A hybrid approach of simultaneous segmentation and classification for medical image analysis

Medical image analysis is a crucial step required for accurate disease diagnosis, treatment planning, and condition monitoring. In recent years, the field has undergone a groundbreaking transformation due to the advancement in artificial intelligence (AI) and deep learning (DL). These cutting-edge d...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 84; no. 19; pp. 21805 - 21827
Main Authors Yang, Chao-Lung, Harjoseputro, Yulius, Chen, Yung-Yao
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1573-7721
1380-7501
1573-7721
DOI10.1007/s11042-024-19310-9

Cover

Abstract Medical image analysis is a crucial step required for accurate disease diagnosis, treatment planning, and condition monitoring. In recent years, the field has undergone a groundbreaking transformation due to the advancement in artificial intelligence (AI) and deep learning (DL). These cutting-edge developments have particularly revolutionized automated segmentation and classification tasks, making them more efficient and reliable. The simultaneous performance of segmentation and classification enables the AI model to identify and isolate regions of interest, thereby enhancing the accuracy of the classification process. Several research reports showed that this simultaneous optimization posed a significant challenge, particularly in medical image analysis, of capturing intricate details and complex structures and having mitigating issues, such as vanishing gradient, distracting information, and multi-scale context. Therefore, this study proposed a hybrid hierarchical approach, SSC (Simultaneous Segmentation and Classification), integrating image segmentation and classification tasks within a redesigned network architecture. The main contribution of the study was the combination of the UNet architecture, classification block (C block ), residual block, attention mechanism, and Atrous Spatial Pyramid Pooling (ASPP) block together to achieve the improvement of segmentation and classification. A thorough comparative analysis and performance evaluation on two benchmark datasets, namely COVID-19 Radiography (CoR) and Breast Ultrasound Images (BUSI), were also conducted with 5-fold cross-validation. The experimental results showed that the proposed SSC model outperformed the baseline models. For the CoR dataset, the segmentation accuracy, Dice, IoU, classification accuracy, Recall, and Precision increased by 1.16%, 1.68%, 3.11%, 0.61%, 1.11%, and 1.20%, respectively. Meanwhile, for the BUSI dataset, 3.98%, 1.09%, 8.21%, 0.20%, 4.72%, and 1.55% increments were observed in the segmentation accuracy, Dice, IoU, classification accuracy, Recall, and Precision, respectively. These results showed the proposed method’s efficiency and potential for advancing simultaneous segmentation and classification tasks in medical image analysis.
AbstractList Medical image analysis is a crucial step required for accurate disease diagnosis, treatment planning, and condition monitoring. In recent years, the field has undergone a groundbreaking transformation due to the advancement in artificial intelligence (AI) and deep learning (DL). These cutting-edge developments have particularly revolutionized automated segmentation and classification tasks, making them more efficient and reliable. The simultaneous performance of segmentation and classification enables the AI model to identify and isolate regions of interest, thereby enhancing the accuracy of the classification process. Several research reports showed that this simultaneous optimization posed a significant challenge, particularly in medical image analysis, of capturing intricate details and complex structures and having mitigating issues, such as vanishing gradient, distracting information, and multi-scale context. Therefore, this study proposed a hybrid hierarchical approach, SSC (Simultaneous Segmentation and Classification), integrating image segmentation and classification tasks within a redesigned network architecture. The main contribution of the study was the combination of the UNet architecture, classification block (C block ), residual block, attention mechanism, and Atrous Spatial Pyramid Pooling (ASPP) block together to achieve the improvement of segmentation and classification. A thorough comparative analysis and performance evaluation on two benchmark datasets, namely COVID-19 Radiography (CoR) and Breast Ultrasound Images (BUSI), were also conducted with 5-fold cross-validation. The experimental results showed that the proposed SSC model outperformed the baseline models. For the CoR dataset, the segmentation accuracy, Dice, IoU, classification accuracy, Recall, and Precision increased by 1.16%, 1.68%, 3.11%, 0.61%, 1.11%, and 1.20%, respectively. Meanwhile, for the BUSI dataset, 3.98%, 1.09%, 8.21%, 0.20%, 4.72%, and 1.55% increments were observed in the segmentation accuracy, Dice, IoU, classification accuracy, Recall, and Precision, respectively. These results showed the proposed method’s efficiency and potential for advancing simultaneous segmentation and classification tasks in medical image analysis.
