Applying cuckoo search based algorithm and hybrid based neural classifier for breast cancer detection using ultrasound images
Ultrasound examination is one of the most convenient and appropriate processes used for the diagnosis of tumors that make use of ultrasound images. Ultrasound imaging is a noninvasive modality utilized commonly for the detection of breast cancer, which is a common and dangerous cancer found in women...
Saved in:
| Published in | Evolutionary intelligence Vol. 15; no. 2; pp. 989 - 1006 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1864-5909 1864-5917 |
| DOI | 10.1007/s12065-019-00268-9 |
Cover
| Abstract | Ultrasound examination is one of the most convenient and appropriate processes used for the diagnosis of tumors that make use of ultrasound images. Ultrasound imaging is a noninvasive modality utilized commonly for the detection of breast cancer, which is a common and dangerous cancer found in women. This paper proposes an approach for the detection of breast cancer using ultrasound images using MKF-cuckoo search (MKF-CS) algorithm and hybrid based neural (H-BN) classifier. In pre-processing, the input images to be diagnosed are pre-processed by ROI extraction using a novel algorithm, four way search. The pre-processed image is allowed to perform segmentation using MKF-CS algorithm. The key features, such as mean, variance, standard deviation, and so on, are extracted in feature extraction and are fed to the proposed H-BN classifier. Based on the training data, H-BN classifier classifies the data into benign or malignant tumor classes, for the detection of breast cancer. To evaluate the performance of the proposed MKFCS-HBN approach, three metrics, such as accuracy, sensitivity, and specificity, are utilized. The experimental results show that MKFCS-HBN could attain the maximum performance with an accuracy of 0.8889, the sensitivity of 1, and specificity of 0.85 and thus, prove its effectiveness. |
|---|---|
| AbstractList | Ultrasound examination is one of the most convenient and appropriate processes used for the diagnosis of tumors that make use of ultrasound images. Ultrasound imaging is a noninvasive modality utilized commonly for the detection of breast cancer, which is a common and dangerous cancer found in women. This paper proposes an approach for the detection of breast cancer using ultrasound images using MKF-cuckoo search (MKF-CS) algorithm and hybrid based neural (H-BN) classifier. In pre-processing, the input images to be diagnosed are pre-processed by ROI extraction using a novel algorithm, four way search. The pre-processed image is allowed to perform segmentation using MKF-CS algorithm. The key features, such as mean, variance, standard deviation, and so on, are extracted in feature extraction and are fed to the proposed H-BN classifier. Based on the training data, H-BN classifier classifies the data into benign or malignant tumor classes, for the detection of breast cancer. To evaluate the performance of the proposed MKFCS-HBN approach, three metrics, such as accuracy, sensitivity, and specificity, are utilized. The experimental results show that MKFCS-HBN could attain the maximum performance with an accuracy of 0.8889, the sensitivity of 1, and specificity of 0.85 and thus, prove its effectiveness. |
| Author | Thomas, Bindu A. Michahial, Stafford |
| Author_xml | – sequence: 1 givenname: Stafford surname: Michahial fullname: Michahial, Stafford email: michahial@gmail.com organization: Department of EIE, GSSSIETW – sequence: 2 givenname: Bindu A. surname: Thomas fullname: Thomas, Bindu A. organization: Department of ECE, VVIET |
| BookMark | eNp9kE1PwzAMhiM0JLbBH-AUiXPBSdu0PU4TX9IkLnCO0iTtMrqkJO1hB_47GUUgcdjJlu3Hr_0u0Mw6qxG6JnBLAIq7QCiwPAFSJQCUlUl1huakZFmSV6SY_eZQXaBFCDsARqHI5uhz1ffdwdgWy1G-O4eDFl5ucS2CVlh0rfNm2O6xsApvD7U36qdl9ehFh2UnQjCN0R43zuPaaxEGLIWVsaL0oOVgnMVjOEqM3eBFcGPcZfai1eESnTeiC_rqJy7R28P96_op2bw8Pq9Xm0TSNKsSShiRNakYEYVsCpWXijWaqlRlIKCsCmACclaTLE2VzuocJCiRKiYpVQWT6RLdTHt77z5GHQa-c6O3UZJTVmRAU5JncYpOU9K7ELxueO_jnf7ACfCjzXyymUeb-bfNvIpQ-Q-SZhDHp-OvpjuNphMaoo5ttf-76gT1Ba_Klc4 |
| CitedBy_id | crossref_primary_10_1007_s12065_020_00482_w crossref_primary_10_1002_cbf_4054 crossref_primary_10_1007_s11042_023_14545_4 |
| Cites_doi | 10.1109/JSTSP.2008.2011160 10.1016/j.engappai.2016.12.019 10.1016/S0301-5629(02)00788-3 10.1016/j.bspc.2013.06.011 10.1016/j.patcog.2009.05.012 10.1007/s00330-010-1844-1 10.1118/1.596804 10.1118/1.1485995 10.1016/j.soard.2017.12.009 10.1109/TMI.2012.2206398 10.1016/j.jpba.2016.06.001 10.17148/IJARCCE.2016.5742 10.1007/s10278-012-9499-x 10.1016/j.ultrasmedbio.2016.07.012 10.1016/j.ultrasmedbio.2014.03.005 10.1016/j.eswa.2016.09.006 10.1038/ncomms11327 10.1109/SAMI.2008.4469170 10.1016/j.procs.2015.02.091 10.1109/WISP.2005.1531659 10.1016/j.aasri.2013.10.037 10.1117/12.811208 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s12065-019-00268-9 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1864-5917 |
| EndPage | 1006 |
| ExternalDocumentID | 10_1007_s12065_019_00268_9 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 06D 0R~ 0VY 1N0 203 29G 29~ 2JN 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 5GY 5VS 67Z 6NX 875 8TC 8UJ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PT4 QOS R89 RLLFE ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JQ2 |
| ID | FETCH-LOGICAL-c2349-2161cb1961a7cf7d58d6fe2d3d40a089706a056b1433de4b50c0da3d6c22d76c3 |
| IEDL.DBID | AGYKE |
| ISSN | 1864-5909 |
| IngestDate | Thu Sep 18 00:00:44 EDT 2025 Wed Oct 01 04:42:23 EDT 2025 Thu Apr 24 22:54:56 EDT 2025 Fri Feb 21 02:49:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | ROI extraction Clustering Ultrasound imaging Multiple kernel-based fuzzy C-means (MKFCM) Classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2349-2161cb1961a7cf7d58d6fe2d3d40a089706a056b1433de4b50c0da3d6c22d76c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2674023154 |
| PQPubID | 2043920 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2674023154 crossref_primary_10_1007_s12065_019_00268_9 crossref_citationtrail_10_1007_s12065_019_00268_9 springer_journals_10_1007_s12065_019_00268_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220600 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 6 year: 2022 text: 20220600 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Evolutionary intelligence |
| PublicationTitleAbbrev | Evol. Intel |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Zhang, Wu, Lu, Wang, Phillips, Wang (CR24) 2016; 92 Pons, Martí, Ganau, Sentís, Martí (CR5) 2014; 40 Cheng, Shan, Ju, Guo, Zhang (CR11) 2010; 43 Gali, Demjan, Vörös, Thiering, Cannuccia, Marini (CR9) 2016; 7 Singh, Verma, Thoke (CR1) 2015; 116 CR18 Cheng, Shan, Ju, Guo, Zhang (CR15) 2010; 43 CR10 CR32 Gómez, Pereira, Infantosi (CR8) 2012; 31 Jianrui Ding, Cheng, Liu, Zhang (CR16) 2012; 25 CR31 CR30 Yadav (CR28) 2014; 3 Chang, Wen-Jie, Moon, Chen (CR25) 2003; 29 Gomathi, Karlekar (CR17) 2018; 31 Chander, Vijaya, Dhyani (CR20) 2016; 5 Al-Shammaa, Mohamed (CR26) 2012; 46 Singh, Verma, Thoke (CR6) 2016; 66 Kelly, Dean, Lee, Comulada (CR7) 2010; 20 CR2 Zhang, Wang, Liu, Yang (CR23) 2016; 8 Ferrone, Carlucci, Palumbo, Carlucci (CR4) 2016; 128 Hou, Niu, Huang, Gao (CR21) 2016; 42 CR29 Yadav (CR27) 2014; 2 Goldberg, Manduca, Ewert, Gisvold, Greenleaf (CR19) 1992; 19 Drukker, Giger, Horsch, Kupinski, Vyborny (CR13) 2002; 29 Abdel-Nassera, Melendezb, Morenoa, Omerc, Puiga (CR22) 2017; 59 Zhou, Shib, Zhu, Cai, Wang (CR12) 2013; 8 Lee, Liu, Hung, Lei, Wang, Yang (CR14) 2009; 3 Sista, Abruzzese, Clementi, Guadagni, Montana, Carandina (CR3) 2018; 14 268_CR30 F Sista (268_CR3) 2018; 14 268_CR2 K Kelly (268_CR7) 2010; 20 V Ferrone (268_CR4) 2016; 128 A Gali (268_CR9) 2016; 7 268_CR10 S Zhou (268_CR12) 2013; 8 268_CR32 268_CR31 S Chander (268_CR20) 2016; 5 W Gómez (268_CR8) 2012; 31 268_CR29 Y Zhang (268_CR24) 2016; 92 K Drukker (268_CR13) 2002; 29 P Yadav (268_CR27) 2014; 2 M Abdel-Nassera (268_CR22) 2017; 59 HD Cheng (268_CR15) 2010; 43 Y-D Zhang (268_CR23) 2016; 8 H-W Lee (268_CR14) 2009; 3 X-Y Hou (268_CR21) 2016; 42 N Gomathi (268_CR17) 2018; 31 G Pons (268_CR5) 2014; 40 AAM Al-Shammaa (268_CR26) 2012; 46 BK Singh (268_CR6) 2016; 66 BK Singh (268_CR1) 2015; 116 P Yadav (268_CR28) 2014; 3 268_CR18 HD Cheng (268_CR11) 2010; 43 HD Jianrui Ding (268_CR16) 2012; 25 V Goldberg (268_CR19) 1992; 19 R-F Chang (268_CR25) 2003; 29 |
| References_xml | – volume: 3 start-page: 1932 issue: 1 year: 2009 end-page: 4553 ident: CR14 article-title: Breast tumor classification of ultrasound images using wavelet-based channel energy and ImageJ publication-title: IEEE J Sel Top Signal Process doi: 10.1109/JSTSP.2008.2011160 – volume: 92 start-page: 1 issue: 9 year: 2016 end-page: 13 ident: CR24 article-title: Smart detection on abnormal breasts in digital mammography based on contrast-limited adaptive histogram equalization and chaotic adaptive real-coded biogeography-based optimization publication-title: Int Trans Soc Model Simul – ident: CR18 – volume: 59 start-page: 84 year: 2017 end-page: 92 ident: CR22 article-title: Breast tumor classification in ultrasound images using texture analysis and super-resolution methods publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2016.12.019 – volume: 29 start-page: 679 issue: 5 year: 2003 end-page: 686 ident: CR25 article-title: Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis publication-title: Ultrasound Med Biol doi: 10.1016/S0301-5629(02)00788-3 – ident: CR2 – volume: 8 start-page: 688 issue: 6 year: 2013 end-page: 696 ident: CR12 article-title: Shearlet-based texture feature extraction for classification of breast tumor in ultrasound image publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2013.06.011 – ident: CR30 – ident: CR10 – volume: 43 start-page: 299 issue: 1 year: 2010 end-page: 317 ident: CR15 article-title: Automated breast cancer detection and classification using ultrasound images: a survey publication-title: Pattern Recognit doi: 10.1016/j.patcog.2009.05.012 – volume: 20 start-page: 2557 issue: 11 year: 2010 end-page: 2564 ident: CR7 article-title: Breast cancer detection: Radiologists’ performance using mammography with and without automated whole-breast ultrasound publication-title: Eur Radiol doi: 10.1007/s00330-010-1844-1 – volume: 43 start-page: 299 year: 2010 end-page: 317 ident: CR11 article-title: Automated breast cancer detection and classification using ultrasound images: a survey publication-title: Pattern Recognit doi: 10.1016/j.patcog.2009.05.012 – ident: CR29 – volume: 116 start-page: 11 issue: 19 year: 2015 end-page: 15 ident: CR1 article-title: Investigations on impact of feature normalization techniques on classifier’s performance in breast tumor classification publication-title: Int J Comput Appl – volume: 19 start-page: 1475 year: 1992 end-page: 1481 ident: CR19 article-title: Improvement in specificity of ultrasonography for diagnosis of breast tumors by means of artificial intelligence publication-title: Med Phys doi: 10.1118/1.596804 – volume: 29 start-page: 1438 issue: 7 year: 2002 end-page: 1446 ident: CR13 article-title: Computerized lesion detection on breast ultrasound publication-title: Med Phys doi: 10.1118/1.1485995 – volume: 14 start-page: 284 issue: 3 year: 2018 end-page: 290 ident: CR3 article-title: Resolution of type 2 diabetes after sleeve gastrectomy: a 2-step hypothesis publication-title: Surg Obes Relat Dis doi: 10.1016/j.soard.2017.12.009 – volume: 31 start-page: 1 issue: 12 year: 2018 end-page: 18 ident: CR17 article-title: OW-SVM: ontology and whale optimization-based support vector machine for privacy-preserved medical data classification in cloud publication-title: Int J Commun Syst – volume: 31 start-page: 1889 issue: 10 year: 2012 end-page: 1899 ident: CR8 article-title: Analysis of co-occurrence texture statistics as a function of gray-level quantization for classifying breast ultrasound publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2012.2206398 – volume: 3 start-page: 1407 issue: 12 year: 2014 end-page: 1411 ident: CR28 article-title: Adaptive firefly optimization on reducing high dimensional weighted word affinity graph publication-title: Int J Adv Comput Technol – volume: 128 start-page: 313 year: 2016 end-page: 321 ident: CR4 article-title: Development and validation of a MEPS-UHPLC-PDA method for determination of ulifloxacin in human plasma and urine of patients with peripheral arterial disease publication-title: J Pharm Biomed Anal doi: 10.1016/j.jpba.2016.06.001 – volume: 8 start-page: 1 issue: 2 year: 2016 end-page: 11 ident: CR23 article-title: Computer-aided diagnosis of abnormal breasts in mammogram images by weighted-type fractional Fourier transform publication-title: Adv Mech Eng – volume: 5 start-page: 213 issue: 7 year: 2016 end-page: 216 ident: CR20 article-title: MKF-firefly: hybridization of firefly and multiple kernel-based fuzzy C-means algorithm publication-title: Int J Adv Res Comput Commun Eng doi: 10.17148/IJARCCE.2016.5742 – ident: CR31 – volume: 25 start-page: 620 issue: 5 year: 2012 end-page: 627 ident: CR16 article-title: Breast ultrasound image classification based on multiple-instance learning publication-title: J Digit Imaging doi: 10.1007/s10278-012-9499-x – volume: 42 start-page: 2616 issue: 11 year: 2016 end-page: 2621 ident: CR21 article-title: Correlation of breast ultrasound classifications with breast cancer in Chinese women publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2016.07.012 – volume: 40 start-page: 1 issue: 9 year: 2014 end-page: 13 ident: CR5 article-title: Computerized detection of breast lesions using deformable part models in ultrasound images publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2014.03.005 – volume: 66 start-page: 114 year: 2016 end-page: 123 ident: CR6 article-title: Fuzzy cluster based neural network classifier for classifying breast tumors in ultrasound images publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.09.006 – volume: 7 start-page: 11327 year: 2016 end-page: 11335 ident: CR9 article-title: Electron–vibration coupling induced renormalization in the photoemission spectrum of diamondoids publication-title: Nat Commun doi: 10.1038/ncomms11327 – ident: CR32 – volume: 2 start-page: 1058 issue: 6 year: 2014 end-page: 1064 ident: CR27 article-title: Document-document similarity matrix and Naive-Bayes classification to web information retrieval publication-title: Int J Eng Res Gen Sci – volume: 46 start-page: 7 issue: 18 year: 2012 end-page: 13 ident: CR26 article-title: Extraction of connected components Skin pemphigus diseases image edge detection by Morphological operations publication-title: Int J Comput Appl (0975–8887) – ident: 268_CR32 – volume: 5 start-page: 213 issue: 7 year: 2016 ident: 268_CR20 publication-title: Int J Adv Res Comput Commun Eng doi: 10.17148/IJARCCE.2016.5742 – volume: 42 start-page: 2616 issue: 11 year: 2016 ident: 268_CR21 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2016.07.012 – ident: 268_CR30 doi: 10.1109/SAMI.2008.4469170 – ident: 268_CR10 doi: 10.1016/j.procs.2015.02.091 – volume: 19 start-page: 1475 year: 1992 ident: 268_CR19 publication-title: Med Phys doi: 10.1118/1.596804 – volume: 3 start-page: 1932 issue: 1 year: 2009 ident: 268_CR14 publication-title: IEEE J Sel Top Signal Process doi: 10.1109/JSTSP.2008.2011160 – volume: 43 start-page: 299 year: 2010 ident: 268_CR11 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2009.05.012 – ident: 268_CR18 doi: 10.1109/WISP.2005.1531659 – volume: 8 start-page: 1 issue: 2 year: 2016 ident: 268_CR23 publication-title: Adv Mech Eng – volume: 128 start-page: 313 year: 2016 ident: 268_CR4 publication-title: J Pharm Biomed Anal doi: 10.1016/j.jpba.2016.06.001 – volume: 20 start-page: 2557 issue: 11 year: 2010 ident: 268_CR7 publication-title: Eur Radiol doi: 10.1007/s00330-010-1844-1 – ident: 268_CR29 doi: 10.1016/j.aasri.2013.10.037 – volume: 31 start-page: 1889 issue: 10 year: 2012 ident: 268_CR8 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2012.2206398 – volume: 116 start-page: 11 issue: 19 year: 2015 ident: 268_CR1 publication-title: Int J Comput Appl – volume: 43 start-page: 299 issue: 1 year: 2010 ident: 268_CR15 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2009.05.012 – volume: 59 start-page: 84 year: 2017 ident: 268_CR22 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2016.12.019 – volume: 92 start-page: 1 issue: 9 year: 2016 ident: 268_CR24 publication-title: Int Trans Soc Model Simul – volume: 29 start-page: 679 issue: 5 year: 2003 ident: 268_CR25 publication-title: Ultrasound Med Biol doi: 10.1016/S0301-5629(02)00788-3 – volume: 7 start-page: 11327 year: 2016 ident: 268_CR9 publication-title: Nat Commun doi: 10.1038/ncomms11327 – volume: 31 start-page: 1 issue: 12 year: 2018 ident: 268_CR17 publication-title: Int J Commun Syst – volume: 2 start-page: 1058 issue: 6 year: 2014 ident: 268_CR27 publication-title: Int J Eng Res Gen Sci – volume: 25 start-page: 620 issue: 5 year: 2012 ident: 268_CR16 publication-title: J Digit Imaging doi: 10.1007/s10278-012-9499-x – volume: 3 start-page: 1407 issue: 12 year: 2014 ident: 268_CR28 publication-title: Int J Adv Comput Technol – volume: 66 start-page: 114 year: 2016 ident: 268_CR6 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.09.006 – volume: 14 start-page: 284 issue: 3 year: 2018 ident: 268_CR3 publication-title: Surg Obes Relat Dis doi: 10.1016/j.soard.2017.12.009 – volume: 40 start-page: 1 issue: 9 year: 2014 ident: 268_CR5 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2014.03.005 – volume: 29 start-page: 1438 issue: 7 year: 2002 ident: 268_CR13 publication-title: Med Phys doi: 10.1118/1.1485995 – ident: 268_CR31 – ident: 268_CR2 doi: 10.1117/12.811208 – volume: 8 start-page: 688 issue: 6 year: 2013 ident: 268_CR12 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2013.06.011 – volume: 46 start-page: 7 issue: 18 year: 2012 ident: 268_CR26 publication-title: Int J Comput Appl (0975–8887) |
| SSID | ssj0062074 |
| Score | 2.2274823 |
| Snippet | Ultrasound examination is one of the most convenient and appropriate processes used for the diagnosis of tumors that make use of ultrasound images. Ultrasound... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 989 |
| SubjectTerms | Algorithms Applications of Mathematics Artificial Intelligence Bioinformatics Breast cancer Classifiers Control Engineering Feature extraction Image segmentation Mathematical and Computational Engineering Mechatronics Medical imaging Performance evaluation Robotics Search algorithms Sensitivity Special Issue Statistical Physics and Dynamical Systems Tumors Ultrasonic imaging |
| Title | Applying cuckoo search based algorithm and hybrid based neural classifier for breast cancer detection using ultrasound images |
| URI | https://link.springer.com/article/10.1007/s12065-019-00268-9 https://www.proquest.com/docview/2674023154 |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1864-5917 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: AFBBN dateStart: 20080301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1864-5917 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1864-5917 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062074 issn: 1864-5909 databaseCode: U2A dateStart: 20080301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB2V5QKHQimI5Us-cKNGjuN4N8cVgqJW7YmV6Cly_AErlmy1mz2AxH9nJuuwBbWVOMdxEnvG7zmeeQNwnARtgpOOW4QTjhDgeR9pBtfG9nshCNNrFPh-_NSXQ_XtOruOSWGzNtq9PZJsVuplsptEuMStb85p44BuugKrjd5WB1YHX399P29XYC1Fo76c9LXiWS7ymCzz915eA9KSZb45GG3w5mIDhu2bLsJM7k7ndXlqH9-IOL73UzbhYySgbLCwmE_wwVdbsNEWd2DR17dg_Q-lws_wRGyVMqKYndu7yYQtPIQRCDpmxjeT6ai-vWemcuz2gbLA4iXSy8THWSLpo4AYzJAls5JC4WtmyeSmzPm6CQirGEXh37D5uJ6aGdV7YqN7XO9m2zC8OL86u-SxcgO3MlU5l8gjbYnOnRiSPXJZ3-ngpUudEkagMQhtkHmVSNZS51WZCSucSZ22UrqetukOdKpJ5XeBIcg6H5CXKRdUqq1JvKJ8WZxbH7wVXUja6StslDWn6hrjYinITKNd4GgXzWgXeRdOXu75vRD1-G_rg9Yqiujgs0LqniLpvEx14Us7ycvL_-5t733N92FNUsJF89_nADr1dO4PkQbV5VG0-iNYGcrBM1aO_qQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH7ix2HjAKwboqyAD7sNS47juM0RTUMdv06t1Fvk-AdUtClq0wOH_e97L00oQ2wSZzuOlM_P3-f4vc8A36KgTXDScYt0wpECPO-hzODa2F43BGG6lQPfza3uD9XlKBnVRWGLJtu9OZKsVup1sZtEusStb8pp44BhugnbZGBFjvlDed6sv1qKyns56mnFk1SkdanM22P8TUdrjfnqWLRim4t92K1lIjtf4foJNnzRgr3mCgZWR2QLdl74CX6G36QpqW6J2aV9mM3Yah4zoirHzORuNh-X91NmCsfun6hWq24iV0t8nSUpPQ7IlAy1LMspYb1klibGnDlfVmlbBaNc-Tu2nJRzs6Bbmdh4iqvS4gsML34OfvR5fb8CtzJWKZeo9myOIRgZMidySc_p4KWLnRJGIGRCG9RHOUqq2HmVJ8IKZ2KnrZSuq218AFvFrPCHwJAKnQ-onpQLKtbWRF5RVSti4IO3og1R85kzW5uP0x0Yk2xtm0zQZAhNVkGTpW34_vzM48p647-9Ow16WR2Gi0zqriKDu0S14axBdN3879GO3tf9FD70BzfX2fWv26uv8FFSiUT1p6YDW-V86Y9RuJT5STVP_wCEoeOh |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xkBB74LUgyrLgA7fFwnEctzmiXSre4kAlbpHjB1SUFLXpYQ_8d2bSZAurXSTOdhwpM-P5HM_3DcBBFLQJTjpuMZ1wTAGedxBmcG1spx2CMO1Kge_qWp_21PldcveGxV9VuzdXklNOA6k0FeXRswtHM-KbxNSJx-CU0yECQ3YeFhUJJaBH9-RxsxdrKSod5qijFU9Skda0mX-v8T41zfDmX1ekVebprsFKDRnZ8dTG6zDniw1YbdoxsDo6N-DLG23Br_BC-JI4TMxO7ONwyKY-zShtOWYG98NRv3x4YqZw7OE38bbqIVK4xNdZgtX9gFmTIa5lORWvl8ySk4yY82VVwlUwqpu_Z5NBOTJj6tDE-k-4Q403odc9uf15yuteC9zKWKVcIvKzOYZjZEioyCUdp4OXLnZKGIHmE9ogVsoRXsXOqzwRVjgTO22ldG1t4y1YKIaF3waGadH5gEhKuaBibU3kFTFc0QY-eCtaEDWfObO1EDn1wxhkMwllMk2Gpskq02RpC378eeZ5KsPx4ezdxnpZHZLjTOq2IrG7RLXgsLHobPj_q-18bvo-LN386maXZ9cX32BZElui-mmzCwvlaOK_I4Yp873KTV8Bsg_n3Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+cuckoo+search+based+algorithm+and+hybrid+based+neural+classifier+for+breast+cancer+detection+using+ultrasound+images&rft.jtitle=Evolutionary+intelligence&rft.au=Michahial%2C+Stafford&rft.au=Thomas%2C+Bindu+A.&rft.date=2022-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1864-5909&rft.eissn=1864-5917&rft.volume=15&rft.issue=2&rft.spage=989&rft.epage=1006&rft_id=info:doi/10.1007%2Fs12065-019-00268-9&rft.externalDocID=10_1007_s12065_019_00268_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5909&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5909&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5909&client=summon |