A hybrid approach of simultaneous segmentation and classification for medical image analysis
Medical image analysis is a crucial step required for accurate disease diagnosis, treatment planning, and condition monitoring. In recent years, the field has undergone a groundbreaking transformation due to the advancement in artificial intelligence (AI) and deep learning (DL). These cutting-edge d...
Saved in:
| Published in | Multimedia tools and applications Vol. 84; no. 19; pp. 21805 - 21827 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.06.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1573-7721 1380-7501 1573-7721 |
| DOI | 10.1007/s11042-024-19310-9 |
Cover
| Abstract | Medical image analysis is a crucial step required for accurate disease diagnosis, treatment planning, and condition monitoring. In recent years, the field has undergone a groundbreaking transformation due to the advancement in artificial intelligence (AI) and deep learning (DL). These cutting-edge developments have particularly revolutionized automated segmentation and classification tasks, making them more efficient and reliable. The simultaneous performance of segmentation and classification enables the AI model to identify and isolate regions of interest, thereby enhancing the accuracy of the classification process. Several research reports showed that this simultaneous optimization posed a significant challenge, particularly in medical image analysis, of capturing intricate details and complex structures and having mitigating issues, such as vanishing gradient, distracting information, and multi-scale context. Therefore, this study proposed a hybrid hierarchical approach, SSC (Simultaneous Segmentation and Classification), integrating image segmentation and classification tasks within a redesigned network architecture. The main contribution of the study was the combination of the UNet architecture, classification block (C
block
), residual block, attention mechanism, and Atrous Spatial Pyramid Pooling (ASPP) block together to achieve the improvement of segmentation and classification. A thorough comparative analysis and performance evaluation on two benchmark datasets, namely COVID-19 Radiography (CoR) and Breast Ultrasound Images (BUSI), were also conducted with 5-fold cross-validation. The experimental results showed that the proposed SSC model outperformed the baseline models. For the CoR dataset, the segmentation accuracy, Dice, IoU, classification accuracy, Recall, and Precision increased by 1.16%, 1.68%, 3.11%, 0.61%, 1.11%, and 1.20%, respectively. Meanwhile, for the BUSI dataset, 3.98%, 1.09%, 8.21%, 0.20%, 4.72%, and 1.55% increments were observed in the segmentation accuracy, Dice, IoU, classification accuracy, Recall, and Precision, respectively. These results showed the proposed method’s efficiency and potential for advancing simultaneous segmentation and classification tasks in medical image analysis. |
|---|---|
| AbstractList | Medical image analysis is a crucial step required for accurate disease diagnosis, treatment planning, and condition monitoring. In recent years, the field has undergone a groundbreaking transformation due to the advancement in artificial intelligence (AI) and deep learning (DL). These cutting-edge developments have particularly revolutionized automated segmentation and classification tasks, making them more efficient and reliable. The simultaneous performance of segmentation and classification enables the AI model to identify and isolate regions of interest, thereby enhancing the accuracy of the classification process. Several research reports showed that this simultaneous optimization posed a significant challenge, particularly in medical image analysis, of capturing intricate details and complex structures and having mitigating issues, such as vanishing gradient, distracting information, and multi-scale context. Therefore, this study proposed a hybrid hierarchical approach, SSC (Simultaneous Segmentation and Classification), integrating image segmentation and classification tasks within a redesigned network architecture. The main contribution of the study was the combination of the UNet architecture, classification block (C
block
), residual block, attention mechanism, and Atrous Spatial Pyramid Pooling (ASPP) block together to achieve the improvement of segmentation and classification. A thorough comparative analysis and performance evaluation on two benchmark datasets, namely COVID-19 Radiography (CoR) and Breast Ultrasound Images (BUSI), were also conducted with 5-fold cross-validation. The experimental results showed that the proposed SSC model outperformed the baseline models. For the CoR dataset, the segmentation accuracy, Dice, IoU, classification accuracy, Recall, and Precision increased by 1.16%, 1.68%, 3.11%, 0.61%, 1.11%, and 1.20%, respectively. Meanwhile, for the BUSI dataset, 3.98%, 1.09%, 8.21%, 0.20%, 4.72%, and 1.55% increments were observed in the segmentation accuracy, Dice, IoU, classification accuracy, Recall, and Precision, respectively. These results showed the proposed method’s efficiency and potential for advancing simultaneous segmentation and classification tasks in medical image analysis. Medical image analysis is a crucial step required for accurate disease diagnosis, treatment planning, and condition monitoring. In recent years, the field has undergone a groundbreaking transformation due to the advancement in artificial intelligence (AI) and deep learning (DL). These cutting-edge developments have particularly revolutionized automated segmentation and classification tasks, making them more efficient and reliable. The simultaneous performance of segmentation and classification enables the AI model to identify and isolate regions of interest, thereby enhancing the accuracy of the classification process. Several research reports showed that this simultaneous optimization posed a significant challenge, particularly in medical image analysis, of capturing intricate details and complex structures and having mitigating issues, such as vanishing gradient, distracting information, and multi-scale context. Therefore, this study proposed a hybrid hierarchical approach, SSC (Simultaneous Segmentation and Classification), integrating image segmentation and classification tasks within a redesigned network architecture. The main contribution of the study was the combination of the UNet architecture, classification block (Cblock), residual block, attention mechanism, and Atrous Spatial Pyramid Pooling (ASPP) block together to achieve the improvement of segmentation and classification. A thorough comparative analysis and performance evaluation on two benchmark datasets, namely COVID-19 Radiography (CoR) and Breast Ultrasound Images (BUSI), were also conducted with 5-fold cross-validation. The experimental results showed that the proposed SSC model outperformed the baseline models. For the CoR dataset, the segmentation accuracy, Dice, IoU, classification accuracy, Recall, and Precision increased by 1.16%, 1.68%, 3.11%, 0.61%, 1.11%, and 1.20%, respectively. Meanwhile, for the BUSI dataset, 3.98%, 1.09%, 8.21%, 0.20%, 4.72%, and 1.55% increments were observed in the segmentation accuracy, Dice, IoU, classification accuracy, Recall, and Precision, respectively. These results showed the proposed method’s efficiency and potential for advancing simultaneous segmentation and classification tasks in medical image analysis. |
| Author | Harjoseputro, Yulius Chen, Yung-Yao Yang, Chao-Lung |
| Author_xml | – sequence: 1 givenname: Chao-Lung surname: Yang fullname: Yang, Chao-Lung organization: Department Industrial Management, National Taiwan University of Science and Technology – sequence: 2 givenname: Yulius surname: Harjoseputro fullname: Harjoseputro, Yulius organization: Department Electronics and Computer Engineering, National Taiwan University of Science and Technology, Department Informatics, Universitas Atma Jaya Yogyakarta – sequence: 3 givenname: Yung-Yao orcidid: 0000-0001-6852-8862 surname: Chen fullname: Chen, Yung-Yao email: yungyaochen@gapps.ntust.edu.tw organization: Department Electronics and Computer Engineering, National Taiwan University of Science and Technology |
| BookMark | eNp9kElLA0EQhRuJYBL9A54aPI_2NksfQ3CDgBe9CU1NL0mHWWL3zCH_3tYRFA851cL7inpvgWZd31mErim5pYSUd5FSIlhGmMio5JRk8gzNaV7yrCwZnf3pL9Aixj0htMiZmKP3Fd4d6-ANhsMh9KB3uHc4-nZsBuhsP0Yc7ba13QCD7zsMncG6gRi983pauT7g1po0Nti3sLVJBM0x-niJzh000V791CV6e7h_XT9lm5fH5_Vqk2nGhcw4caWmojK8ksbUxkqoiJAmrxgITXnhSJ1ra2SRA-jC1GALYEyDK2otS82X6Ga6mxx8jDYOat-PIT0RFWesIKyscpFU1aTSoY8xWKe0n1wNAXyjKFFfWaopS5WyVN9ZKplQ9g89hGQ1HE9DfIJiEndbG36_OkF9As9yipA |
| CitedBy_id | crossref_primary_10_1007_s10278_025_01440_7 crossref_primary_10_1007_s11042_025_20702_8 |
| Cites_doi | 10.1155/2022/5164970 10.1016/j.media.2022.102517 10.1016/j.ultras.2021.106682 10.1155/2024/3819801 10.1155/2021/7915706 10.3390/diagnostics12092132 10.1109/TPAMI.2019.2913372 10.5455/aim.2020.28.29-36 10.1155/2018/2061516 10.1080/24699322.2019.1649069 10.1109/CIBCB48159.2020.9277638 10.1109/CVPR.2019.01074 10.1016/j.health.2022.100122 10.1007/978-3-031-37660-3_36 10.1007/s11042-019-7468-9 10.1016/j.compbiomed.2022.106496 10.3390/eng5010003 10.1016/j.ultrasmedbio.2020.06.015 10.1016/j.cmpb.2021.106268 10.3390/diagnostics13061148 10.1016/j.artmed.2019.02.004 10.1109/JBHI.2020.2986376 10.1007/s00170-022-08676-5 10.1109/TII.2022.3168887 10.1109/CCGrid54584.2022.00110 10.1016/j.dib.2019.104863 10.1117/1.JEI.30.1.013012 10.1016/j.compbiomed.2021.104319 10.1007/978-3-319-24574-4_28 10.1016/j.neucom.2022.04.079 10.1016/B978-0-323-89931-4.00007-9 10.3390/app112210713 10.1109/TIM.2023.3328093 10.1109/CVPR.2016.91 10.1109/TPAMI.2018.2858826 10.3390/rs12182985 10.1109/ICIP.2019.8803101 10.1007/978-3-030-63419-3_11 10.22489/CinC.2020.311 10.1371/journal.pone.0268555 10.1016/j.heliyon.2019.e02743 10.1016/j.ejrad.2021.110099 10.32604/cmc.2022.031305 10.1109/TPAMI.2017.2699184 10.3390/cancers14112663 10.1007/978-3-031-47772-0_5 10.1007/s11042-021-10841-z 10.1007/s10278-021-00507-5 10.1109/CVPR.2016.90 10.1155/2018/4605191 10.1186/s12859-023-05516-5 10.3390/jimaging7020022 10.1007/s10559-023-00569-z 10.1016/j.bspc.2021.103299 10.29220/CSAM.2019.26.6.591 10.1097/MD.0000000000027491 10.1016/j.bspc.2022.103553 10.1109/TIM.2023.3260268 10.1016/j.compbiomed.2022.105244 10.1109/CVPRW53098.2021.00203 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jun 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jun 2025 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s11042-024-19310-9 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 21827 |
| ExternalDocumentID | 10_1007_s11042_024_19310_9 |
| GrantInformation_xml | – fundername: Ministry of Education funderid: http://dx.doi.org/10.13039/100010002 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMFV ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABRTQ CITATION PUEGO 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c2349-30f7c148d389ddbde9a8049d582a4c136f0b5ced965aac6dbae6a22caf6bc97c3 |
| IEDL.DBID | U2A |
| ISSN | 1573-7721 1380-7501 |
| IngestDate | Sat Aug 23 12:43:34 EDT 2025 Wed Oct 01 06:00:03 EDT 2025 Thu Apr 24 23:02:40 EDT 2025 Wed Jul 02 02:44:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Keywords | Medical image Attention mechanism Simultaneous Residual Atrous spatial pyramid pooling |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2349-30f7c148d389ddbde9a8049d582a4c136f0b5ced965aac6dbae6a22caf6bc97c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6852-8862 |
| PQID | 3226027854 |
| PQPubID | 54626 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_3226027854 crossref_citationtrail_10_1007_s11042_024_19310_9 crossref_primary_10_1007_s11042_024_19310_9 springer_journals_10_1007_s11042_024_19310_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250600 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | AK Bharodiya (19310_CR6) 2019; 5 19310_CR50 YW Chen (19310_CR10) 2022; 119 V Babenko (19310_CR5) 2023; 59 M Safdar (19310_CR46) 2020; 28 N Iriawan (19310_CR25) 2024; 2024 19310_CR41 19310_CR40 19310_CR47 19310_CR45 19310_CR44 DG Lee (19310_CR30) 2021; 11 LC Chen (19310_CR9) 2018; 40 X Luo (19310_CR37) 2022; 80 Y Zhao (19310_CR60) 2023; 153 19310_CR39 19310_CR38 W Al-Dhabyani (19310_CR3) 2020; 28 19310_CR32 19310_CR31 F Girard (19310_CR18) 2019; 94 19310_CR35 19310_CR34 19310_CR33 J Wang (19310_CR51) 2021; 208 M Abdar (19310_CR1) 2023; 19 X Zhang (19310_CR59) 2021; 100 19310_CR28 MF Aslan (19310_CR4) 2022; 142 F De Marco (19310_CR13) 2022; 17 19310_CR26 J Zhang (19310_CR58) 2023; 13 Z Liu (19310_CR36) 2021; 34 B Zargar (19310_CR57) 2023; 72 19310_CR20 J Hu (19310_CR21) 2020; 42 19310_CR8 19310_CR24 L Geng (19310_CR17) 2019; 24 M Ahammed (19310_CR2) 2022; 2 L Hu (19310_CR22) 2021; 30 19310_CR61 ES Biratu (19310_CR7) 2021; 7 TH Tsai (19310_CR48) 2022; 495 J Guo (19310_CR19) 2020; 24 T Rahman (19310_CR43) 2021; 132 DE Dhas (19310_CR14) 2023; 72 19310_CR16 19310_CR15 Y Jiang (19310_CR27) 2021; 2021 Z Lai (19310_CR29) 2018; 2018 T Xiao (19310_CR52) 2018; 2018 19310_CR54 A Vakanski (19310_CR49) 2020; 46 19310_CR53 S Hussain (19310_CR23) 2022; 2022 A Penadés-Blasco (19310_CR42) 2022; 146 19310_CR12 19310_CR56 19310_CR11 19310_CR55 |
| References_xml | – volume: 2022 start-page: 1 year: 2022 ident: 19310_CR23 publication-title: Biomed Res Int doi: 10.1155/2022/5164970 – volume: 80 year: 2022 ident: 19310_CR37 publication-title: Med Image Anal doi: 10.1016/j.media.2022.102517 – ident: 19310_CR8 doi: 10.1016/j.ultras.2021.106682 – volume: 2024 start-page: 1 year: 2024 ident: 19310_CR25 publication-title: Applied Computational Intelligence and Soft Computing doi: 10.1155/2024/3819801 – volume: 2021 start-page: 1 year: 2021 ident: 19310_CR27 publication-title: Math Probl Eng doi: 10.1155/2021/7915706 – ident: 19310_CR40 doi: 10.3390/diagnostics12092132 – volume: 42 start-page: 2011 issue: 8 year: 2020 ident: 19310_CR21 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2019.2913372 – volume: 28 start-page: 29 issue: 1 year: 2020 ident: 19310_CR46 publication-title: Acta Informatica Medica doi: 10.5455/aim.2020.28.29-36 – ident: 19310_CR11 – volume: 2018 start-page: 1 year: 2018 ident: 19310_CR29 publication-title: Comput Intell Neurosci doi: 10.1155/2018/2061516 – volume: 24 start-page: 13 issue: sup2 year: 2019 ident: 19310_CR17 publication-title: Computer Assisted Surgery doi: 10.1080/24699322.2019.1649069 – ident: 19310_CR26 doi: 10.1109/CIBCB48159.2020.9277638 – ident: 19310_CR39 doi: 10.1109/CVPR.2019.01074 – volume: 2 issue: April year: 2022 ident: 19310_CR2 publication-title: Healthcare Analytics doi: 10.1016/j.health.2022.100122 – ident: 19310_CR15 doi: 10.1007/978-3-031-37660-3_36 – ident: 19310_CR56 doi: 10.1007/s11042-019-7468-9 – volume: 153 year: 2023 ident: 19310_CR60 