Medical image analysis is a crucial step required for accurate disease diagnosis, treatment planning, and condition monitoring. In recent years, the field has undergone a groundbreaking transformation due to the advancement in artificial intelligence (AI) and deep learning (DL). These cutting-edge developments have particularly revolutionized automated segmentation and classification tasks, making them more efficient and reliable. The simultaneous performance of segmentation and classification enables the AI model to identify and isolate regions of interest, thereby enhancing the accuracy of the classification process. Several research reports showed that this simultaneous optimization posed a significant challenge, particularly in medical image analysis, of capturing intricate details and complex structures and having mitigating issues, such as vanishing gradient, distracting information, and multi-scale context. Therefore, this study proposed a hybrid hierarchical approach, SSC (Simultaneous Segmentation and Classification), integrating image segmentation and classification tasks within a redesigned network architecture. The main contribution of the study was the combination of the UNet architecture, classification block (Cblock), residual block, attention mechanism, and Atrous Spatial Pyramid Pooling (ASPP) block together to achieve the improvement of segmentation and classification. A thorough comparative analysis and performance evaluation on two benchmark datasets, namely COVID-19 Radiography (CoR) and Breast Ultrasound Images (BUSI), were also conducted with 5-fold cross-validation. The experimental results showed that the proposed SSC model outperformed the baseline models. For the CoR dataset, the segmentation accuracy, Dice, IoU, classification accuracy, Recall, and Precision increased by 1.16%, 1.68%, 3.11%, 0.61%, 1.11%, and 1.20%, respectively. Meanwhile, for the BUSI dataset, 3.98%, 1.09%, 8.21%, 0.20%, 4.72%, and 1.55% increments were observed in the segmentation accuracy, Dice, IoU, classification accuracy, Recall, and Precision, respectively. These results showed the proposed method’s efficiency and potential for advancing simultaneous segmentation and classification tasks in medical image analysis.
Author Harjoseputro, Yulius
Chen, Yung-Yao
Yang, Chao-Lung
Author_xml – sequence: 1
  givenname: Chao-Lung
  surname: Yang
  fullname: Yang, Chao-Lung
  organization: Department Industrial Management, National Taiwan University of Science and Technology
– sequence: 2
  givenname: Yulius
  surname: Harjoseputro
  fullname: Harjoseputro, Yulius
  organization: Department Electronics and Computer Engineering, National Taiwan University of Science and Technology, Department Informatics, Universitas Atma Jaya Yogyakarta
– sequence: 3
  givenname: Yung-Yao
  orcidid: 0000-0001-6852-8862
  surname: Chen
  fullname: Chen, Yung-Yao
  email: yungyaochen@gapps.ntust.edu.tw
  organization: Department Electronics and Computer Engineering, National Taiwan University of Science and Technology
BookMark eNp9kElLA0EQhRuJYBL9A54aPI_2NksfQ3CDgBe9CU1NL0mHWWL3zCH_3tYRFA851cL7inpvgWZd31mErim5pYSUd5FSIlhGmMio5JRk8gzNaV7yrCwZnf3pL9Aixj0htMiZmKP3Fd4d6-ANhsMh9KB3uHc4-nZsBuhsP0Yc7ba13QCD7zsMncG6gRi983pauT7g1po0Nti3sLVJBM0x-niJzh000V791CV6e7h_XT9lm5fH5_Vqk2nGhcw4caWmojK8ksbUxkqoiJAmrxgITXnhSJ1ra2SRA-jC1GALYEyDK2otS82X6Ga6mxx8jDYOat-PIT0RFWesIKyscpFU1aTSoY8xWKe0n1wNAXyjKFFfWaopS5WyVN9ZKplQ9g89hGQ1HE9DfIJiEndbG36_OkF9As9yipA
