Dyslexia Diagnostics Based on Eye Movements and Artificial Intelligence Methods: A Review
The review considers methods of dyslexia diagnostics based on eye movement data and implemented on the basis of artificial intelligence. A number of studies have shown that eye movements in people with dyslexia may differ from those of people with normal reading abilities. Since 2015, studies have b...
Saved in:
| Published in | Klinicheskai͡a︡ i spet͡s︡ialʹnai͡a︡ psikhologii͡a Vol. 12; no. 3; pp. 1 - 29 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Moscow State University of Psychology and Education
25.10.2023
|
| Online Access | Get full text |
| ISSN | 2304-0394 2304-0394 |
| DOI | 10.17759/cpse.2023120301 |
Cover
| Abstract | The review considers methods of dyslexia diagnostics based on eye movement data and implemented on the basis of artificial intelligence. A number of studies have shown that eye movements in people with dyslexia may differ from those of people with normal reading abilities. Since 2015, studies have begun to appear in which the eye movements of observers with and without dyslexia were analyzed using various artificial intelligence methods. To date, there are a number of papers using both simple and more complex models (with neural networks and deep learning). This review discusses what accuracy of diagnosis has been achieved by researchers, for which groups of subjects and for which languages the current results have been shown, what types of algorithms have been used, and other practical aspects of conducting such diagnosis. According to the data analyzed, dyslexia diagnostics by eye movements and artificial intelligence methods is very promising and may have a significant impact on early diagnosing of reading problems.
В обзоре рассмотрены методы диагностики дислексии по данным движений глаз, реализованные на основе искусственного интеллекта. В ряде работ было показано, что движения глаз у людей с дислексией могут отличаться от движений глаз у испытуемых того же возраста с нормальными способностями к чтению. Начиная с 2015 года в литературе стали появляться исследования, в которых анализ движений глаз нормотипичных испытуемых и испытуемых с дислексией осуществлялся с использованием различных методов искусственного интеллекта. На сегодняшний день существует ряд работ, использующих как простые модели, так и более сложные - с нейросетями и глубоким обучением. В обзоре обсуждается, какого качества диагностики удалось добиться исследователям, на каких группах испытуемых и для каких языков были показаны текущие результаты, какие типы алгоритмов использовались и другие практические аспекты проведения такой диагностики. Согласно проанализированным данным, диагностика дислексии с использованием движений глаз и методов искусственного интеллекта является очень перспективной и может оказать значительное влияние на раннюю диагностику нарушений чтения. |
|---|---|
| AbstractList | The review considers methods of dyslexia diagnostics based on eye movement data and implemented on the basis of artificial intelligence. A number of studies have shown that eye movements in people with dyslexia may differ from those of people with normal reading abilities. Since 2015, studies have begun to appear in which the eye movements of observers with and without dyslexia were analyzed using various artificial intelligence methods. To date, there are a number of papers using both simple and more complex models (with neural networks and deep learning). This review discusses what accuracy of diagnosis has been achieved by researchers, for which groups of subjects and for which languages the current results have been shown, what types of algorithms have been used, and other practical aspects of conducting such diagnosis. According to the data analyzed, dyslexia diagnostics by eye movements and artificial intelligence methods is very promising and may have a significant impact on early diagnosing of reading problems. The review considers methods of dyslexia diagnostics based on eye movement data and implemented on the basis of artificial intelligence. A number of studies have shown that eye movements in people with dyslexia may differ from those of people with normal reading abilities. Since 2015, studies have begun to appear in which the eye movements of observers with and without dyslexia were analyzed using various artificial intelligence methods. To date, there are a number of papers using both simple and more complex models (with neural networks and deep learning). This review discusses what accuracy of diagnosis has been achieved by researchers, for which groups of subjects and for which languages the current results have been shown, what types of algorithms have been used, and other practical aspects of conducting such diagnosis. According to the data analyzed, dyslexia diagnostics by eye movements and artificial intelligence methods is very promising and may have a significant impact on early diagnosing of reading problems. В обзоре рассмотрены методы диагностики дислексии по данным движений глаз, реализованные на основе искусственного интеллекта. В ряде работ было показано, что движения глаз у людей с дислексией могут отличаться от движений глаз у испытуемых того же возраста с нормальными способностями к чтению. Начиная с 2015 года в литературе стали появляться исследования, в которых анализ движений глаз нормотипичных испытуемых и испытуемых с дислексией осуществлялся с использованием различных методов искусственного интеллекта. На сегодняшний день существует ряд работ, использующих как простые модели, так и более сложные - с нейросетями и глубоким обучением. В обзоре обсуждается, какого качества диагностики удалось добиться исследователям, на каких группах испытуемых и для каких языков были показаны текущие результаты, какие типы алгоритмов использовались и другие практические аспекты проведения такой диагностики. Согласно проанализированным данным, диагностика дислексии с использованием движений глаз и методов искусственного интеллекта является очень перспективной и может оказать значительное влияние на раннюю диагностику нарушений чтения. |
| Author | Gracheva, M.A. Shalileh, S. |
| Author_xml | – sequence: 1 givenname: M.A. orcidid: 0000-0003-0196-148X surname: Gracheva fullname: Gracheva, M.A. organization: Institute for Information Transmission Problems (Kharkevich Institute) – sequence: 2 givenname: S. orcidid: 0000-0001-6226-4990 surname: Shalileh fullname: Shalileh, S. organization: HSE University |
| BookMark | eNqFkMtOwzAQRS1UJMpjz9I_0OJXEptdaXlUKkICNqwsxx4Xo2BXcXjk7wkUATtWMxrdezQ6-2gUUwSEjimZ0qoq1IndZJgywjhlhBO6g8aMEzEhXInRn30PHeX8RAihTBZEsTF6WPS5gfdg8CKYdUy5CzbjM5PB4RTxeQ_4Or3CM8QuYxMdnrVd8MEG0-Bl7KBpwhqiHVLQPSaXT_EM38JrgLdDtOtNk-Hoex6gu4vz-_nVZHVzuZzPVhPLuOgmUlYl474uhau9V0pQwWVhvFSuciVIXzBQQ8BzR2oFphS-FkRwJr2gBT9Ayy3VJfOkN214Nm2vkwn665DatTbDx7YB7UDykoOnVCpha6EKV1aSS0tY6TjAwKJb1kvcmP7NNM0PkBL9JVp_ita_oocO2XZsm3Juwf9f-QChzYIQ |
| Cites_doi | 10.1068/p2666a 10.1016/j.bspc.2022.104094 10.1037/h0041228 10.33791/2222-4408-2022-2-47-54 10.1016/0022-0965(86)90037-8 10.3389/fnhum.2016.00058 10.1038/s41598-021-84945-9 10.1109/ACCESS.2023.3234438 10.1109/ICDAR.1995.598994 10.1146/annurev-clinpsy-032814-112842 10.1037/0033-2909.124.3.372 10.1007/978-3-642-39062-3_63 10.1007/978-1-4899-3242-6 10.1006/brln.2001.2637 10.23919/EUSIPCO55093.2022.9909817 10.3390/s22134900 10.1134/S0362119723700305 10.3390/brainsci13030405 10.1016/j.cmpb.2020.105538 10.1145/2745555.2746644 10.1038/s41598-021-95275-1 10.1007/BF02648003 10.1134/S0362119719030083 10.1007/978-94-017-1329-0 10.4236/psych.2010.14032 10.1037/h0063378 10.1136/bmj.g5160 10.1038/s41598-020-79089-1 10.1007/BF00994018 10.1371/journal.pone.0198001 10.1007/s11881-021-00251-z 10.1016/0028-3932(81)90044-0 10.1371/journal.pone.0018694 10.1076/0927-3972(200006)821-2FT119 10.1109/ACCESS.2021.3062709 10.4324/9781315437415-25 10.1080/03772063.2019.1622461 10.1037/0096-1523.9.5.816 10.1016/B978-0-12-746304-9.50009-4 10.1016/j.array.2021.100087 10.1177/074193258500600609 10.1371/journal.pone.0182597 10.1037/0278-7393.21.6.1430 10.1016/S0140-6736(12)60198-6 10.1371/journal.pone.0165508 10.1007/s00417-007-0723-1 10.3390/brainsci11101337 10.4018/IJCINI.20211001.oa28 10.3390/brainsci11050539 10.1109/TIT.1967.1053964 10.1016/j.icte.2020.05.006 10.1046/j.0021-9630.2003.00305.x |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.17759/cpse.2023120301 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2304-0394 |
| EndPage | 29 |
| ExternalDocumentID | oai_doaj_org_article_de8363ef11894cb495d67838c026d3ee 10.17759/cpse.2023120301 10_17759_cpse_2023120301 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ KQ8 M~E OK1 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c234t-887623fb64dbff99414385af89d7d6e8f52e923ff3d0b9ea64fb404328f4153 |
| IEDL.DBID | DOA |
| ISSN | 2304-0394 |
| IngestDate | Fri Oct 03 12:37:30 EDT 2025 Mon Sep 15 10:11:06 EDT 2025 Tue Jul 01 01:46:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc/4.0 cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c234t-887623fb64dbff99414385af89d7d6e8f52e923ff3d0b9ea64fb404328f4153 |
| ORCID | 0000-0001-6226-4990 0000-0003-0196-148X |
| OpenAccessLink | https://doaj.org/article/de8363ef11894cb495d67838c026d3ee |
| PageCount | 29 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_de8363ef11894cb495d67838c026d3ee unpaywall_primary_10_17759_cpse_2023120301 crossref_primary_10_17759_cpse_2023120301 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-25 |
| PublicationDateYYYYMMDD | 2023-10-25 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationTitle | Klinicheskai͡a︡ i spet͡s︡ialʹnai͡a︡ psikhologii͡a |
| PublicationYear | 2023 |
| Publisher | Moscow State University of Psychology and Education |
| Publisher_xml | – name: Moscow State University of Psychology and Education |
| References | 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 62 63 20 64 21 65 22 66 23 67 24 68 25 69 26 27 28 29 70 71 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
| References_xml | – ident: 2 – ident: 23 doi: 10.1068/p2666a – ident: 41 doi: 10.1016/j.bspc.2022.104094 – ident: 62 doi: 10.1037/h0041228 – ident: 12 – ident: 16 doi: 10.33791/2222-4408-2022-2-47-54 – ident: 54 doi: 10.1016/0022-0965(86)90037-8 – ident: 61 doi: 10.3389/fnhum.2016.00058 – ident: 31 doi: 10.1038/s41598-021-84945-9 – ident: 67 doi: 10.1109/ACCESS.2023.3234438 – ident: 33 doi: 10.1109/ICDAR.1995.598994 – ident: 51 doi: 10.1146/annurev-clinpsy-032814-112842 – ident: 55 doi: 10.1037/0033-2909.124.3.372 – ident: 19 doi: 10.1007/978-3-642-39062-3_63 – ident: 45 doi: 10.1007/978-1-4899-3242-6 – ident: 27 doi: 10.1006/brln.2001.2637 – ident: 65 doi: 10.23919/EUSIPCO55093.2022.9909817 – ident: 66 doi: 10.3390/s22134900 – ident: 9 – ident: 14 doi: 10.1134/S0362119723700305 – ident: 17 – ident: 68 doi: 10.3390/brainsci13030405 – ident: 5 – ident: 40 doi: 10.1016/j.cmpb.2020.105538 – ident: 1 – ident: 59 doi: 10.1145/2745555.2746644 – ident: 46 doi: 10.1038/s41598-021-95275-1 – ident: 56 doi: 10.1007/BF02648003 – ident: 71 – ident: 13 – ident: 10 doi: 10.1134/S0362119719030083 – ident: 34 doi: 10.1007/978-94-017-1329-0 – ident: 28 doi: 10.4236/psych.2010.14032 – ident: 63 doi: 10.1037/h0063378 – ident: 8 – ident: 32 doi: 10.1136/bmj.g5160 – ident: 44 – ident: 70 doi: 10.1038/s41598-020-79089-1 – ident: 18 – ident: 25 doi: 10.1007/BF00994018 – ident: 58 doi: 10.1371/journal.pone.0198001 – ident: 48 doi: 10.1007/s11881-021-00251-z – ident: 49 doi: 10.1016/0028-3932(81)90044-0 – ident: 4 – ident: 36 doi: 10.1371/journal.pone.0018694 – ident: 30 doi: 10.1076/0927-3972(200006)821-2FT119 – ident: 64 doi: 10.1109/ACCESS.2021.3062709 – ident: 43 doi: 10.4324/9781315437415-25 – ident: 39 doi: 10.1080/03772063.2019.1622461 – ident: 47 doi: 10.1037/0096-1523.9.5.816 – ident: 52 doi: 10.1016/B978-0-12-746304-9.50009-4 – ident: 53 doi: 10.1016/j.array.2021.100087 – ident: 57 doi: 10.1177/074193258500600609 – ident: 60 doi: 10.1371/journal.pone.0182597 – ident: 35 doi: 10.1037/0278-7393.21.6.1430 – ident: 7 – ident: 20 – ident: 3 – ident: 50 doi: 10.1016/S0140-6736(12)60198-6 – ident: 22 doi: 10.1371/journal.pone.0165508 – ident: 24 doi: 10.1007/s00417-007-0723-1 – ident: 29 doi: 10.3390/brainsci11101337 – ident: 11 – ident: 38 doi: 10.4018/IJCINI.20211001.oa28 – ident: 37 doi: 10.3390/brainsci11050539 – ident: 26 doi: 10.1109/TIT.1967.1053964 – ident: 15 – ident: 42 doi: 10.1016/j.icte.2020.05.006 – ident: 6 – ident: 21 – ident: 69 doi: 10.1046/j.0021-9630.2003.00305.x |
| SSID | ssj0001285092 |
| Score | 2.2383842 |
| Snippet | The review considers methods of dyslexia diagnostics based on eye movement data and implemented on the basis of artificial intelligence. A number of studies... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Index Database |
| StartPage | 1 |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LT9wwEIctWA6lh0JFUZeXfOBCpWxD_Ijd29IFAdKiSi0Se4r8vICyqyaravnrmUnCdosqtRwT2Uo0djy_ydjfEHKcOhDV4BmSTEeXcBDUicmdTGQM3mhYNM0pnnce38jLW359J-66_x14FmY1f5_nQn92swppliBDMlTv62RDClDdPbJxe_NtOGlqx-FGCqZ5l4X8W7c_vE4D539L3szLmVn8Mg8PKx7lYqvFG1UNiBA3ktwP5rUduMcXmMb_edlt8q6TlXTYzoP3ZC2UO2QyWlTIuzR01G6oQyQzPQO_5em0pOeLQMfThhdeV9SUvuneEiXo1Qqqk46bMtPVFzqkbS7hA_l-cf7j62XSlVJIXMZ4nShc9Fi0knsbo9Ycq54LE5X2uZdBRZEFkHoxMp9aHYzk0SJ3J1MRPDzbJb1yWoaPhOYqdcaKLLWCc-dBXoI8NyazKpWKm7RPTp4NXcxaXkaBcQaap0DzFL_N0ydnOBLLdki6bm6ATYvuwyl8UEyyECEQ0txZiOc8-FemHASPnoXQJ5-W4_jPJ-69pvE-2cQLdFSZOCC9-uc8HIICqe1RN_meACk61Ak priority: 102 providerName: Unpaywall |
| Title | Dyslexia Diagnostics Based on Eye Movements and Artificial Intelligence Methods: A Review |
| URI | https://doi.org/10.17759/cpse.2023120301 https://doaj.org/article/de8363ef11894cb495d67838c026d3ee |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2304-0394 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001285092 issn: 2304-0394 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2304-0394 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001285092 issn: 2304-0394 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2304-0394 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001285092 issn: 2304-0394 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT8JAEN0YPKgHo1EjfpA9eNGkoW637a43EAiaQEyUBE7Nfp5MIRRi-PfOtIh44uK12e42b5p5b7rbN4TchQZENTBDwKQ3AQdBHajUJEHinVUSkqZ6xP-dB8OkP-Kv43i81eoLz4RV9sAVcE3rRJREzoMQltxo0PMW8mskDBQPNnIOs28o5FYxVX1dEcCEbL0vmaaxbJpZgbaYoGcYlgF_eKi06z8iB8t8plZf6vNzi2N6J-R4LQ5pq3qoU7I3X56RSWdVoGulop3qWBwaK9M2sI-l05x2V44OpqXr96KgKrfl7ZUvBH3ZMtykg7JZdPFEW7TaETgn773ux3M_WDdECAyL-CIQmLoirxNutfdScuxdHisvpE1t4oSPmQPB5n1kQy2dSrjX6J7DhAeeji5ILZ_m7pLQVIRG6ZiFOubcWBCJILKVYlqEieAqrJP7H3CyWeV6kWG1gEBmCGT2C2SdtBG9zTj0qy4vQBSzdRSzXVGsk4cN9jtXvPqPFa_JIc6INMTiG1JbzJfuFvTFQjfKV6lB9kfDt9bkG1HvzUM |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LT9wwEIctWA6lh0JFUZeXfOBCpWxD_Ijd29IFAdKiSi0Se4r8vICyqyaravnrmUnCdosqtRwT2Uo0djy_ydjfEHKcOhDV4BmSTEeXcBDUicmdTGQM3mhYNM0pnnce38jLW359J-66_x14FmY1f5_nQn92swppliBDMlTv62RDClDdPbJxe_NtOGlqx-FGCqZ5l4X8W7c_vE4D539L3szLmVn8Mg8PKx7lYqvFG1UNiBA3ktwP5rUduMcXmMb_edlt8q6TlXTYzoP3ZC2UO2QyWlTIuzR01G6oQyQzPQO_5em0pOeLQMfThhdeV9SUvuneEiXo1Qqqk46bMtPVFzqkbS7hA_l-cf7j62XSlVJIXMZ4nShc9Fi0knsbo9Ycq54LE5X2uZdBRZEFkHoxMp9aHYzk0SJ3J1MRPDzbJb1yWoaPhOYqdcaKLLWCc-dBXoI8NyazKpWKm7RPTp4NXcxaXkaBcQaap0DzFL_N0ydnOBLLdki6bm6ATYvuwyl8UEyyECEQ0txZiOc8-FemHASPnoXQJ5-W4_jPJ-69pvE-2cQLdFSZOCC9-uc8HIICqe1RN_meACk61Ak |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dyslexia+Diagnostics+Based+on+Eye+Movements+and+Artificial+Intelligence+Methods%3A+A+Review&rft.jtitle=Klinicheskai%CD%A1a%EF%B8%A1+i+spet%CD%A1s%EF%B8%A1ial%CA%B9nai%CD%A1a%EF%B8%A1+psikhologii%CD%A1a&rft.au=Gracheva%2C+M.A.&rft.au=Shalileh%2C+S.&rft.date=2023-10-25&rft.issn=2304-0394&rft.eissn=2304-0394&rft.volume=12&rft.issue=3&rft.spage=1&rft.epage=29&rft_id=info:doi/10.17759%2Fcpse.2023120301&rft.externalDBID=n%2Fa&rft.externalDocID=10_17759_cpse_2023120301 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-0394&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-0394&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-0394&client=summon |