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.106496 – ident: 19310_CR41 doi: 10.3390/eng5010003 – volume: 46 start-page: 2819 issue: 10 year: 2020 ident: 19310_CR49 publication-title: Ultrasound in Medicine & Biology doi: 10.1016/j.ultrasmedbio.2020.06.015 – volume: 208 year: 2021 ident: 19310_CR51 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.106268 – volume: 13 start-page: 1148 issue: 6 year: 2023 ident: 19310_CR58 publication-title: Diagnostics doi: 10.3390/diagnostics13061148 – volume: 94 start-page: 96 year: 2019 ident: 19310_CR18 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2019.02.004 – volume: 24 start-page: 2481 issue: 9 year: 2020 ident: 19310_CR19 publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2020.2986376 – volume: 119 start-page: 8257 year: 2022 ident: 19310_CR10 publication-title: The International Journal of Advanced Manufacturing Technology doi: 10.1007/s00170-022-08676-5 – volume: 19 start-page: 274 issue: 1 year: 2023 ident: 19310_CR1 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2022.3168887 – ident: 19310_CR47 doi: 10.1109/CCGrid54584.2022.00110 – volume: 28 year: 2020 ident: 19310_CR3 publication-title: Data Brief doi: 10.1016/j.dib.2019.104863 – volume: 30 start-page: 1 issue: 1 year: 2021 ident: 19310_CR22 publication-title: J Electron Imaging doi: 10.1117/1.JEI.30.1.013012 – volume: 132 issue: March year: 2021 ident: 19310_CR43 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104319 – ident: 19310_CR45 doi: 10.1007/978-3-319-24574-4_28 – volume: 495 start-page: 1 year: 2022 ident: 19310_CR48 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.04.079 – ident: 19310_CR61 doi: 10.1016/B978-0-323-89931-4.00007-9 – volume: 11 start-page: 10713 issue: 22 year: 2021 ident: 19310_CR30 publication-title: Appl Sci doi: 10.3390/app112210713 – volume: 72 start-page: 1 year: 2023 ident: 19310_CR14 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2023.3328093 – ident: 19310_CR44 doi: 10.1109/CVPR.2016.91 – ident: 19310_CR33 doi: 10.1109/TPAMI.2018.2858826 – ident: 19310_CR34 doi: 10.3390/rs12182985 – ident: 19310_CR32 doi: 10.1109/ICIP.2019.8803101 – ident: 19310_CR35 doi: 10.1007/978-3-030-63419-3_11 – ident: 19310_CR12 doi: 10.22489/CinC.2020.311 – volume: 17 issue: 8 year: 2022 ident: 19310_CR13 publication-title: PLoS ONE doi: 10.1371/journal.pone.0268555 – volume: 5 issue: 10 year: 2019 ident: 19310_CR6 publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e02743 – volume: 146 year: 2022 ident: 19310_CR42 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2021.110099 – ident: 19310_CR54 doi: 10.32604/cmc.2022.031305 – volume: 40 start-page: 834 issue: 4 year: 2018 ident: 19310_CR9 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2017.2699184 – ident: 19310_CR50 doi: 10.3390/cancers14112663 – ident: 19310_CR28 doi: 10.1007/978-3-031-47772-0_5 – ident: 19310_CR55 doi: 10.1007/s11042-021-10841-z – volume: 34 start-page: 1279 issue: 5 year: 2021 ident: 19310_CR36 publication-title: J Digit Imaging doi: 10.1007/s10278-021-00507-5 – ident: 19310_CR20 doi: 10.1109/CVPR.2016.90 – volume: 2018 start-page: 1 year: 2018 ident: 19310_CR52 publication-title: Biomed Res Int doi: 10.1155/2018/4605191 – ident: 19310_CR16 doi: 10.1186/s12859-023-05516-5 – volume: 7 start-page: 22 issue: 2 year: 2021 ident: 19310_CR7 publication-title: Journal of Imaging doi: 10.3390/jimaging7020022 – volume: 59 start-page: 346 issue: 2 year: 2023 ident: 19310_CR5 publication-title: Cybern Syst Anal doi: 10.1007/s10559-023-00569-z – ident: 19310_CR53 doi: 10.1016/j.bspc.2021.103299 – ident: 19310_CR31 doi: 10.29220/CSAM.2019.26.6.591 – volume: 100 issue: 40 year: 2021 ident: 19310_CR59 publication-title: Medicine doi: 10.1097/MD.0000000000027491 – ident: 19310_CR24 doi: 10.1016/j.bspc.2022.103553 – volume: 72 start-page: 1 issue: 1557 year: 2023 ident: 19310_CR57 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2023.3260268 – volume: 142 year: 2022 ident: 19310_CR4 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105244 – ident: 19310_CR38 doi: 10.1109/CVPRW53098.2021.00203 |
