Proficient job scheduling in cloud computation using an optimized machine learning strategy

In contemporary technology, cloud computing is applicable in many fields like biomedical systems, transactions, data mining, etc. In that, cloud computing job scheduling is a problematic task. Consequently, different operating systems and virtual machines have validated the user’s requirements and n...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of information technology (Singapore. Online) Vol. 15; no. 5; pp. 2409 - 2421
Main Authors Neelakantan, P., Yadav, N. Sudhakar
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2511-2104
2511-2112
DOI10.1007/s41870-023-01278-8

Cover

Abstract In contemporary technology, cloud computing is applicable in many fields like biomedical systems, transactions, data mining, etc. In that, cloud computing job scheduling is a problematic task. Consequently, different operating systems and virtual machines have validated the user’s requirements and necessitated effective scheduling techniques in the cloud environment. Moreover, resource allocation and job scheduling are significant features in cloud computing. Nevertheless, the main drawback of the cloud computing model is the higher computation time that causes the deadline of all work. Previously, several approaches were proposed to diminish the computation time, but those techniques only apply to a few tasks. Therefore the novel Whale-based Convolution Neural Framework (WbCNF) strategy can effectively improve the task allocation system and reduce the job execution time. Moreover, the developed approach is implemented in the Python framework, and results show that the computation time has reduced the quantity of the tasks taken for the experimentation. Consequently, to verify the proposed technique’s efficiency, the proposed method is compared with conventional techniques in terms of performance metrices; the outcomes prove the enhancement of the cloud computing system.
AbstractList In contemporary technology, cloud computing is applicable in many fields like biomedical systems, transactions, data mining, etc. In that, cloud computing job scheduling is a problematic task. Consequently, different operating systems and virtual machines have validated the user’s requirements and necessitated effective scheduling techniques in the cloud environment. Moreover, resource allocation and job scheduling are significant features in cloud computing. Nevertheless, the main drawback of the cloud computing model is the higher computation time that causes the deadline of all work. Previously, several approaches were proposed to diminish the computation time, but those techniques only apply to a few tasks. Therefore the novel Whale-based Convolution Neural Framework (WbCNF) strategy can effectively improve the task allocation system and reduce the job execution time. Moreover, the developed approach is implemented in the Python framework, and results show that the computation time has reduced the quantity of the tasks taken for the experimentation. Consequently, to verify the proposed technique’s efficiency, the proposed method is compared with conventional techniques in terms of performance metrices; the outcomes prove the enhancement of the cloud computing system.
Author Yadav, N. Sudhakar
Neelakantan, P.
Author_xml – sequence: 1
  givenname: P.
  orcidid: 0000-0001-6800-0531
  surname: Neelakantan
  fullname: Neelakantan, P.
  email: pneelakantanme@gmail.com
  organization: Computer Science and Engineering Department, VNR Vignana Jyothi Institute of Engineering and Technology
– sequence: 2
  givenname: N. Sudhakar
  surname: Yadav
  fullname: Yadav, N. Sudhakar
  organization: Department of Information Technology, VNR Vignana Jyothi Institute of Engineering and Technology
BookMark eNp9kDtPwzAUhS1UJErpH2CyxBzwtZ3GGVHFS6oEQzcGy3ac1lVqBzsZyq8nJQgkhk73Sud893Eu0cQHbxG6BnILhBR3iYMoSEYoywjQQmTiDE1pDpBRADr57Qm_QPOUnCYM6ILlBUzR-1sMtTPO-g7vgsbJbG3VN85vsPPYNKGvsAn7tu9U54LHfTpKyuPQdm7vPm2F98psnbe4sSr6o5q6qDq7OVyh81o1yc5_6gytHx_Wy-ds9fr0srxfZYYyLjKtS1HWJeGkqIg2lFdlZQcBcl1pZZUty9qq0hSaMwFKC64LUQPnBWhRczZDN-PYNoaP3qZO7kIf_bBRMprnFFguFoNLjC4TQ0rR1tK48afhWtdIIPIYphzDlEOY8jtMKQaU_kPb6PYqHk5DbITSYPYbG_-uOkF9AdsLim0