CitedBy_id crossref_primary_10_1007_s10278_025_01440_7
crossref_primary_10_1007_s11042_025_20702_8
Cites_doi 10.1155/2022/5164970
10.1016/j.media.2022.102517
10.1016/j.ultras.2021.106682
10.1155/2024/3819801
10.1155/2021/7915706
10.3390/diagnostics12092132
10.1109/TPAMI.2019.2913372
10.5455/aim.2020.28.29-36
10.1155/2018/2061516
10.1080/24699322.2019.1649069
10.1109/CIBCB48159.2020.9277638
10.1109/CVPR.2019.01074
10.1016/j.health.2022.100122
10.1007/978-3-031-37660-3_36
10.1007/s11042-019-7468-9
10.1016/j.compbiomed.2022.106496
10.3390/eng5010003
10.1016/j.ultrasmedbio.2020.06.015
10.1016/j.cmpb.2021.106268
10.3390/diagnostics13061148
10.1016/j.artmed.2019.02.004
10.1109/JBHI.2020.2986376
10.1007/s00170-022-08676-5
10.1109/TII.2022.3168887
10.1109/CCGrid54584.2022.00110
10.1016/j.dib.2019.104863
10.1117/1.JEI.30.1.013012
10.1016/j.compbiomed.2021.104319
10.1007/978-3-319-24574-4_28
10.1016/j.neucom.2022.04.079
10.1016/B978-0-323-89931-4.00007-9
10.3390/app112210713
10.1109/TIM.2023.3328093
10.1109/CVPR.2016.91
10.1109/TPAMI.2018.2858826
10.3390/rs12182985
10.1109/ICIP.2019.8803101
10.1007/978-3-030-63419-3_11
10.22489/CinC.2020.311
10.1371/journal.pone.0268555
10.1016/j.heliyon.2019.e02743
10.1016/j.ejrad.2021.110099
10.32604/cmc.2022.031305
10.1109/TPAMI.2017.2699184
10.3390/cancers14112663
10.1007/978-3-031-47772-0_5
10.1007/s11042-021-10841-z
10.1007/s10278-021-00507-5
10.1109/CVPR.2016.90
10.1155/2018/4605191
10.1186/s12859-023-05516-5
10.3390/jimaging7020022
10.1007/s10559-023-00569-z
10.1016/j.bspc.2021.103299
10.29220/CSAM.2019.26.6.591
10.1097/MD.0000000000027491
10.1016/j.bspc.2022.103553
10.1109/TIM.2023.3260268
10.1016/j.compbiomed.2022.105244
10.1109/CVPRW53098.2021.00203
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s11042-024-19310-9
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 21827
ExternalDocumentID 10_1007_s11042_024_19310_9
GrantInformation_xml – fundername: Ministry of Education
  funderid: http://dx.doi.org/10.13039/100010002
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMFV
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABRTQ
CITATION
PUEGO
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2349-30f7c148d389ddbde9a8049d582a4c136f0b5ced965aac6dbae6a22caf6bc97c3
IEDL.DBID U2A
ISSN 1573-7721
1380-7501
IngestDate Sat Aug 23 12:43:34 EDT 2025
Wed Oct 01 06:00:03 EDT 2025
Thu Apr 24 23:02:40 EDT 2025
Wed Jul 02 02:44:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Medical image
Attention mechanism
Simultaneous
Residual
Atrous spatial pyramid pooling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2349-30f7c148d389ddbde9a8049d582a4c136f0b5ced965aac6dbae6a22caf6bc97c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6852-8862
PQID 3226027854
PQPubID 54626
PageCount 23
ParticipantIDs proquest_journals_3226027854
crossref_citationtrail_10_1007_s11042_024_19310_9
crossref_primary_10_1007_s11042_024_19310_9
springer_journals_10_1007_s11042_024_19310_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250600
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References AK Bharodiya (19310_CR6) 2019; 5
19310_CR50
YW Chen (19310_CR10) 2022; 119
V Babenko (19310_CR5) 2023; 59
M Safdar (19310_CR46) 2020; 28
N Iriawan (19310_CR25) 2024; 2024
19310_CR41
19310_CR40
19310_CR47
19310_CR45
19310_CR44
DG Lee (19310_CR30) 2021; 11
LC Chen (19310_CR9) 2018; 40
X Luo (19310_CR37) 2022; 80
Y Zhao (19310_CR60) 2023; 153
19310_CR39
19310_CR38
W Al-Dhabyani (19310_CR3) 2020; 28
19310_CR32
19310_CR31
F Girard (19310_CR18) 2019; 94
19310_CR35
19310_CR34
19310_CR33
J Wang (19310_CR51) 2021; 208
M Abdar (19310_CR1) 2023; 19
X Zhang (19310_CR59) 2021; 100
19310_CR28
MF Aslan (19310_CR4) 2022; 142
F De Marco (19310_CR13) 2022; 17
19310_CR26
J Zhang (19310_CR58) 2023; 13
Z Liu (19310_CR36) 2021; 34
B Zargar (19310_CR57) 2023; 72
19310_CR20
J Hu (19310_CR21) 2020; 42
19310_CR8
19310_CR24
L Geng (19310_CR17) 2019; 24
M Ahammed (19310_CR2) 2022; 2
L Hu (19310_CR22) 2021; 30
19310_CR61
ES Biratu (19310_CR7) 2021; 7
TH Tsai (19310_CR48) 2022; 495
J Guo (19310_CR19) 2020; 24
T Rahman (19310_CR43) 2021; 132
DE Dhas (19310_CR14) 2023; 72
19310_CR16
19310_CR15
Y Jiang (19310_CR27) 2021; 2021
Z Lai (19310_CR29) 2018; 2018
T Xiao (19310_CR52) 2018; 2018
19310_CR54
A Vakanski (19310_CR49) 2020; 46
19310_CR53
S Hussain (19310_CR23) 2022; 2022
A Penadés-Blasco (19310_CR42) 2022; 146
19310_CR12
19310_CR56
19310_CR11
19310_CR55
References_xml – volume: 2022
  start-page: 1
  year: 2022
  ident: 19310_CR23
  publication-title: Biomed Res Int
  doi: 10.1155/2022/5164970
– volume: 80
  year: 2022
  ident: 19310_CR37
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102517
– ident: 19310_CR8
  doi: 10.1016/j.ultras.2021.106682
– volume: 2024
  start-page: 1
  year: 2024
  ident: 19310_CR25
  publication-title: Applied Computational Intelligence and Soft Computing
  doi: 10.1155/2024/3819801
– volume: 2021
  start-page: 1
  year: 2021
  ident: 19310_CR27
  publication-title: Math Probl Eng
  doi: 10.1155/2021/7915706
– ident: 19310_CR40
  doi: 10.3390/diagnostics12092132
– volume: 42
  start-page: 2011
  issue: 8
  year: 2020
  ident: 19310_CR21
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2913372
– volume: 28
  start-page: 29
  issue: 1
  year: 2020
  ident: 19310_CR46
  publication-title: Acta Informatica Medica
  doi: 10.5455/aim.2020.28.29-36
– ident: 19310_CR11
– volume: 2018
  start-page: 1
  year: 2018
  ident: 19310_CR29
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2018/2061516
– volume: 24
  start-page: 13
  issue: sup2
  year: 2019
  ident: 19310_CR17
  publication-title: Computer Assisted Surgery
  doi: 10.1080/24699322.2019.1649069
– ident: 19310_CR26
  doi: 10.1109/CIBCB48159.2020.9277638
– ident: 19310_CR39
  doi: 10.1109/CVPR.2019.01074
– volume: 2
  issue: April
  year: 2022
  ident: 19310_CR2
  publication-title: Healthcare Analytics
  doi: 10.1016/j.health.2022.100122
– ident: 19310_CR15
  doi: 10.1007/978-3-031-37660-3_36
– ident: 19310_CR56
  doi: 10.1007/s11042-019-7468-9
– volume: 153
  year: 2023
  ident: 19310_CR60
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106496
– ident: 19310_CR41
  doi: 10.3390/eng5010003
– volume: 46
  start-page: 2819
  issue: 10
  year: 2020
  ident: 19310_CR49
  publication-title: Ultrasound in Medicine & Biology
  doi: 10.1016/j.ultrasmedbio.2020.06.015
– volume: 208
  year: 2021
  ident: 19310_CR51
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.106268
– volume: 13
  start-page: 1148
  issue: 6
  year: 2023
  ident: 19310_CR58
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13061148
– volume: 94
  start-page: 96
  year: 2019
  ident: 19310_CR18
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.02.004
– volume: 24
  start-page: 2481
  issue: 9
  year: 2020
  ident: 19310_CR19
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2020.2986376
– volume: 119
  start-page: 8257
  year: 2022
  ident: 19310_CR10
  publication-title: The International Journal of Advanced Manufacturing Technology
  doi: 10.1007/s00170-022-08676-5
– volume: 19
  start-page: 274
  issue: 1
  year: 2023
  ident: 19310_CR1
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2022.3168887
– ident: 19310_CR47
  doi: 10.1109/CCGrid54584.2022.00110
– volume: 28
  year: 2020
  ident: 19310_CR3
  publication-title: Data Brief
  doi: 10.1016/j.dib.2019.104863
– volume: 30
  start-page: 1
  issue: 1
  year: 2021
  ident: 19310_CR22
  publication-title: J Electron Imaging
  doi: 10.1117/1.JEI.30.1.013012
– volume: 132
  issue: March
  year: 2021
  ident: 19310_CR43
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104319
– ident: 19310_CR45
  doi: 10.1007/978-3-319-24574-4_28
– volume: 495
  start-page: 1
  year: 2022
  ident: 19310_CR48
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.079
– ident: 19310_CR61
  doi: 10.1016/B978-0-323-89931-4.00007-9
– volume: 11
  start-page: 10713
  issue: 22
  year: 2021
  ident: 19310_CR30
  publication-title: Appl Sci
  doi: 10.3390/app112210713
– volume: 72
  start-page: 1
  year: 2023
  ident: 19310_CR14
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2023.3328093
– ident: 19310_CR44
  doi: 10.1109/CVPR.2016.91
– ident: 19310_CR33
  doi: 10.1109/TPAMI.2018.2858826
– ident: 19310_CR34
  doi: 10.3390/rs12182985
– ident: 19310_CR32
  doi: 10.1109/ICIP.2019.8803101
– ident: 19310_CR35
  doi: 10.1007/978-3-030-63419-3_11
– ident: 19310_CR12
  doi: 10.22489/CinC.2020.311
– volume: 17
  issue: 8
  year: 2022
  ident: 19310_CR13
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0268555
– volume: 5
  issue: 10
  year: 2019
  ident: 19310_CR6
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e02743
– volume: 146
  year: 2022
  ident: 19310_CR42
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2021.110099
– ident: 19310_CR54
  doi: 10.32604/cmc.2022.031305
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 19310_CR9
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2699184
– ident: 19310_CR50
  doi: 10.3390/cancers14112663
– ident: 19310_CR28
  doi: 10.1007/978-3-031-47772-0_5
– ident: 19310_CR55
  doi: 10.1007/s11042-021-10841-z
– volume: 34
  start-page: 1279
  issue: 5
  year: 2021
  ident: 19310_CR36
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-021-00507-5
– ident: 19310_CR20
  doi: 10.1109/CVPR.2016.90
– volume: 2018
  start-page: 1
  year: 2018
  ident: 19310_CR52
  publication-title: Biomed Res Int
  doi: 10.1155/2018/4605191
– ident: 19310_CR16
  doi: 10.1186/s12859-023-05516-5
– volume: 7
  start-page: 22
  issue: 2
  year: 2021
  ident: 19310_CR7
  publication-title: Journal of Imaging
  doi: 10.3390/jimaging7020022
– volume: 59
  start-page: 346
  issue: 2
  year: 2023
  ident: 19310_CR5
  publication-title: Cybern Syst Anal
  doi: 10.1007/s10559-023-00569-z
– ident: 19310_CR53
  doi: 10.1016/j.bspc.2021.103299
– ident: 19310_CR31
  doi: 10.29220/CSAM.2019.26.6.591
– volume: 100
  issue: 40
  year: 2021
  ident: 19310_CR59
  publication-title: Medicine
  doi: 10.1097/MD.0000000000027491
– ident: 19310_CR24
  doi: 10.1016/j.bspc.2022.103553
– volume: 72
  start-page: 1
  issue: 1557
  year: 2023
  ident: 19310_CR57
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2023.3260268
– volume: 142
  year: 2022
  ident: 19310_CR4
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105244
– ident: 19310_CR38
  doi: 10.1109/CVPRW53098.2021.00203
SSID ssj0016524
Score 2.4041529
Snippet Medical image analysis is a crucial step required for accurate disease diagnosis, treatment planning, and condition monitoring. In recent years, the field has...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21805
SubjectTerms 1239: Emerging Trends and Applications of Deep Learning for Biomedical Data Analysis
Accuracy
Artificial intelligence
Classification
Computer Communication Networks
Computer Science
Computer vision
Condition monitoring
Data Structures and Information Theory
Datasets
Deep learning
Design
Image analysis
Image segmentation
Machine learning
Medical imaging
Multimedia Information Systems
Neural networks
Performance evaluation
Recall
Special Purpose and Application-Based Systems
Title A hybrid approach of simultaneous segmentation and classification for medical image analysis
URI https://link.springer.com/article/10.1007/s11042-024-19310-9
https://www.proquest.com/docview/3226027854
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1573-7721
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8CBxwAxGFMO3KDS0ibpetzQxgRiJyYNCanKqzCJdYiOA_8epw8GCJA4VUqTHpzE_lzbnwFOKRWJr7vU0x1mPWZC60lFuceCxIYKTTY1zlG8GYvRhF1N-bQsCsuqbPcqJJlr6lWxG3WlJGhTPAQdqD2idahzR-eFp3ji9z5iB4L7rCyP-XndVxO0wpXfQqG5hRnuwFYJDUmv2MtdWLNpA7artgukvIUN2PzEIbgH9z3y-ObKrkhFD04WCclmLlNQphYde5LZh3lZYpQSmRqiHWR2OULFEOJWMi8CNmQ2RwWDkwqqkn2YDAe3FyOvbJngaT9gLoshCTV6OAZxiDHK2Eh20QcwvOtLpmkgko7i2ppIcCm1MEpaIX1fy0QoHYU6OIBaukjtIRClQsEiGxiJS5OAKZYoS4OuRd3KBFdNoJUUY13yibu2Fk_xignZST5Gyce55OOoCWcfa54LNo0_Z7eqzYnLm5XFqICEi5Zy1oTzasNWr3__2tH_ph_Dhu9a_eY_XFpQW7682hPEH0vVhnpv2O-P3fPy7nrQzo_fO5Gb1rM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBRwFRKOCBDSLVjuMkY4VABdpOrdQBKfIrUImmiJSBf4-dOA0gQGJNfBnO9t13ubvvAM4xZimREfZkh2qPqlB7XODAo36qQ2FcNlY2UBwMWW9M7ybBxDWF5VW1e5WSLCx13eyGbSuJ8SmeAR3GesSrsGYJrCxj_ph0l7kDFhDq2mN-lvvqgmpc-S0VWniYmx3YctAQdcu93IUVnTVhuxq7gNwtbMLmJw7BPXjooqd323aFKnpwNE9RPrWVgjzTJrBHuX6cuRajDPFMIWkhs60RKh8Z3IpmZcIGTWfGwJhFJVXJPoxvrkdXPc-NTPAk8amtYkhDaSIcZXCIUkLpmEcmBlBBRDiV2GdpRwRSq5gFnEumBNeMEyJ5yoSMQ-kfQCObZ_oQkBAho7H2FTeiqU8FTYXGfqSNbaUsEC3AlRYT6fjE7ViL56RmQraaT4zmk0LzSdyCi6XMS8mm8efqdrU5ibtZeWIMELPZ0oC24LLasPr17187-t_yM1jvjQb9pH87vD-GDWLH_hY_X9rQWLy-6RODRRbitDh6H0-X1o8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOvBGDATlwg2pLm6TtcQIm3uLAJA5IVZ4wiRXExoF_j9MHAwRIXNu4ByexP9f2Z4A9SoULdUID3WE2YCa2gVSUByxyNlbosqnxgeLllTjps7Nbfvupi7-odq9TkmVPg2dpysftZ-Pak8Y36ttK0L8ECEDQkqTTMMM8UQKe6H7Y_cgjCB6yqlXmZ7mv7miCMb-lRQtv01uChQomkm65r8swZfMVWKxHMJDqRq7A_Cc-wVW465KHN9-CRWqqcPLkyGjgqwZlbjHIJyN7P6zajXIic0O0h8--Xqh8hBiWDMvkDRkM0djgopK2ZA36veObw5OgGp8Q6DBivqLBxRqjHYOYxBhlbCoTjAcMT0LJNI2E6yiurUkFl1ILo6QVMgy1dELpNNbROjTyp9xuAFEqFiy1kZEo6iKmmFOWRolFO8sEV02gtRYzXXGL-xEXj9mEFdlrPkPNZ4Xms7QJ-x8yzyWzxp-rW_XmZNUtG2VojITPnHLWhIN6wyavf__a5v-W78Ls9VEvuzi9Ot-CudBPAC7-w7SgMX55tdsIS8Zqpzh577ob2ss
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+approach+of+simultaneous+segmentation+and+classification+for+medical+image+analysis&rft.jtitle=Multimedia+tools+and+applications&rft.au=Yang%2C+Chao-Lung&rft.au=Harjoseputro%2C+Yulius&rft.au=Chen%2C+Yung-Yao&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=84&rft.issue=19&rft.spage=21805&rft.epage=21827&rft_id=info:doi/10.1007%2Fs11042-024-19310-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon