Proficient job scheduling in cloud computation using an optimized machine learning strategy
In contemporary technology, cloud computing is applicable in many fields like biomedical systems, transactions, data mining, etc. In that, cloud computing job scheduling is a problematic task. Consequently, different operating systems and virtual machines have validated the user’s requirements and n...
Saved in:
| Published in | International journal of information technology (Singapore. Online) Vol. 15; no. 5; pp. 2409 - 2421 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Nature Singapore
01.06.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2511-2104 2511-2112 |
| DOI | 10.1007/s41870-023-01278-8 |
Cover
| Abstract | In contemporary technology, cloud computing is applicable in many fields like biomedical systems, transactions, data mining, etc. In that, cloud computing job scheduling is a problematic task. Consequently, different operating systems and virtual machines have validated the user’s requirements and necessitated effective scheduling techniques in the cloud environment. Moreover, resource allocation and job scheduling are significant features in cloud computing. Nevertheless, the main drawback of the cloud computing model is the higher computation time that causes the deadline of all work. Previously, several approaches were proposed to diminish the computation time, but those techniques only apply to a few tasks. Therefore the novel Whale-based Convolution Neural Framework (WbCNF) strategy can effectively improve the task allocation system and reduce the job execution time. Moreover, the developed approach is implemented in the Python framework, and results show that the computation time has reduced the quantity of the tasks taken for the experimentation. Consequently, to verify the proposed technique’s efficiency, the proposed method is compared with conventional techniques in terms of performance metrices; the outcomes prove the enhancement of the cloud computing system. |
|---|---|
| AbstractList | In contemporary technology, cloud computing is applicable in many fields like biomedical systems, transactions, data mining, etc. In that, cloud computing job scheduling is a problematic task. Consequently, different operating systems and virtual machines have validated the user’s requirements and necessitated effective scheduling techniques in the cloud environment. Moreover, resource allocation and job scheduling are significant features in cloud computing. Nevertheless, the main drawback of the cloud computing model is the higher computation time that causes the deadline of all work. Previously, several approaches were proposed to diminish the computation time, but those techniques only apply to a few tasks. Therefore the novel Whale-based Convolution Neural Framework (WbCNF) strategy can effectively improve the task allocation system and reduce the job execution time. Moreover, the developed approach is implemented in the Python framework, and results show that the computation time has reduced the quantity of the tasks taken for the experimentation. Consequently, to verify the proposed technique’s efficiency, the proposed method is compared with conventional techniques in terms of performance metrices; the outcomes prove the enhancement of the cloud computing system. |
| Author | Yadav, N. Sudhakar Neelakantan, P. |
| Author_xml | – sequence: 1 givenname: P. orcidid: 0000-0001-6800-0531 surname: Neelakantan fullname: Neelakantan, P. email: pneelakantanme@gmail.com organization: Computer Science and Engineering Department, VNR Vignana Jyothi Institute of Engineering and Technology – sequence: 2 givenname: N. Sudhakar surname: Yadav fullname: Yadav, N. Sudhakar organization: Department of Information Technology, VNR Vignana Jyothi Institute of Engineering and Technology |
| BookMark | eNp9kDtPwzAUhS1UJErpH2CyxBzwtZ3GGVHFS6oEQzcGy3ac1lVqBzsZyq8nJQgkhk73Sud893Eu0cQHbxG6BnILhBR3iYMoSEYoywjQQmTiDE1pDpBRADr57Qm_QPOUnCYM6ILlBUzR-1sMtTPO-g7vgsbJbG3VN85vsPPYNKGvsAn7tu9U54LHfTpKyuPQdm7vPm2F98psnbe4sSr6o5q6qDq7OVyh81o1yc5_6gytHx_Wy-ds9fr0srxfZYYyLjKtS1HWJeGkqIg2lFdlZQcBcl1pZZUty9qq0hSaMwFKC64LUQPnBWhRczZDN-PYNoaP3qZO7kIf_bBRMprnFFguFoNLjC4TQ0rR1tK48afhWtdIIPIYphzDlEOY8jtMKQaU_kPb6PYqHk5DbITSYPYbG_-uOkF9AdsLim0 |
| CitedBy_id | crossref_primary_10_1007_s41870_024_01732_1 crossref_primary_10_1007_s10586_024_04847_z crossref_primary_10_1007_s41870_024_01936_5 crossref_primary_10_1007_s41870_023_01531_0 crossref_primary_10_1007_s41870_023_01481_7 crossref_primary_10_1007_s41870_024_01800_6 crossref_primary_10_1007_s41870_025_02453_9 crossref_primary_10_1007_s11277_024_11465_w crossref_primary_10_1007_s41870_024_01850_w |
| Cites_doi | 10.1016/j.techfore.2021.120591 10.1007/978-3-030-45453-1_15 10.1186/s13677-020-00174-x 10.1007/s41870-022-00936-7 10.1016/j.epsr.2021.107428 10.1016/j.eij.2017.07.001 10.1007/s41870-021-00753-4 10.1016/j.ympev.2021.107115 10.1016/j.jnca.2019.102518 10.1109/ACCESS.2020.3033557 10.1007/s00521-020-05559-2 10.1016/j.tourman.2019.104021 10.1007/s11227-020-03213-1 10.1016/j.cosrev.2021.100366 10.1007/s41870-019-00416-5 10.1007/s41870-022-00926-9 10.1007/s41870-022-01045-1 10.1109/TCC.2020.3021084 10.1016/j.compeleceng.2022.107688 10.1007/s42452-019-1758-8 10.1016/j.ijdrr.2020.101642 10.1016/j.comcom.2019.12.050 10.1007/s11227-021-03915-0 10.1016/j.comnet.2021.108270 10.1007/s10586-020-03054-w 10.1016/j.jhydrol.2019.124379 10.1007/s11227-020-03601-7 10.1016/j.simpat.2019.102038 10.1007/s10586-021-03436-8 10.1016/j.cie.2022.108037 10.1007/978-3-030-57024-8_21 10.1007/s11227-021-04035-5 10.1007/s11227-019-03141-9 10.1016/j.matpr.2020.10.126 10.1007/978-981-15-5341-7_116 10.1007/978-981-15-8530-2_63 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s41870-023-01278-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2511-2112 |
| EndPage | 2421 |
| ExternalDocumentID | 10_1007_s41870_023_01278_8 |
| GroupedDBID | -EM 0R~ 406 AACDK AAHNG AAIAL AAJBT AANZL AASML AATNV AATVU AAUYE ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFQWF AGDGC AGMZJ AGQEE AGRTI AHSBF AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW Z7Z Z81 Z83 Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA BGLVJ CCPQU CITATION K7- PHGZM PHGZT PQGLB 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG ARAPS AZQEC BENPR DWQXO GNUQQ HCIFZ JQ2 L7M L~C L~D M0N P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c2348-bb989f90407d0bc24d9de34815bdbaeae99fea9c7b4381ab84b78f14471b8f43 |
| IEDL.DBID | BENPR |
| ISSN | 2511-2104 |
| IngestDate | Tue Sep 30 03:22:04 EDT 2025 Thu Apr 24 23:10:05 EDT 2025 Wed Oct 01 02:38:20 EDT 2025 Fri Feb 21 02:42:41 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Makespan time Cloud computing Whale based convolution neural framework Deadline Resource allocation Scheduling time Data mining |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2348-bb989f90407d0bc24d9de34815bdbaeae99fea9c7b4381ab84b78f14471b8f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6800-0531 |
| PQID | 3255213586 |
| PQPubID | 2034493 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3255213586 crossref_citationtrail_10_1007_s41870_023_01278_8 crossref_primary_10_1007_s41870_023_01278_8 springer_journals_10_1007_s41870_023_01278_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230600 2023-06-00 20230601 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Heidelberg |
| PublicationSubtitle | An Official Journal of Bharati Vidyapeeth's Institute of Computer Applications and Management |
| PublicationTitle | International journal of information technology (Singapore. Online) |
| PublicationTitleAbbrev | Int. j. inf. tecnol |
| PublicationYear | 2023 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | Muheidat (CR12) 2021 Neelima, Reddy (CR32) 2020; 23 CR18 Velpula, Pamula (CR34) 2022; 168 Sharma, Kumar, Samriya (CR4) 2022; 14 Hua, Hao, Qin (CR15) 2020 CR14 Cheng, Huang, Tanpure, Sawalani, Cheng, Liu (CR36) 2022; 25 Kaur, Laxmi, Balkrishan (CR5) 2022; 14 Elsherbiny, Eldaydamony, Alrahmawy, Reya (CR30) 2018; 19 Yan, Huang, Gupta, Gupta, Liu, Li, Cheng (CR37) 2022; 99 Bybee, Kalkman, Erickson (CR19) 2021; 160 Lin, Cui, Peng, Li, He (CR29) 2020; 8 Tabrizchi, Rafsanjani (CR9) 2020; 76 Negi, Rauthan, Vaisla, Panwar (CR22) 2021; 77 Kiani, Khayyambashi (CR20) 2021; 196 Tang, Yu, Li (CR27) 2020 Godhrawala, Sridaran (CR1) 2022 CR8 Bansal, Malik (CR33) 2020; 28 Song (CR2) 2022 Ma, Kirilenko, Stepchenkova (CR11) 2020; 77 Aliyu, Murali, Zhang, Gital, Boukari, Huang, Yakubu (CR17) 2021; 166 Li, Tang, Ma, Yang, Luo (CR26) 2020; 152 Pallavi, Jayarekha (CR3) 2022; 14 Gomez-Rodriguez, Sosa-Sosa, Carretero, Gonzalez (CR7) 2020; 76 Chen (CR10) 2020; 9 Bui, Nguyen, Nguyen, Pham, Nguyen, Pham (CR23) 2020; 581 Lavanya, Shanthi, Saravanan (CR31) 2020; 151 Ghetas (CR16) 2021 Chen, Chen, Yang (CR35) 2022; 78 Abualigah, Alkhrabsheh (CR38) 2022; 78 Helali, Omri (CR21) 2021; 39 Joshi, Verma (CR24) 2021; 199 Zolfaghari, Sahafi, Rahmani, Rezaei (CR6) 2021; 30 Wilczyński, Kołodziej (CR25) 2020; 99 Khan, Gupta, Gupta (CR13) 2020; 47 Zain, Yousif (CR28) 2020; 2 1278_CR8 A Khan (1278_CR13) 2020; 47 J Lin (1278_CR29) 2020; 8 1278_CR18 Y-h Chen (1278_CR10) 2020; 9 R Chen (1278_CR35) 2022; 78 AM Zain (1278_CR28) 2020; 2 M Sharma (1278_CR4) 2022; 14 Ch Song (1278_CR2) 2022 H Godhrawala (1278_CR1) 2022 1278_CR14 M Kiani (1278_CR20) 2021; 196 C Li (1278_CR26) 2020; 152 S Tang (1278_CR27) 2020 M Lavanya (1278_CR31) 2020; 151 J Yan (1278_CR37) 2022; 99 M Ghetas (1278_CR16) 2021 F Cheng (1278_CR36) 2022; 25 SD Ma (1278_CR11) 2020; 77 R Zolfaghari (1278_CR6) 2021; 30 R Kaur (1278_CR5) 2022; 14 M Bansal (1278_CR33) 2020; 28 H Hua (1278_CR15) 2020 Q-T Bui (1278_CR23) 2020; 581 S Elsherbiny (1278_CR30) 2018; 19 P Velpula (1278_CR34) 2022; 168 P Neelima (1278_CR32) 2020; 23 A Wilczyński (1278_CR25) 2020; 99 S Negi (1278_CR22) 2021; 77 L Helali (1278_CR21) 2021; 39 L Abualigah (1278_CR38) 2022; 78 M Aliyu (1278_CR17) 2021; 166 GB Pallavi (1278_CR3) 2022; 14 H Tabrizchi (1278_CR9) 2020; 76 SM Bybee (1278_CR19) 2021; 160 F Muheidat (1278_CR12) 2021 MA Gomez-Rodriguez (1278_CR7) 2020; 76 PM Joshi (1278_CR24) 2021; 199 |
| References_xml | – ident: CR18 – volume: 166 start-page: 120591 year: 2021 ident: CR17 article-title: Management of cloud resources and social change in a multi-tier environment: a novel finite automata using ant colony optimization with spanning tree publication-title: Technol Forecast Soc Change doi: 10.1016/j.techfore.2021.120591 – start-page: 421 year: 2020 end-page: 437 ident: CR15 article-title: Internet thinking for layered energy infrastructure publication-title: Energy internet doi: 10.1007/978-3-030-45453-1_15 – ident: CR14 – volume: 9 start-page: 1 issue: 1 year: 2020 end-page: 12 ident: CR10 article-title: Intelligent algorithms for cold chain logistics distribution optimization based on big data cloud computing analysis publication-title: J. Cloud Comput. doi: 10.1186/s13677-020-00174-x – year: 2022 ident: CR2 article-title: A hybrid SEM and ANN approach to predict the individual cloud computing adoption based on the UTAUT2 publication-title: Int J Inf Technol doi: 10.1007/s41870-022-00936-7 – volume: 199 year: 2021 ident: CR24 article-title: Synchrophasor measurement applications and optimal PMU placement: a review publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2021.107428 – volume: 19 start-page: 33 issue: 1 year: 2018 end-page: 55 ident: CR30 article-title: An extended Intelligent Water Drops algorithm for workflow scheduling in cloud computing environment publication-title: Egypt Inform J doi: 10.1016/j.eij.2017.07.001 – volume: 14 start-page: 79 year: 2022 end-page: 93 ident: CR5 article-title: Performance evaluation of task scheduling algorithms in virtual cloud environment to minimize makespan publication-title: Int J Inf Tecnol doi: 10.1007/s41870-021-00753-4 – volume: 160 year: 2021 ident: CR19 article-title: Phylogeny and classification of Odonata using targeted genomics publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2021.107115 – volume: 152 start-page: 102518 year: 2020 ident: CR26 article-title: Load balance based workflow job scheduling algorithm in distributed cloud publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2019.102518 – volume: 8 start-page: 197863 year: 2020 end-page: 197874 ident: CR29 article-title: A two-stage framework for the multi-user multi-data center job scheduling and resource allocation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3033557 – year: 2021 ident: CR16 article-title: A multi-objective Monarch Butterfly Algorithm for virtual machine placement in cloud computing publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05559-2 – volume: 30 year: 2021 ident: CR6 article-title: Application of virtual machine consolidation in cloud computing systems publication-title: Sustain Comput Inform Syst – ident: CR8 – volume: 77 year: 2020 ident: CR11 article-title: Special interest tourism is not so special after all: Big data evidence from the 2017 Great American Solar Eclipse publication-title: Tour Manag doi: 10.1016/j.tourman.2019.104021 – volume: 76 start-page: 9493 issue: 12 year: 2020 end-page: 9532 ident: CR9 article-title: A survey on security challenges in cloud computing: issues, threats, and solutions publication-title: J Supercomput doi: 10.1007/s11227-020-03213-1 – volume: 39 year: 2021 ident: CR21 article-title: A survey of data center consolidation in cloud computing systems publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2021.100366 – volume: 14 start-page: 703 year: 2022 end-page: 711 ident: CR3 article-title: Secure and efficient multi-tenant database management system for cloud computing environment publication-title: Int J Inf Technol doi: 10.1007/s41870-019-00416-5 – year: 2022 ident: CR1 article-title: A dynamic Stackelberg game based multi-objective approach for effective resource allocation in cloud computing publication-title: Int J Inf Technol doi: 10.1007/s41870-022-00926-9 – volume: 14 start-page: 2951 year: 2022 end-page: 2961 ident: CR4 article-title: An optimistic approach for task scheduling in cloud computing publication-title: Int J Inf Technol doi: 10.1007/s41870-022-01045-1 – year: 2020 ident: CR27 article-title: Fairness-efficiency scheduling for cloud computing with soft fairness guarantees publication-title: IEEE Trans Cloud Comput doi: 10.1109/TCC.2020.3021084 – volume: 99 start-page: 107688 year: 2022 ident: CR37 article-title: Energy-aware systems for real-time job scheduling in cloud data centers: a deep reinforcement learning approach publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2022.107688 – volume: 2 start-page: 1 issue: 1 year: 2020 end-page: 12 ident: CR28 article-title: Chemical reaction optimization (CRO) for cloud job scheduling publication-title: SN Appl Sci doi: 10.1007/s42452-019-1758-8 – volume: 47 year: 2020 ident: CR13 article-title: Multi-hazard disaster studies: monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques publication-title: Int J Disaster Risk Reduct doi: 10.1016/j.ijdrr.2020.101642 – volume: 151 start-page: 183 year: 2020 end-page: 195 ident: CR31 article-title: Multi objective task scheduling algorithm based on SLA and processing time suitable for cloud environment publication-title: Comput Commun doi: 10.1016/j.comcom.2019.12.050 – volume: 78 start-page: 740 issue: 1 year: 2022 end-page: 765 ident: CR38 article-title: Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing publication-title: J Supercomput doi: 10.1007/s11227-021-03915-0 – volume: 196 start-page: 108270 year: 2021 ident: CR20 article-title: A network-aware and power-efficient virtual machine placement scheme in cloud datacenters based on chemical reaction optimization publication-title: Comput Netw doi: 10.1016/j.comnet.2021.108270 – volume: 23 start-page: 2891 issue: 4 year: 2020 end-page: 2899 ident: CR32 article-title: An efficient load balancing system using adaptive dragonfly algorithm in cloud computing publication-title: Cluster Comput doi: 10.1007/s10586-020-03054-w – volume: 581 start-page: 124379 year: 2020 ident: CR23 article-title: Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124379 – volume: 77 start-page: 8787 year: 2021 end-page: 8839 ident: CR22 article-title: CMODLB: an efficient load balancing approach in cloud computing environment publication-title: J Supercomput doi: 10.1007/s11227-020-03601-7 – volume: 99 year: 2020 ident: CR25 article-title: Modelling and simulation of security-aware task scheduling in cloud computing based on blockchain technology publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2019.102038 – volume: 25 start-page: 619 issue: 1 year: 2022 end-page: 631 ident: CR36 article-title: Cost-aware job scheduling for cloud instances using deep reinforcement learning publication-title: Clust Comput doi: 10.1007/s10586-021-03436-8 – volume: 168 year: 2022 ident: CR34 article-title: CEECP: CT-based enhanced e-clinical pathways in terms of processing time to enable big data analytics in healthcare along with cloud computing publication-title: Comput Ind Eng doi: 10.1016/j.cie.2022.108037 – start-page: 461 year: 2021 end-page: 483 ident: CR12 article-title: Mobile and cloud computing security publication-title: Machine intelligence and big data analytics for cybersecurity applications doi: 10.1007/978-3-030-57024-8_21 – volume: 78 start-page: 4550 issue: 3 year: 2022 end-page: 4573 ident: CR35 article-title: Using a task dependency job-scheduling method to make energy savings in a cloud computing environment publication-title: J Supercomput doi: 10.1007/s11227-021-04035-5 – volume: 76 start-page: 7047 year: 2020 end-page: 7080 ident: CR7 article-title: CloudBench: an integrated evaluation of VM placement algorithms in clouds publication-title: J Supercomput doi: 10.1007/s11227-019-03141-9 – volume: 28 year: 2020 ident: CR33 article-title: A multi-faceted optimization scheduling framework based on the particle swarm optimization algorithm in cloud computing publication-title: Sustain Comput Inform Syst – volume: 14 start-page: 703 year: 2022 ident: 1278_CR3 publication-title: Int J Inf Technol doi: 10.1007/s41870-019-00416-5 – volume: 2 start-page: 1 issue: 1 year: 2020 ident: 1278_CR28 publication-title: SN Appl Sci doi: 10.1007/s42452-019-1758-8 – volume: 78 start-page: 740 issue: 1 year: 2022 ident: 1278_CR38 publication-title: J Supercomput doi: 10.1007/s11227-021-03915-0 – volume: 14 start-page: 2951 year: 2022 ident: 1278_CR4 publication-title: Int J Inf Technol doi: 10.1007/s41870-022-01045-1 – volume: 160 year: 2021 ident: 1278_CR19 publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2021.107115 – year: 2021 ident: 1278_CR16 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05559-2 – volume: 76 start-page: 7047 year: 2020 ident: 1278_CR7 publication-title: J Supercomput doi: 10.1007/s11227-019-03141-9 – volume: 23 start-page: 2891 issue: 4 year: 2020 ident: 1278_CR32 publication-title: Cluster Comput doi: 10.1007/s10586-020-03054-w – start-page: 461 volume-title: Machine intelligence and big data analytics for cybersecurity applications year: 2021 ident: 1278_CR12 doi: 10.1007/978-3-030-57024-8_21 – volume: 166 start-page: 120591 year: 2021 ident: 1278_CR17 publication-title: Technol Forecast Soc Change doi: 10.1016/j.techfore.2021.120591 – volume: 152 start-page: 102518 year: 2020 ident: 1278_CR26 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2019.102518 – volume: 199 year: 2021 ident: 1278_CR24 publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2021.107428 – volume: 196 start-page: 108270 year: 2021 ident: 1278_CR20 publication-title: Comput Netw doi: 10.1016/j.comnet.2021.108270 – volume: 99 start-page: 107688 year: 2022 ident: 1278_CR37 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2022.107688 – ident: 1278_CR8 doi: 10.1016/j.matpr.2020.10.126 – year: 2022 ident: 1278_CR2 publication-title: Int J Inf Technol doi: 10.1007/s41870-022-00936-7 – ident: 1278_CR14 doi: 10.1007/978-981-15-5341-7_116 – volume: 78 start-page: 4550 issue: 3 year: 2022 ident: 1278_CR35 publication-title: J Supercomput doi: 10.1007/s11227-021-04035-5 – volume: 581 start-page: 124379 year: 2020 ident: 1278_CR23 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124379 – year: 2022 ident: 1278_CR1 publication-title: Int J Inf Technol doi: 10.1007/s41870-022-00926-9 – volume: 47 year: 2020 ident: 1278_CR13 publication-title: Int J Disaster Risk Reduct doi: 10.1016/j.ijdrr.2020.101642 – volume: 8 start-page: 197863 year: 2020 ident: 1278_CR29 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3033557 – volume: 14 start-page: 79 year: 2022 ident: 1278_CR5 publication-title: Int J Inf Tecnol doi: 10.1007/s41870-021-00753-4 – year: 2020 ident: 1278_CR27 publication-title: IEEE Trans Cloud Comput doi: 10.1109/TCC.2020.3021084 – volume: 39 year: 2021 ident: 1278_CR21 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2021.100366 – volume: 99 year: 2020 ident: 1278_CR25 publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2019.102038 – volume: 77 year: 2020 ident: 1278_CR11 publication-title: Tour Manag doi: 10.1016/j.tourman.2019.104021 – volume: 151 start-page: 183 year: 2020 ident: 1278_CR31 publication-title: Comput Commun doi: 10.1016/j.comcom.2019.12.050 – volume: 19 start-page: 33 issue: 1 year: 2018 ident: 1278_CR30 publication-title: Egypt Inform J doi: 10.1016/j.eij.2017.07.001 – volume: 30 year: 2021 ident: 1278_CR6 publication-title: Sustain Comput Inform Syst – volume: 9 start-page: 1 issue: 1 year: 2020 ident: 1278_CR10 publication-title: J. Cloud Comput. doi: 10.1186/s13677-020-00174-x – volume: 77 start-page: 8787 year: 2021 ident: 1278_CR22 publication-title: J Supercomput doi: 10.1007/s11227-020-03601-7 – volume: 168 year: 2022 ident: 1278_CR34 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2022.108037 – start-page: 421 volume-title: Energy internet year: 2020 ident: 1278_CR15 doi: 10.1007/978-3-030-45453-1_15 – ident: 1278_CR18 doi: 10.1007/978-981-15-8530-2_63 – volume: 28 year: 2020 ident: 1278_CR33 publication-title: Sustain Comput Inform Syst – volume: 25 start-page: 619 issue: 1 year: 2022 ident: 1278_CR36 publication-title: Clust Comput doi: 10.1007/s10586-021-03436-8 – volume: 76 start-page: 9493 issue: 12 year: 2020 ident: 1278_CR9 publication-title: J Supercomput doi: 10.1007/s11227-020-03213-1 |
| SSID | ssib031263571 ssj0002710285 |
| Score | 2.3064737 |
| Snippet | In contemporary technology, cloud computing is applicable in many fields like biomedical systems, transactions, data mining, etc. In that, cloud computing job... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2409 |
| SubjectTerms | Algorithms Artificial Intelligence Big Data Biomedical data Chemical research Cloud computing Computer Imaging Computer Science Data mining Deadlines Efficiency Energy consumption Energy resources Image Processing and Computer Vision Machine Learning Optimization Original Research Pattern Recognition and Graphics Resource allocation Scheduling Software Engineering Virtual environments Vision |
| Title | Proficient job scheduling in cloud computation using an optimized machine learning strategy |
| URI | https://link.springer.com/article/10.1007/s41870-023-01278-8 https://www.proquest.com/docview/3255213586 |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2511-2112 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002710285 issn: 2511-2104 databaseCode: AFBBN dateStart: 20170301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB1BcimHirZUpITIh95ai6zX2bUPCBFEiio1iqpUQuKw8teiRGGXrxzg1-NxvKQgwXV37cN47JlZz3sP4Hvp_UT3M0eZs4xyVmrqK1tOUTfMSG1LLhCN_Gecnf3jv88H5xswbrAw2FbZnInhoLa1wX_kB6nPfVmSDkR2dH1DUTUKb1cbCQ0VpRXsYaAY24Q2Q2asFrSHp-PJ38bD0gS5V2ICNA_Xbhhgsc8RU23qh_CIrAn4Op4I1GVh2HLEfLklXkavdUr66hY1BKfRNnyMWSU5XrnBJ9hw1WfY-o9r8AtcTFCdO8AfybzWxFe1PsogGJ3MKmIW9dISEyQewloRbIi_JKoitT9UrmaPzpKr0HjpSFSauCR3K2rbhx2Yjk6nJ2c0KitQw1IuqNZSyFL6DZzbvjaMW2kdQnIH2mrllJOydEqaXCMDmNKC61yUvvbKEy1Knn6FVlVXbhdIluuBf9ovU2M5Zh9CqdRajQBXlWWyA0ljsMJE1nEUv1gUz3zJwciFN3IRjFyIDvx4HnO94tx49-tusw5F3H93xdpbOvCzWZv167dn-_b-bHvwgQV3wN8wXWjd3y7dvs9K7nUPNsXoVw_ax6PhcNyLjvcEtN7eFQ |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEE91oYAPcAKLjeNN7EOFeLTa0nZVoUWqxMHyK1WrNilsK1T-G_-NGa_TBSR66zUPH8Zf7Jl4vu8DeNEgTtywilzEILgUjeNY2UpOvmFeu9BIRWzk3Uk1_iI_7Y_2l-BXz4Whtsp-TUwLdeg8_SN_U2LuK4pypKq3p984uUbR6WpvoWGztUJYTxJjmdixHS9-YAk3W9_6iPP9UojNjemHMc8uA9yLUirunFa60QjmOgydFzLoEImeOnLB2Wij1k202teO1LCsU9LVqsE6pC6camSJw96AFVlKjbXfyvuNyd7nHtBlQVIvOd86Sqd8tJ9TWyVl9hzLLZmJPInOJwtFNjCCOpwEVnfq781ykQH_c2ib9sLNu3AnJ7Hs3Rx192Aptvfh9h_Shg_g6x6ZgSe2JTvqHMMiGjc14r6zw5b54-48MJ8cJRI0GPXfHzDbsg7XsJPDnzGwk9TnGVk2tjhgs7mS7sVDmF5HiB_Bctu1cRVYVbsRXh02pQ-Skh1lbRmCIz6trSo9gKIPmPFZ5Jy8No7NpTxzCrLBIJsUZKMG8OryndO5xMeVT6_182Dy5z4zC3AO4HU_N4vb_x_t8dWjPYeb4-nujtnZmmw_gVsiQYP-AK3B8tn38_gUE6Iz9yzDjoG5ZqD_BuMQGN4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxRBEK3gmhg9EEUNK6h9wBN22Onpnek-GGLEFUQIB0xIPHSmvzYQmFlYiMF_5r-jqneGVRO5cZ2PPlS_6a6arvcewFpEnNhBEbgIXnApouVY2UpOvmFOWx-lIjby3n6x_V1-PRoeLcDvjgtDbZXdmpgWat84-ke-kWPuK7J8qIqN2LZFHGyNNifnnByk6KS1s9OYQWQ3XP_E8m36YWcL5_qdEKPPh5-2eeswwJ3IpeLWaqWjRiCXfmCdkF77QNTUofW2ClXQOoZKu9KSElZllbSliliDlJlVUeY47AN4WJKIO5HUR186KOcZiby0mdZJOt-jnZwaKimn51hoyZbCk4h8MlNkACOot0lgXaf-3ibnue8_x7VpFxw9hcU2fWUfZ3h7BguhXoInf4gaPocfB2QDnniW7KSxDMtn3M6I9c6Oa-ZOmyvPXPKSSKBg1Hk_ZlXNGly9zo5_Bc_OUodnYK2lxZhNZxq61y_g8D4C_BJ6dVOHZWBFaYd4dRBz5yWlOaqqcu8tMWmrotB9yLqAGdfKm5PLxqm5FWZOQTYYZJOCbFQf1m_fmczEPe58erWbB9N-6FMzh2Uf3ndzM7_9_9Fe3T3aW3iE8DbfdvZ3V-CxSMigXz-r0Lu8uAqvMRO6tG8S5hiYe8b4DSQ8Fng |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proficient+job+scheduling+in+cloud+computation+using+an+optimized+machine+learning+strategy&rft.jtitle=International+journal+of+information+technology+%28Singapore.+Online%29&rft.au=Neelakantan%2C+P.&rft.au=Yadav%2C+N.+Sudhakar&rft.date=2023-06-01&rft.issn=2511-2104&rft.eissn=2511-2112&rft.volume=15&rft.issue=5&rft.spage=2409&rft.epage=2421&rft_id=info:doi/10.1007%2Fs41870-023-01278-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41870_023_01278_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-2104&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-2104&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-2104&client=summon |