CitedBy_id crossref_primary_10_1007_s41870_024_01732_1
crossref_primary_10_1007_s10586_024_04847_z
crossref_primary_10_1007_s41870_024_01936_5
crossref_primary_10_1007_s41870_023_01531_0
crossref_primary_10_1007_s41870_023_01481_7
crossref_primary_10_1007_s41870_024_01800_6
crossref_primary_10_1007_s41870_025_02453_9
crossref_primary_10_1007_s11277_024_11465_w
crossref_primary_10_1007_s41870_024_01850_w
Cites_doi 10.1016/j.techfore.2021.120591
10.1007/978-3-030-45453-1_15
10.1186/s13677-020-00174-x
10.1007/s41870-022-00936-7
10.1016/j.epsr.2021.107428
10.1016/j.eij.2017.07.001
10.1007/s41870-021-00753-4
10.1016/j.ympev.2021.107115
10.1016/j.jnca.2019.102518
10.1109/ACCESS.2020.3033557
10.1007/s00521-020-05559-2
10.1016/j.tourman.2019.104021
10.1007/s11227-020-03213-1
10.1016/j.cosrev.2021.100366
10.1007/s41870-019-00416-5
10.1007/s41870-022-00926-9
10.1007/s41870-022-01045-1
10.1109/TCC.2020.3021084
10.1016/j.compeleceng.2022.107688
10.1007/s42452-019-1758-8
10.1016/j.ijdrr.2020.101642
10.1016/j.comcom.2019.12.050
10.1007/s11227-021-03915-0
10.1016/j.comnet.2021.108270
10.1007/s10586-020-03054-w
10.1016/j.jhydrol.2019.124379
10.1007/s11227-020-03601-7
10.1016/j.simpat.2019.102038
10.1007/s10586-021-03436-8
10.1016/j.cie.2022.108037
10.1007/978-3-030-57024-8_21
10.1007/s11227-021-04035-5
10.1007/s11227-019-03141-9
10.1016/j.matpr.2020.10.126
10.1007/978-981-15-5341-7_116
10.1007/978-981-15-8530-2_63
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Bharati Vidyapeeth's Institute of Computer Applications and Management 2023.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s41870-023-01278-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2511-2112
EndPage 2421
ExternalDocumentID 10_1007_s41870_023_01278_8
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AASML
AATNV
AATVU
AAUYE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AGRTI
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
Z7Z
Z81
Z83
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BGLVJ
CCPQU
CITATION
K7-
PHGZM
PHGZT
PQGLB
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
ARAPS
AZQEC
BENPR
DWQXO
GNUQQ
HCIFZ
JQ2
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2348-bb989f90407d0bc24d9de34815bdbaeae99fea9c7b4381ab84b78f14471b8f43
IEDL.DBID BENPR
ISSN 2511-2104
IngestDate Tue Sep 30 03:22:04 EDT 2025
Thu Apr 24 23:10:05 EDT 2025
Wed Oct 01 02:38:20 EDT 2025
Fri Feb 21 02:42:41 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords Makespan time
Cloud computing
Whale based convolution neural framework
Deadline
Resource allocation
Scheduling time
Data mining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2348-bb989f90407d0bc24d9de34815bdbaeae99fea9c7b4381ab84b78f14471b8f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6800-0531
PQID 3255213586
PQPubID 2034493
PageCount 13
ParticipantIDs proquest_journals_3255213586
crossref_citationtrail_10_1007_s41870_023_01278_8
crossref_primary_10_1007_s41870_023_01278_8
springer_journals_10_1007_s41870_023_01278_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationSubtitle An Official Journal of Bharati Vidyapeeth's Institute of Computer Applications and Management
PublicationTitle International journal of information technology (Singapore. Online)
PublicationTitleAbbrev Int. j. inf. tecnol
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Muheidat (CR12) 2021
Neelima, Reddy (CR32) 2020; 23
CR18
Velpula, Pamula (CR34) 2022; 168
Sharma, Kumar, Samriya (CR4) 2022; 14
Hua, Hao, Qin (CR15) 2020
CR14
Cheng, Huang, Tanpure, Sawalani, Cheng, Liu (CR36) 2022; 25
Kaur, Laxmi, Balkrishan (CR5) 2022; 14
Elsherbiny, Eldaydamony, Alrahmawy, Reya (CR30) 2018; 19
Yan, Huang, Gupta, Gupta, Liu, Li, Cheng (CR37) 2022; 99
Bybee, Kalkman, Erickson (CR19) 2021; 160
Lin, Cui, Peng, Li, He (CR29) 2020; 8
Tabrizchi, Rafsanjani (CR9) 2020; 76
Negi, Rauthan, Vaisla, Panwar (CR22) 2021; 77
Kiani, Khayyambashi (CR20) 2021; 196
Tang, Yu, Li (CR27) 2020
Godhrawala, Sridaran (CR1) 2022
CR8
Bansal, Malik (CR33) 2020; 28
Song (CR2) 2022
Ma, Kirilenko, Stepchenkova (CR11) 2020; 77
