVollTITJDKlP5OwpjYz7jsMu53B4TF3jAocgzCacfTjXLe0SnwhkR5PCpPZWoi8JZDmvo7DQico4iCSsSJ5IGJaaBnphFwHlYc_oFaOS70BTFM1DMmaRS3aZCiVanOkWogUyeQLkTTAr4SXoYMbN6wXo-wVKNkKPCOBZ1bg2awBv1_r3M_BNj79erPSSeYm3mO2GCYN-FPpafH649Z-ft7aL_gSzIcG9_xNqE0epnqL3JGJasJy2j1qQr199Pe003QjjkqHQfsFb2vfaQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xOMCFUigiNG19gBNY7MObXVdCVYGgAEkU0SBxW2yvF5DCBvIg4s_1tzF2vKStVG4c9uJde7Uzs_OwZ-YD2M6ZVDpQivoyMgGKxykXXFCpwjzIRJIo29Sn1a41LtnZVXQ1B7_LWhiTVlnqRKuos74ye-T7oWcOlGI0cD8eHqlBjTKnqyWEhnDQCtmBbTHmCjvO9fMEQ7jhwekx8nsnCE7q3aMGdSgDVAUhm1DlR5muaRn7XCi8PMFNtWfOsxpX-D_oKMx1rHgUMBFJL8IPU0muBdMxmlOZhbjuPCyykHEM_hYP6-3OxR-VmRYUFGMok1_EQle2Y4v3zI4sjgaMejz2Yjr52zTO_N1_jmit5TtZhRXnspKfUxn7CHO6WIMPJRwEcdphHURncPck1DM5rF90afNXt_WdCFL0n3SPtJsdIno3SNDR7T1BR5kMTea80bXE9W41EkIyPbK5YQWOEpOUMsY3I3PGthLvE1y-C203YKHoF3oTiMZpKkTryWoY1EiZaLOFm_NEoYvBeVwBvyReqlx7c4Oy0UtfGzNbgqdI8NQSPJ1UYPd1zsO0ucebT1dLnqTuRx-mM7GswF7Jp9nt_6-29fZq32Cp0W010-Zp-_wzLAdTMaGeX4WF0WCsv6ArNJJfnbwRuH5vEX8Bl9EaFQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO6KsPnADiyxOE3MrS8VSqgpaiVtkTxxAKikqKRV_z9hNyiJA4pCLYzvSjJ2Zsee9IWQv5Qq0B8BcFZgAxRFMSCGZAj_1EhlFYEl9rlu18y6_vAvuPqH4bbZ7eSU5xjQYlqYsP3xO0sMJ8M2cZmIY7HHmiNAJ2WiazHBDlIAruuvVPyEjbVFOjGFMfg_3C9jMz3N8NU0f_ua3K1JreRqLZL5wGWl9rOMlMqWzZbJQlmOgxe5cIbI9eHyV8EaPz246rHnbuT6ikmb9V92jrWabyt59f_CYPzxRdFTpi8lcN_86WnCnGg3RROc2NyvDVmqSQob45aQPQ4uEWyXdxlnn5JwVFRQYeD4fMXCDRNe0Cl0hAR9HCoNkTUVSE4B7XQd-qkMQgcdloFAeABClWnIdoqugEn-NVLJ-ptcJ1TgMfLRevIZBhVKRNkeoqYgATbwQYZW4pfBiKOjFTZWLXjwhRrYCj1HgsRV4PKqS_cmY5zG5xp-9t0qdxMVGe4l9x9wzhuj3VMlBqaeP17_PtvG_7rtktn3aiJsXratNMueNVw1z3C1SyQdDvY2eSa527OJ7B3tU2fw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy+BERT-LSTM%3A+a+novel+NLP+algorithm+for+sensitive+information+detection+in+textual+documents&rft.jtitle=Neural+computing+%26+applications&rft.au=Muralitharan%2C+Janani&rft.au=Arumugam%2C+Chandrasekar&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=25&rft.spage=15439&rft.epage=15454&rft_id=info:doi/10.1007%2Fs00521-024-09707-w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |