Comparison of Genetic Crossover Operators for Traveling Salesman Problem

The traveling salesman problem (TSP) is an NP-hard problem that has been the subject of intensive study by researchers and academics in the field of optimization for many years. Genetic algorithms (GA) are one of the most effective methods for solving various NP-hard problems, including TSP. Recentl...

Full description

Saved in:
Bibliographic Details
Published inGAZI UNIVERSITY JOURNAL OF SCIENCE Vol. 38; no. 2; pp. 751 - 778
Main Authors Dalkılıç, Şahin Burak, Özgür, Atilla, Erdem, Hamit
Format Journal Article
LanguageEnglish
Published 01.06.2025
Online AccessGet full text
ISSN2147-1762
2147-1762
DOI10.35378/gujs.1582521

Cover

Abstract The traveling salesman problem (TSP) is an NP-hard problem that has been the subject of intensive study by researchers and academics in the field of optimization for many years. Genetic algorithms (GA) are one of the most effective methods for solving various NP-hard problems, including TSP. Recently, many crossover operators have been proposed to solve the TSP problem using GA. However, it remains unclear which crossover operator performs better for the particular problem. In this study, ten crossover operators, namely; Partially-Mapped Crossover (PMX), Cycle Crossover (CX), Order Crossover (OX1), Order Based Crossover (OX2), Position Based Crossover (POS), Edge Recombination Crossover (ERX), Maximal Preservative Crossover (MPX), Extended Partially-Mapped Crossover (EPMX), Improved Greedy Crossover (IGX), and Sequential Constructive Crossover (SCX) have been empirically evaluated. 30 TSP data sets have been used to comprehensively evaluate the selected crossover operators, and the experiments have been repeated 30 times to make our results statistically sound. Likewise, how successful the operators are, has been found through critical diagrams and statistical tests. Among tested operators, the IGX and SCX methods were the best operators in terms of convergence rate. On the other hand, PMX outperformed other operators in terms of computational cost.
AbstractList The traveling salesman problem (TSP) is an NP-hard problem that has been the subject of intensive study by researchers and academics in the field of optimization for many years. Genetic algorithms (GA) are one of the most effective methods for solving various NP-hard problems, including TSP. Recently, many crossover operators have been proposed to solve the TSP problem using GA. However, it remains unclear which crossover operator performs better for the particular problem. In this study, ten crossover operators, namely; Partially-Mapped Crossover (PMX), Cycle Crossover (CX), Order Crossover (OX1), Order Based Crossover (OX2), Position Based Crossover (POS), Edge Recombination Crossover (ERX), Maximal Preservative Crossover (MPX), Extended Partially-Mapped Crossover (EPMX), Improved Greedy Crossover (IGX), and Sequential Constructive Crossover (SCX) have been empirically evaluated. 30 TSP data sets have been used to comprehensively evaluate the selected crossover operators, and the experiments have been repeated 30 times to make our results statistically sound. Likewise, how successful the operators are, has been found through critical diagrams and statistical tests. Among tested operators, the IGX and SCX methods were the best operators in terms of convergence rate. On the other hand, PMX outperformed other operators in terms of computational cost.
Author Dalkılıç, Şahin Burak
Erdem, Hamit
Özgür, Atilla
Author_xml – sequence: 1
  givenname: Şahin Burak
  orcidid: 0000-0002-8897-9350
  surname: Dalkılıç
  fullname: Dalkılıç, Şahin Burak
– sequence: 2
  givenname: Atilla
  orcidid: 0000-0002-9237-8347
  surname: Özgür
  fullname: Özgür, Atilla
– sequence: 3
  givenname: Hamit
  orcidid: 0000-0003-1704-1581
  surname: Erdem
  fullname: Erdem, Hamit
BookMark eNqFkM1OwzAQhC1UJErpkbtfICH-i90jiqBFqlQkyjnaOJsqKLEjOy3q29PSHrhxmjnMjHa_ezJx3iEhjyxLhRLaPO32XzFlynDF2Q2ZciZ1wnTOJ3_8HZnH2FYZ40JxydmUrArfDxDa6B31DV2iw7G1tAg-Rn_AQDcDBhh9iLTxgW4DHLBr3Y5-QIexB0ffg6867B_IbQNdxPlVZ-Tz9WVbrJL1ZvlWPK8Ty4UcE4GqziqVV6CFMrKucitA1LmxyHQtta6sksqANFbaBRM5oMiVrU_XarYwRsxIetnduwGO39B15RDaHsKxZFn5i6I8oyivKE6F5FKw558CNv_kfwCTEmMa
Cites_doi 10.14569/IJACSA.2020.0110275
10.7227/IJEEE.51.3.4
10.1016/j.swevo.2011.02.002
10.1109/ICMLC.2007.4370274
10.5772/12909
10.1155/2017/7430125
10.1214/aoms/1177731944
10.5815/ijisa.2019.12.05
10.14569/IJACSA.2020.0110533
10.2528/PIERM11051310
10.1080/10798587.2000.10642829
10.5815/ijisa.2015.11.03
10.1007/978-3-031-42171-6_3
10.1109/ICCISci.2019.8716483
10.1287/ijoc.3.4.376
10.1007/978-3-319-11680-8_29
10.1016/j.cor.2014.10.012
10.24988/ije.2019342825
10.1016/j.cie.2022.108850
10.1023/A:1006529012972
10.1007/s11047-020-09820-4
10.1007/s10015-010-0866-8
10.1109/ECACE.2019.8679367
10.3906/elk-1711-113
10.1016/j.asoc.2022.109339
10.1016/j.cie.2020.106606
10.1109/ACCESS.2022.3157400
10.1109/CSO.2009.422
10.1109/ICACI58115.2023.10146181
10.1016/j.eswa.2020.113381
10.1007/s12652-018-0944-7
10.5592/otmcj.2011.1.3
10.1007/s10878-021-00720-6
10.3390/a16010044
10.1016/j.eswa.2010.07.006
10.1504/IJCAT.2017.084774
10.1007/978-3-031-57468-9_6
10.5120/13862-1716
10.1007/BFb0056922
10.1007/s40747-019-0102-7
10.35378/gujs.1340189
10.1007/978-981-15-6067-5_60
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.35378/gujs.1582521
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2147-1762
EndPage 778
ExternalDocumentID 10.35378/gujs.1582521
10_35378_gujs_1582521
GroupedDBID AAYXX
CITATION
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c234t-3e5d0b56ba73584db6c3a3d68ce17d477bc5458a48c4c9136ae365cd242719883
IEDL.DBID UNPAY
ISSN 2147-1762
IngestDate Tue Aug 19 23:46:16 EDT 2025
Wed Oct 01 06:02:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c234t-3e5d0b56ba73584db6c3a3d68ce17d477bc5458a48c4c9136ae365cd242719883
ORCID 0000-0002-8897-9350
0000-0002-9237-8347
0000-0003-1704-1581
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.35378/gujs.1582521
PageCount 28
ParticipantIDs unpaywall_primary_10_35378_gujs_1582521
crossref_primary_10_35378_gujs_1582521
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle GAZI UNIVERSITY JOURNAL OF SCIENCE
PublicationYear 2025
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref22
  doi: 10.14569/IJACSA.2020.0110275
– ident: ref12
  doi: 10.7227/IJEEE.51.3.4
– ident: ref53
  doi: 10.1016/j.swevo.2011.02.002
– ident: ref29
  doi: 10.1109/ICMLC.2007.4370274
– ident: ref2
  doi: 10.5772/12909
– ident: ref17
  doi: 10.1155/2017/7430125
– ident: ref51
  doi: 10.1214/aoms/1177731944
– ident: ref18
  doi: 10.5815/ijisa.2019.12.05
– ident: ref23
  doi: 10.14569/IJACSA.2020.0110533
– ident: ref9
– ident: ref11
  doi: 10.2528/PIERM11051310
– ident: ref28
  doi: 10.1080/10798587.2000.10642829
– ident: ref30
– ident: ref40
  doi: 10.5815/ijisa.2015.11.03
– ident: ref16
  doi: 10.1155/2017/7430125
– ident: ref41
  doi: 10.1007/978-3-031-42171-6_3
– ident: ref20
  doi: 10.1109/ICCISci.2019.8716483
– ident: ref14
  doi: 10.1287/ijoc.3.4.376
– ident: ref35
  doi: 10.1007/978-3-319-11680-8_29
– ident: ref6
  doi: 10.1016/j.cor.2014.10.012
– ident: ref44
  doi: 10.24988/ije.2019342825
– ident: ref50
– ident: ref26
– ident: ref5
  doi: 10.1016/j.cie.2022.108850
– ident: ref48
  doi: 10.1023/A:1006529012972
– ident: ref47
– ident: ref43
  doi: 10.1007/s11047-020-09820-4
– ident: ref21
  doi: 10.1007/s10015-010-0866-8
– ident: ref19
  doi: 10.1109/ECACE.2019.8679367
– ident: ref13
  doi: 10.3906/elk-1711-113
– ident: ref33
– ident: ref39
– ident: ref34
  doi: 10.1016/j.asoc.2022.109339
– ident: ref8
  doi: 10.1016/j.cie.2020.106606
– ident: ref42
  doi: 10.1109/ACCESS.2022.3157400
– ident: ref32
  doi: 10.1109/CSO.2009.422
– ident: ref25
  doi: 10.1109/ICACI58115.2023.10146181
– ident: ref37
  doi: 10.1016/j.eswa.2020.113381
– ident: ref15
– ident: ref7
  doi: 10.1007/s12652-018-0944-7
– ident: ref1
  doi: 10.5592/otmcj.2011.1.3
– ident: ref4
  doi: 10.1007/s10878-021-00720-6
– ident: ref10
  doi: 10.3390/a16010044
– ident: ref49
– ident: ref46
  doi: 10.1016/j.eswa.2010.07.006
– ident: ref52
– ident: ref36
  doi: 10.1504/IJCAT.2017.084774
– ident: ref31
  doi: 10.1007/978-3-031-57468-9_6
– ident: ref38
  doi: 10.5120/13862-1716
– ident: ref27
  doi: 10.1007/BFb0056922
– ident: ref45
  doi: 10.1007/s40747-019-0102-7
– ident: ref3
  doi: 10.35378/gujs.1340189
– ident: ref24
  doi: 10.1007/978-981-15-6067-5_60
SSID ssib012352421
ssib050731839
Score 2.2958996
Snippet The traveling salesman problem (TSP) is an NP-hard problem that has been the subject of intensive study by researchers and academics in the field of...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 751
Title Comparison of Genetic Crossover Operators for Traveling Salesman Problem
URI https://doi.org/10.35378/gujs.1582521
UnpaywallVersion publishedVersion
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2147-1762
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050731839
  issn: 2147-1762
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60PejFByrWR9mD6Ckl6T6SHEtpKYK1YAv1FHY324PWtLQJogd_u7NJWqqCes6ELN8umW92Hh_AFVecU625E0qbZjT4H1QYWTi-p1lorMvSeZVvX_RG7HbMx2URje2F2cjfU059jM6yp2XD4xjI2HbxquBIuStQHfUHrUcrHOexfMhhs5if-fOdL_5mJ0vm8u1VTqcbTqS7D93V54vakedGlqqGfv82mfHP9R3AXkkjSavY90PYMskR9NprUUEymxA7URofk7ZdmK3UJPdzk2fVlwSpKhla5SHbjU4e0EssX2RCBoW8zDGMup1hu-eUSgmOblKWOtTw2FVcKOlTZBSxEppKGotAI_gx832lbYJMskAzHXpUSEMF1zH6Z98Lg4CeQCWZJeYUiA4V165yFRoxNplIpmJjPGmQ2YnYlTW4XuEZzYuBGBEGEjkYkQUjKsGowc0a7d8tz_5teQ67Tau_m9-CXEAlXWTmEklBquqwfffRqZcH4xMSgLWN
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kPejFByrWF3sQPaUk3UeSYymW4qEWbKGewu7s9qA1DTZB9Nc7m6SlKqjnTMjy7ZL5ZufxEXIltBAMQHixcmlGi_9BjZGFFwbAY-tcFpRVvkM5mPC7qZjWRTSuF2Yjf88ECzE6K56W7UBgIOPaxZtSIOVukOZkOOo-OuG4gJdDDjvV_Myf73zxN9tFmqn3NzWfbziR_h7prz5f1Y48t4tct-Hj22TGP9e3T3ZrGkm71b4fkC2bHpJBby0qSBcz6iZK42PacwtzlZr0PrNlVn1JkarSsVMect3o9AG9xPJFpXRUycsckUn_dtwbeLVSggcdxnOPWWF8LaRWIUNGYbQEppiRESD4hoehBpcgUzwCDnHApLJMCjDon8MgjiJ2TBrpIrUnhEKsBfja12jE-WymuDbWBsois5PGVy1yvcIzyaqBGAkGEiUYiQMjqcFokZs12r9bnv7b8ozsdJz-bnkLck4a-WthL5AU5PqyPhKf1b20XA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Genetic+Crossover+Operators+for+Traveling+Salesman+Problem&rft.jtitle=Gazi+University+Journal+of+Science&rft.au=Dalk%C4%B1l%C4%B1%C3%A7%2C+%C5%9Eahin+Burak&rft.au=%C3%96zg%C3%BCr%2C+Atilla&rft.au=Erdem%2C+Hamit&rft.date=2025-06-01&rft.issn=2147-1762&rft.eissn=2147-1762&rft.volume=38&rft.issue=2&rft.spage=751&rft.epage=778&rft_id=info:doi/10.35378%2Fgujs.1582521&rft.externalDBID=n%2Fa&rft.externalDocID=10_35378_gujs_1582521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2147-1762&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2147-1762&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2147-1762&client=summon