| SSID | ssj0016524 |
| Score | 2.4041529 |
| Snippet | Medical image analysis is a crucial step required for accurate disease diagnosis, treatment planning, and condition monitoring. In recent years, the field has... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 21805 |
| SubjectTerms | 1239: Emerging Trends and Applications of Deep Learning for Biomedical Data Analysis Accuracy Artificial intelligence Classification Computer Communication Networks Computer Science Computer vision Condition monitoring Data Structures and Information Theory Datasets Deep learning Design Image analysis Image segmentation Machine learning Medical imaging Multimedia Information Systems Neural networks Performance evaluation Recall Special Purpose and Application-Based Systems |
| Title | A hybrid approach of simultaneous segmentation and classification for medical image analysis |
| URI | https://link.springer.com/article/10.1007/s11042-024-19310-9 https://www.proquest.com/docview/3226027854 |
| Volume | 84 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1573-7721 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8CBxwAxGFMO3KDS0ibpetzQxgRiJyYNCanKqzCJdYiOA_8epw8GCJA4VUqTHpzE_lzbnwFOKRWJr7vU0x1mPWZC60lFuceCxIYKTTY1zlG8GYvRhF1N-bQsCsuqbPcqJJlr6lWxG3WlJGhTPAQdqD2idahzR-eFp3ji9z5iB4L7rCyP-XndVxO0wpXfQqG5hRnuwFYJDUmv2MtdWLNpA7artgukvIUN2PzEIbgH9z3y-ObKrkhFD04WCclmLlNQphYde5LZh3lZYpQSmRqiHWR2OULFEOJWMi8CNmQ2RwWDkwqqkn2YDAe3FyOvbJngaT9gLoshCTV6OAZxiDHK2Eh20QcwvOtLpmkgko7i2ppIcCm1MEpaIX1fy0QoHYU6OIBaukjtIRClQsEiGxiJS5OAKZYoS4OuRd3KBFdNoJUUY13yibu2Fk_xignZST5Gyce55OOoCWcfa54LNo0_Z7eqzYnLm5XFqICEi5Zy1oTzasNWr3__2tH_ph_Dhu9a_eY_XFpQW7682hPEH0vVhnpv2O-P3fPy7nrQzo_fO5Gb1rM |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBRwFRKOCBDSLVjuMkY4VABdpOrdQBKfIrUImmiJSBf4-dOA0gQGJNfBnO9t13ubvvAM4xZimREfZkh2qPqlB7XODAo36qQ2FcNlY2UBwMWW9M7ybBxDWF5VW1e5WSLCx13eyGbSuJ8SmeAR3GesSrsGYJrCxj_ph0l7kDFhDq2mN-lvvqgmpc-S0VWniYmx3YctAQdcu93IUVnTVhuxq7gNwtbMLmJw7BPXjooqd323aFKnpwNE9RPrWVgjzTJrBHuX6cuRajDPFMIWkhs60RKh8Z3IpmZcIGTWfGwJhFJVXJPoxvrkdXPc-NTPAk8amtYkhDaSIcZXCIUkLpmEcmBlBBRDiV2GdpRwRSq5gFnEumBNeMEyJ5yoSMQ-kfQCObZ_oQkBAho7H2FTeiqU8FTYXGfqSNbaUsEC3AlRYT6fjE7ViL56RmQraaT4zmk0LzSdyCi6XMS8mm8efqdrU5ibtZeWIMELPZ0oC24LLasPr17187-t_yM1jvjQb9pH87vD-GDWLH_hY_X9rQWLy-6RODRRbitDh6H0-X1o8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOvBGDATlwg2pLm6TtcQIm3uLAJA5IVZ4wiRXExoF_j9MHAwRIXNu4ByexP9f2Z4A9SoULdUID3WE2YCa2gVSUByxyNlbosqnxgeLllTjps7Nbfvupi7-odq9TkmVPg2dpysftZ-Pak8Y36ttK0L8ECEDQkqTTMMM8UQKe6H7Y_cgjCB6yqlXmZ7mv7miCMb-lRQtv01uChQomkm65r8swZfMVWKxHMJDqRq7A_Cc-wVW465KHN9-CRWqqcPLkyGjgqwZlbjHIJyN7P6zajXIic0O0h8--Xqh8hBiWDMvkDRkM0djgopK2ZA36veObw5OgGp8Q6DBivqLBxRqjHYOYxBhlbCoTjAcMT0LJNI2E6yiurUkFl1ILo6QVMgy1dELpNNbROjTyp9xuAFEqFiy1kZEo6iKmmFOWRolFO8sEV02gtRYzXXGL-xEXj9mEFdlrPkPNZ4Xms7QJ-x8yzyWzxp-rW_XmZNUtG2VojITPnHLWhIN6wyavf__a5v-W78Ls9VEvuzi9Ot-CudBPAC7-w7SgMX55tdsIS8Zqpzh577ob2ss |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+approach+of+simultaneous+segmentation+and+classification+for+medical+image+analysis&rft.jtitle=Multimedia+tools+and+applications&rft.au=Yang%2C+Chao-Lung&rft.au=Harjoseputro%2C+Yulius&rft.au=Chen%2C+Yung-Yao&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=84&rft.issue=19&rft.spage=21805&rft.epage=21827&rft_id=info:doi/10.1007%2Fs11042-024-19310-9&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon |