Dyslexia Diagnostics Based on Eye Movements and Artificial Intelligence Methods: A Review

The review considers methods of dyslexia diagnostics based on eye movement data and implemented on the basis of artificial intelligence. A number of studies have shown that eye movements in people with dyslexia may differ from those of people with normal reading abilities. Since 2015, studies have b...

Full description

Saved in:
Bibliographic Details
Published inKlinicheskai͡a︡ i spet͡s︡ialʹnai͡a︡ psikhologii͡a Vol. 12; no. 3; pp. 1 - 29
Main Authors Gracheva, M.A., Shalileh, S.
Format Journal Article
LanguageEnglish
Published Moscow State University of Psychology and Education 25.10.2023
Online AccessGet full text
ISSN2304-0394
2304-0394
DOI10.17759/cpse.2023120301

Cover

Abstract The review considers methods of dyslexia diagnostics based on eye movement data and implemented on the basis of artificial intelligence. A number of studies have shown that eye movements in people with dyslexia may differ from those of people with normal reading abilities. Since 2015, studies have begun to appear in which the eye movements of observers with and without dyslexia were analyzed using various artificial intelligence methods. To date, there are a number of papers using both simple and more complex models (with neural networks and deep learning). This review discusses what accuracy of diagnosis has been achieved by researchers, for which groups of subjects and for which languages the current results have been shown, what types of algorithms have been used, and other practical aspects of conducting such diagnosis. According to the data analyzed, dyslexia diagnostics by eye movements and artificial intelligence methods is very promising and may have a significant impact on early diagnosing of reading problems. В обзоре рассмотрены методы диагностики дислексии по данным движений глаз, реализованные на основе искусственного интеллекта. В ряде работ было показано, что движения глаз у людей с дислексией могут отличаться от движений глаз у испытуемых того же возраста с нормальными способностями к чтению. Начиная с 2015 года в литературе стали появляться исследования, в которых анализ движений глаз нормотипичных испытуемых и испытуемых с дислексией осуществлялся с использованием различных методов искусственного интеллекта. На сегодняшний день существует ряд работ, использующих как простые модели, так и более сложные - с нейросетями и глубоким обучением. В обзоре обсуждается, какого качества диагностики удалось добиться исследователям, на каких группах испытуемых и для каких языков были показаны текущие результаты, какие типы алгоритмов использовались и другие практические аспекты проведения такой диагностики. Согласно проанализированным данным, диагностика дислексии с использованием движений глаз и методов искусственного интеллекта является очень перспективной и может оказать значительное влияние на раннюю диагностику нарушений чтения.
AbstractList The review considers methods of dyslexia diagnostics based on eye movement data and implemented on the basis of artificial intelligence. A number of studies have shown that eye movements in people with dyslexia may differ from those of people with normal reading abilities. Since 2015, studies have begun to appear in which the eye movements of observers with and without dyslexia were analyzed using various artificial intelligence methods. To date, there are a number of papers using both simple and more complex models (with neural networks and deep learning). This review discusses what accuracy of diagnosis has been achieved by researchers, for which groups of subjects and for which languages the current results have been shown, what types of algorithms have been used, and other practical aspects of conducting such diagnosis. According to the data analyzed, dyslexia diagnostics by eye movements and artificial intelligence methods is very promising and may have a significant impact on early diagnosing of reading problems.
The review considers methods of dyslexia diagnostics based on eye movement data and implemented on the basis of artificial intelligence. A number of studies have shown that eye movements in people with dyslexia may differ from those of people with normal reading abilities. Since 2015, studies have begun to appear in which the eye movements of observers with and without dyslexia were analyzed using various artificial intelligence methods. To date, there are a number of papers using both simple and more complex models (with neural networks and deep learning). This review discusses what accuracy of diagnosis has been achieved by researchers, for which groups of subjects and for which languages the current results have been shown, what types of algorithms have been used, and other practical aspects of conducting such diagnosis. According to the data analyzed, dyslexia diagnostics by eye movements and artificial intelligence methods is very promising and may have a significant impact on early diagnosing of reading problems. В обзоре рассмотрены методы диагностики дислексии по данным движений глаз, реализованные на основе искусственного интеллекта. В ряде работ было показано, что движения глаз у людей с дислексией могут отличаться от движений глаз у испытуемых того же возраста с нормальными способностями к чтению. Начиная с 2015 года в литературе стали появляться исследования, в которых анализ движений глаз нормотипичных испытуемых и испытуемых с дислексией осуществлялся с использованием различных методов искусственного интеллекта. На сегодняшний день существует ряд работ, использующих как простые модели, так и более сложные - с нейросетями и глубоким обучением. В обзоре обсуждается, какого качества диагностики удалось добиться исследователям, на каких группах испытуемых и для каких языков были показаны текущие результаты, какие типы алгоритмов использовались и другие практические аспекты проведения такой диагностики. Согласно проанализированным данным, диагностика дислексии с использованием движений глаз и методов искусственного интеллекта является очень перспективной и может оказать значительное влияние на раннюю диагностику нарушений чтения.
Author Gracheva, M.A.
Shalileh, S.
Author_xml – sequence: 1
  givenname: M.A.
  orcidid: 0000-0003-0196-148X
  surname: Gracheva
  fullname: Gracheva, M.A.
  organization: Institute for Information Transmission Problems (Kharkevich Institute)
– sequence: 2
  givenname: S.
  orcidid: 0000-0001-6226-4990
  surname: Shalileh
  fullname: Shalileh, S.
  organization: HSE University
BookMark eNqFkMtOwzAQRS1UJMpjz9I_0OJXEptdaXlUKkICNqwsxx4Xo2BXcXjk7wkUATtWMxrdezQ6-2gUUwSEjimZ0qoq1IndZJgywjhlhBO6g8aMEzEhXInRn30PHeX8RAihTBZEsTF6WPS5gfdg8CKYdUy5CzbjM5PB4RTxeQ_4Or3CM8QuYxMdnrVd8MEG0-Bl7KBpwhqiHVLQPSaXT_EM38JrgLdDtOtNk-Hoex6gu4vz-_nVZHVzuZzPVhPLuOgmUlYl474uhau9V0pQwWVhvFSuciVIXzBQQ8BzR2oFphS-FkRwJr2gBT9Ayy3VJfOkN214Nm2vkwn665DatTbDx7YB7UDykoOnVCpha6EKV1aSS0tY6TjAwKJb1kvcmP7NNM0PkBL9JVp_ita_oocO2XZsm3Juwf9f-QChzYIQ
Cites_doi 10.1068/p2666a
10.1016/j.bspc.2022.104094
10.1037/h0041228
10.33791/2222-4408-2022-2-47-54
10.1016/0022-0965(86)90037-8
10.3389/fnhum.2016.00058
10.1038/s41598-021-84945-9
10.1109/ACCESS.2023.3234438
10.1109/ICDAR.1995.598994
10.1146/annurev-clinpsy-032814-112842
10.1037/0033-2909.124.3.372
10.1007/978-3-642-39062-3_63
10.1007/978-1-4899-3242-6
10.1006/brln.2001.2637
10.23919/EUSIPCO55093.2022.9909817
10.3390/s22134900
10.1134/S0362119723700305
10.3390/brainsci13030405
10.1016/j.cmpb.2020.105538
10.1145/2745555.2746644
10.1038/s41598-021-95275-1
10.1007/BF02648003
10.1134/S0362119719030083
10.1007/978-94-017-1329-0
10.4236/psych.2010.14032
10.1037/h0063378
10.1136/bmj.g5160
10.1038/s41598-020-79089-1
10.1007/BF00994018
10.1371/journal.pone.0198001
10.1007/s11881-021-00251-z
10.1016/0028-3932(81)90044-0
10.1371/journal.pone.0018694
10.1076/0927-3972(200006)821-2FT119
10.1109/ACCESS.2021.3062709
10.4324/9781315437415-25
10.1080/03772063.2019.1622461
10.1037/0096-1523.9.5.816
10.1016/B978-0-12-746304-9.50009-4
10.1016/j.array.2021.100087
10.1177/074193258500600609
10.1371/journal.pone.0182597
10.1037/0278-7393.21.6.1430
10.1016/S0140-6736(12)60198-6
10.1371/journal.pone.0165508
10.1007/s00417-007-0723-1
10.3390/brainsci11101337
10.4018/IJCINI.20211001.oa28
10.3390/brainsci11050539
10.1109/TIT.1967.1053964
10.1016/j.icte.2020.05.006
10.1046/j.0021-9630.2003.00305.x
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.17759/cpse.2023120301
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2304-0394
EndPage 29
ExternalDocumentID oai_doaj_org_article_de8363ef11894cb495d67838c026d3ee
10.17759/cpse.2023120301
10_17759_cpse_2023120301
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ADTOC
UNPAY
ID FETCH-LOGICAL-c234t-887623fb64dbff99414385af89d7d6e8f52e923ff3d0b9ea64fb404328f4153
IEDL.DBID DOA
ISSN 2304-0394
IngestDate Fri Oct 03 12:37:30 EDT 2025
Mon Sep 15 10:11:06 EDT 2025
Tue Jul 01 01:46:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by-nc/4.0
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c234t-887623fb64dbff99414385af89d7d6e8f52e923ff3d0b9ea64fb404328f4153
ORCID 0000-0001-6226-4990
0000-0003-0196-148X
OpenAccessLink https://doaj.org/article/de8363ef11894cb495d67838c026d3ee
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_de8363ef11894cb495d67838c026d3ee
unpaywall_primary_10_17759_cpse_2023120301
crossref_primary_10_17759_cpse_2023120301
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-25
PublicationDateYYYYMMDD 2023-10-25
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-25
  day: 25
PublicationDecade 2020
PublicationTitle Klinicheskai͡a︡ i spet͡s︡ialʹnai͡a︡ psikhologii͡a
PublicationYear 2023
Publisher Moscow State University of Psychology and Education
Publisher_xml – name: Moscow State University of Psychology and Education
References 44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
65
22
66
23
67
24
68
25
69
26
27
28
29
70
71
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – ident: 2
– ident: 23
  doi: 10.1068/p2666a
– ident: 41
  doi: 10.1016/j.bspc.2022.104094
– ident: 62
  doi: 10.1037/h0041228
– ident: 12
– ident: 16
  doi: 10.33791/2222-4408-2022-2-47-54
– ident: 54
  doi: 10.1016/0022-0965(86)90037-8
– ident: 61
  doi: 10.3389/fnhum.2016.00058
– ident: 31
  doi: 10.1038/s41598-021-84945-9
– ident: 67
  doi: 10.1109/ACCESS.2023.3234438
– ident: 33
  doi: 10.1109/ICDAR.1995.598994
– ident: 51
  doi: 10.1146/annurev-clinpsy-032814-112842
– ident: 55
  doi: 10.1037/0033-2909.124.3.372
– ident: 19
  doi: 10.1007/978-3-642-39062-3_63
– ident: 45
  doi: 10.1007/978-1-4899-3242-6
– ident: 27
  doi: 10.1006/brln.2001.2637
– ident: 65
  doi: 10.23919/EUSIPCO55093.2022.9909817
– ident: 66
  doi: 10.3390/s22134900
– ident: 9
– ident: 14
  doi: 10.1134/S0362119723700305
– ident: 17
– ident: 68
  doi: 10.3390/brainsci13030405
– ident: 5
– ident: 40
  doi: 10.1016/j.cmpb.2020.105538
– ident: 1
– ident: 59
  doi: 10.1145/2745555.2746644
– ident: 46
  doi: 10.1038/s41598-021-95275-1
– ident: 56
  doi: 10.1007/BF02648003
– ident: 71
– ident: 13
– ident: 10
  doi: 10.1134/S0362119719030083
– ident: 34
  doi: 10.1007/978-94-017-1329-0
– ident: 28
  doi: 10.4236/psych.2010.14032
– ident: 63
  doi: 10.1037/h0063378
– ident: 8
– ident: 32
  doi: 10.1136/bmj.g5160
– ident: 44
– ident: 70
  doi: 10.1038/s41598-020-79089-1
– ident: 18
– ident: 25
  doi: 10.1007/BF00994018
– ident: 58
  doi: 10.1371/journal.pone.0198001
– ident: 48
  doi: 10.1007/s11881-021-00251-z
– ident: 49
  doi: 10.1016/0028-3932(81)90044-0
– ident: 4
– ident: 36
  doi: 10.1371/journal.pone.0018694
– ident: 30
  doi: 10.1076/0927-3972(200006)821-2FT119
– ident: 64
  doi: 10.1109/ACCESS.2021.3062709
– ident: 43
  doi: 10.4324/9781315437415-25
– ident: 39
  doi: 10.1080/03772063.2019.1622461
– ident: 47
  doi: 10.1037/0096-1523.9.5.816
– ident: 52
  doi: 10.1016/B978-0-12-746304-9.50009-4
– ident: 53
  doi: 10.1016/j.array.2021.100087
– ident: 57
  doi: 10.1177/074193258500600609
– ident: 60
  doi: 10.1371/journal.pone.0182597
– ident: 35
  doi: 10.1037/0278-7393.21.6.1430
– ident: 7
– ident: 20
– ident: 3
– ident: 50
  doi: 10.1016/S0140-6736(12)60198-6
– ident: 22
  doi: 10.1371/journal.pone.0165508
– ident: 24
  doi: 10.1007/s00417-007-0723-1
– ident: 29
  doi: 10.3390/brainsci11101337
– ident: 11
– ident: 38
  doi: 10.4018/IJCINI.20211001.oa28
– ident: 37
  doi: 10.3390/brainsci11050539
– ident: 26
  doi: 10.1109/TIT.1967.1053964
– ident: 15
– ident: 42
  doi: 10.1016/j.icte.2020.05.006
– ident: 6
– ident: 21
– ident: 69
  doi: 10.1046/j.0021-9630.2003.00305.x
SSID ssj0001285092
Score 2.2383842
Snippet The review considers methods of dyslexia diagnostics based on eye movement data and implemented on the basis of artificial intelligence. A number of studies...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 1
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LT9wwEIctWA6lh0JFUZeXfOBCpWxD_Ijd29IFAdKiSi0Se4r8vICyqyaravnrmUnCdosqtRwT2Uo0djy_ydjfEHKcOhDV4BmSTEeXcBDUicmdTGQM3mhYNM0pnnce38jLW359J-66_x14FmY1f5_nQn92swppliBDMlTv62RDClDdPbJxe_NtOGlqx-FGCqZ5l4X8W7c_vE4D539L3szLmVn8Mg8PKx7lYqvFG1UNiBA3ktwP5rUduMcXmMb_edlt8q6TlXTYzoP3ZC2UO2QyWlTIuzR01G6oQyQzPQO_5em0pOeLQMfThhdeV9SUvuneEiXo1Qqqk46bMtPVFzqkbS7hA_l-cf7j62XSlVJIXMZ4nShc9Fi0knsbo9Ycq54LE5X2uZdBRZEFkHoxMp9aHYzk0SJ3J1MRPDzbJb1yWoaPhOYqdcaKLLWCc-dBXoI8NyazKpWKm7RPTp4NXcxaXkaBcQaap0DzFL_N0ydnOBLLdki6bm6ATYvuwyl8UEyyECEQ0txZiOc8-FemHASPnoXQJ5-W4_jPJ-69pvE-2cQLdFSZOCC9-uc8HIICqe1RN_meACk61Ak
  priority: 102
  providerName: Unpaywall
Title Dyslexia Diagnostics Based on Eye Movements and Artificial Intelligence Methods: A Review
URI https://doi.org/10.17759/cpse.2023120301
https://doaj.org/article/de8363ef11894cb495d67838c026d3ee
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2304-0394
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001285092
  issn: 2304-0394
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2304-0394
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001285092
  issn: 2304-0394
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2304-0394
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001285092
  issn: 2304-0394
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT8JAEN0YPKgHo1EjfpA9eNGkoW637a43EAiaQEyUBE7Nfp5MIRRi-PfOtIh44uK12e42b5p5b7rbN4TchQZENTBDwKQ3AQdBHajUJEHinVUSkqZ6xP-dB8OkP-Kv43i81eoLz4RV9sAVcE3rRJREzoMQltxo0PMW8mskDBQPNnIOs28o5FYxVX1dEcCEbL0vmaaxbJpZgbaYoGcYlgF_eKi06z8iB8t8plZf6vNzi2N6J-R4LQ5pq3qoU7I3X56RSWdVoGulop3qWBwaK9M2sI-l05x2V44OpqXr96KgKrfl7ZUvBH3ZMtykg7JZdPFEW7TaETgn773ux3M_WDdECAyL-CIQmLoirxNutfdScuxdHisvpE1t4oSPmQPB5n1kQy2dSrjX6J7DhAeeji5ILZ_m7pLQVIRG6ZiFOubcWBCJILKVYlqEieAqrJP7H3CyWeV6kWG1gEBmCGT2C2SdtBG9zTj0qy4vQBSzdRSzXVGsk4cN9jtXvPqPFa_JIc6INMTiG1JbzJfuFvTFQjfKV6lB9kfDt9bkG1HvzUM
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LT9wwEIctWA6lh0JFUZeXfOBCpWxD_Ijd29IFAdKiSi0Se4r8vICyqyaravnrmUnCdosqtRwT2Uo0djy_ydjfEHKcOhDV4BmSTEeXcBDUicmdTGQM3mhYNM0pnnce38jLW359J-66_x14FmY1f5_nQn92swppliBDMlTv62RDClDdPbJxe_NtOGlqx-FGCqZ5l4X8W7c_vE4D539L3szLmVn8Mg8PKx7lYqvFG1UNiBA3ktwP5rUduMcXmMb_edlt8q6TlXTYzoP3ZC2UO2QyWlTIuzR01G6oQyQzPQO_5em0pOeLQMfThhdeV9SUvuneEiXo1Qqqk46bMtPVFzqkbS7hA_l-cf7j62XSlVJIXMZ4nShc9Fi0knsbo9Ycq54LE5X2uZdBRZEFkHoxMp9aHYzk0SJ3J1MRPDzbJb1yWoaPhOYqdcaKLLWCc-dBXoI8NyazKpWKm7RPTp4NXcxaXkaBcQaap0DzFL_N0ydnOBLLdki6bm6ATYvuwyl8UEyyECEQ0txZiOc8-FemHASPnoXQJ5-W4_jPJ-69pvE-2cQLdFSZOCC9-uc8HIICqe1RN_meACk61Ak
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dyslexia+Diagnostics+Based+on+Eye+Movements+and+Artificial+Intelligence+Methods%3A+A+Review&rft.jtitle=Klinicheskai%CD%A1a%EF%B8%A1+i+spet%CD%A1s%EF%B8%A1ial%CA%B9nai%CD%A1a%EF%B8%A1+psikhologii%CD%A1a&rft.au=Gracheva%2C+M.A.&rft.au=Shalileh%2C+S.&rft.date=2023-10-25&rft.issn=2304-0394&rft.eissn=2304-0394&rft.volume=12&rft.issue=3&rft.spage=1&rft.epage=29&rft_id=info:doi/10.17759%2Fcpse.2023120301&rft.externalDBID=n%2Fa&rft.externalDocID=10_17759_cpse_2023120301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-0394&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-0394&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-0394&client=summon