Aliyu, Murali, Zhang, Gital, Boukari, Huang, Yakubu (CR17) 2021; 166
Li, Tang, Ma, Yang, Luo (CR26) 2020; 152
Pallavi, Jayarekha (CR3) 2022; 14
Gomez-Rodriguez, Sosa-Sosa, Carretero, Gonzalez (CR7) 2020; 76
Chen (CR10) 2020; 9
Bui, Nguyen, Nguyen, Pham, Nguyen, Pham (CR23) 2020; 581
Lavanya, Shanthi, Saravanan (CR31) 2020; 151
Ghetas (CR16) 2021
Chen, Chen, Yang (CR35) 2022; 78
Abualigah, Alkhrabsheh (CR38) 2022; 78
Helali, Omri (CR21) 2021; 39
Joshi, Verma (CR24) 2021; 199
Zolfaghari, Sahafi, Rahmani, Rezaei (CR6) 2021; 30
Wilczyński, Kołodziej (CR25) 2020; 99
Khan, Gupta, Gupta (CR13) 2020; 47
Zain, Yousif (CR28) 2020; 2
1278_CR8
A Khan (1278_CR13) 2020; 47
J Lin (1278_CR29) 2020; 8
1278_CR18
Y-h Chen (1278_CR10) 2020; 9
R Chen (1278_CR35) 2022; 78
AM Zain (1278_CR28) 2020; 2
M Sharma (1278_CR4) 2022; 14
Ch Song (1278_CR2) 2022
H Godhrawala (1278_CR1) 2022
1278_CR14
M Kiani (1278_CR20) 2021; 196
C Li (1278_CR26) 2020; 152
S Tang (1278_CR27) 2020
M Lavanya (1278_CR31) 2020; 151
J Yan (1278_CR37) 2022; 99
M Ghetas (1278_CR16) 2021
F Cheng (1278_CR36) 2022; 25
SD Ma (1278_CR11) 2020; 77
R Zolfaghari (1278_CR6) 2021; 30
R Kaur (1278_CR5) 2022; 14
M Bansal (1278_CR33) 2020; 28
H Hua (1278_CR15) 2020
Q-T Bui (1278_CR23) 2020; 581
S Elsherbiny (1278_CR30) 2018; 19
P Velpula (1278_CR34) 2022; 168
P Neelima (1278_CR32) 2020; 23
A Wilczyński (1278_CR25) 2020; 99
S Negi (1278_CR22) 2021; 77
L Helali (1278_CR21) 2021; 39
L Abualigah (1278_CR38) 2022; 78
M Aliyu (1278_CR17) 2021; 166
GB Pallavi (1278_CR3) 2022; 14
H Tabrizchi (1278_CR9) 2020; 76
SM Bybee (1278_CR19) 2021; 160
F Muheidat (1278_CR12) 2021
MA Gomez-Rodriguez (1278_CR7) 2020; 76
PM Joshi (1278_CR24) 2021; 199
References_xml – ident: CR18
– volume: 166
  start-page: 120591
  year: 2021
  ident: CR17
  article-title: Management of cloud resources and social change in a multi-tier environment: a novel finite automata using ant colony optimization with spanning tree
  publication-title: Technol Forecast Soc Change
  doi: 10.1016/j.techfore.2021.120591
– start-page: 421
  year: 2020
  end-page: 437
  ident: CR15
  article-title: Internet thinking for layered energy infrastructure
  publication-title: Energy internet
  doi: 10.1007/978-3-030-45453-1_15
– ident: CR14
– volume: 9
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  ident: CR10
  article-title: Intelligent algorithms for cold chain logistics distribution optimization based on big data cloud computing analysis
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-020-00174-x
– year: 2022
  ident: CR2
  article-title: A hybrid SEM and ANN approach to predict the individual cloud computing adoption based on the UTAUT2
  publication-title: Int J Inf Technol
  doi: 10.1007/s41870-022-00936-7
– volume: 199
  year: 2021
  ident: CR24
  article-title: Synchrophasor measurement applications and optimal PMU placement: a review
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2021.107428
– volume: 19
  start-page: 33
  issue: 1
  year: 2018
  end-page: 55
  ident: CR30
  article-title: An extended Intelligent Water Drops algorithm for workflow scheduling in cloud computing environment
  publication-title: Egypt Inform J
  doi: 10.1016/j.eij.2017.07.001
– volume: 14
  start-page: 79
  year: 2022
  end-page: 93
  ident: CR5
  article-title: Performance evaluation of task scheduling algorithms in virtual cloud environment to minimize makespan
  publication-title: Int J Inf Tecnol
  doi: 10.1007/s41870-021-00753-4
– volume: 160
  year: 2021
  ident: CR19
  article-title: Phylogeny and classification of Odonata using targeted genomics
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2021.107115
– volume: 152
  start-page: 102518
  year: 2020
  ident: CR26
  article-title: Load balance based workflow job scheduling algorithm in distributed cloud
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2019.102518
– volume: 8
  start-page: 197863
  year: 2020
  end-page: 197874
  ident: CR29
  article-title: A two-stage framework for the multi-user multi-data center job scheduling and resource allocation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3033557
– year: 2021
  ident: CR16
  article-title: A multi-objective Monarch Butterfly Algorithm for virtual machine placement in cloud computing
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05559-2
– volume: 30
  year: 2021
  ident: CR6
  article-title: Application of virtual machine consolidation in cloud computing systems
  publication-title: Sustain Comput Inform Syst
– ident: CR8
– volume: 77
  year: 2020
  ident: CR11
  article-title: Special interest tourism is not so special after all: Big data evidence from the 2017 Great American Solar Eclipse
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2019.104021
– volume: 76
  start-page: 9493
  issue: 12
  year: 2020
  end-page: 9532
  ident: CR9
  article-title: A survey on security challenges in cloud computing: issues, threats, and solutions
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03213-1
– volume: 39
  year: 2021
  ident: CR21
  article-title: A survey of data center consolidation in cloud computing systems
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2021.100366
– volume: 14
  start-page: 703
  year: 2022
  end-page: 711
  ident: CR3
  article-title: Secure and efficient multi-tenant database management system for cloud computing environment
  publication-title: Int J Inf Technol
  doi: 10.1007/s41870-019-00416-5
– year: 2022
  ident: CR1
  article-title: A dynamic Stackelberg game based multi-objective approach for effective resource allocation in cloud computing
  publication-title: Int J Inf Technol
  doi: 10.1007/s41870-022-00926-9
– volume: 14
  start-page: 2951
  year: 2022
  end-page: 2961
  ident: CR4
  article-title: An optimistic approach for task scheduling in cloud computing
  publication-title: Int J Inf Technol
  doi: 10.1007/s41870-022-01045-1
– year: 2020
  ident: CR27
  article-title: Fairness-efficiency scheduling for cloud computing with soft fairness guarantees
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1109/TCC.2020.3021084
– volume: 99
  start-page: 107688
  year: 2022
  ident: CR37
  article-title: Energy-aware systems for real-time job scheduling in cloud data centers: a deep reinforcement learning approach
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2022.107688
– volume: 2
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  ident: CR28
  article-title: Chemical reaction optimization (CRO) for cloud job scheduling
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-019-1758-8
– volume: 47
  year: 2020
  ident: CR13
  article-title: Multi-hazard disaster studies: monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques
  publication-title: Int J Disaster Risk Reduct
  doi: 10.1016/j.ijdrr.2020.101642
– volume: 151
  start-page: 183
  year: 2020
  end-page: 195
  ident: CR31
  article-title: Multi objective task scheduling algorithm based on SLA and processing time suitable for cloud environment
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2019.12.050
– volume: 78
  start-page: 740
  issue: 1
  year: 2022
  end-page: 765
  ident: CR38
  article-title: Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-03915-0
– volume: 196
  start-page: 108270
  year: 2021
  ident: CR20
  article-title: A network-aware and power-efficient virtual machine placement scheme in cloud datacenters based on chemical reaction optimization
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2021.108270
– volume: 23
  start-page: 2891
  issue: 4
  year: 2020
  end-page: 2899
  ident: CR32
  article-title: An efficient load balancing system using adaptive dragonfly algorithm in cloud computing
  publication-title: Cluster Comput
  doi: 10.1007/s10586-020-03054-w
– volume: 581
  start-page: 124379
  year: 2020
  ident: CR23
  article-title: Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124379
– volume: 77
  start-page: 8787
  year: 2021
  end-page: 8839
  ident: CR22
  article-title: CMODLB: an efficient load balancing approach in cloud computing environment
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03601-7
– volume: 99
  year: 2020
  ident: CR25
  article-title: Modelling and simulation of security-aware task scheduling in cloud computing based on blockchain technology
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2019.102038
– volume: 25
  start-page: 619
  issue: 1
  year: 2022
  end-page: 631
  ident: CR36
  article-title: Cost-aware job scheduling for cloud instances using deep reinforcement learning
  publication-title: Clust Comput
  doi: 10.1007/s10586-021-03436-8
– volume: 168
  year: 2022
  ident: CR34
  article-title: CEECP: CT-based enhanced e-clinical pathways in terms of processing time to enable big data analytics in healthcare along with cloud computing
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2022.108037
– start-page: 461
  year: 2021
  end-page: 483
  ident: CR12
  article-title: Mobile and cloud computing security
  publication-title: Machine intelligence and big data analytics for cybersecurity applications
  doi: 10.1007/978-3-030-57024-8_21
– volume: 78
  start-page: 4550
  issue: 3
  year: 2022
  end-page: 4573
  ident: CR35
  article-title: Using a task dependency job-scheduling method to make energy savings in a cloud computing environment
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-04035-5
– volume: 76
  start-page: 7047
  year: 2020
  end-page: 7080
  ident: CR7
  article-title: CloudBench: an integrated evaluation of VM placement algorithms in clouds
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-03141-9
– volume: 28
  year: 2020
  ident: CR33
  article-title: A multi-faceted optimization scheduling framework based on the particle swarm optimization algorithm in cloud computing
  publication-title: Sustain Comput Inform Syst
– volume: 14
  start-page: 703
  year: 2022
  ident: 1278_CR3
  publication-title: Int J Inf Technol
  doi: 10.1007/s41870-019-00416-5
– volume: 2
  start-page: 1
  issue: 1
  year: 2020
  ident: 1278_CR28
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-019-1758-8
– volume: 78
  start-page: 740
  issue: 1
  year: 2022
  ident: 1278_CR38
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-03915-0
– volume: 14
  start-page: 2951
  year: 2022
  ident: 1278_CR4
  publication-title: Int J Inf Technol
  doi: 10.1007/s41870-022-01045-1
– volume: 160
  year: 2021
  ident: 1278_CR19
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2021.107115
– year: 2021
  ident: 1278_CR16
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05559-2
– volume: 76
  start-page: 7047
  year: 2020
  ident: 1278_CR7
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-03141-9
– volume: 23
  start-page: 2891
  issue: 4
  year: 2020
  ident: 1278_CR32
  publication-title: Cluster Comput
  doi: 10.1007/s10586-020-03054-w
– start-page: 461
  volume-title: Machine intelligence and big data analytics for cybersecurity applications
  year: 2021
  ident: 1278_CR12
  doi: 10.1007/978-3-030-57024-8_21
– volume: 166
  start-page: 120591
  year: 2021
  ident: 1278_CR17
  publication-title: Technol Forecast Soc Change
  doi: 10.1016/j.techfore.2021.120591
– volume: 152
  start-page: 102518
  year: 2020
  ident: 1278_CR26
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2019.102518
– volume: 199
  year: 2021
  ident: 1278_CR24
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2021.107428
– volume: 196
  start-page: 108270
  year: 2021
  ident: 1278_CR20
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2021.108270
– volume: 99
  start-page: 107688
  year: 2022
  ident: 1278_CR37
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2022.107688
– ident: 1278_CR8
  doi: 10.1016/j.matpr.2020.10.126
– year: 2022
  ident: 1278_CR2
  publication-title: Int J Inf Technol
  doi: 10.1007/s41870-022-00936-7
– ident: 1278_CR14
  doi: 10.1007/978-981-15-5341-7_116
– volume: 78
  start-page: 4550
  issue: 3
  year: 2022
  ident: 1278_CR35
  publication-title: J Supercomput
  doi: 10.1007/s11227-021-04035-5
– volume: 581
  start-page: 124379
  year: 2020
  ident: 1278_CR23
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124379
– year: 2022
  ident: 1278_CR1
  publication-title: Int J Inf Technol
  doi: 10.1007/s41870-022-00926-9
– volume: 47
  year: 2020
  ident: 1278_CR13
  publication-title: Int J Disaster Risk Reduct
  doi: 10.1016/j.ijdrr.2020.101642
– volume: 8
  start-page: 197863
  year: 2020
  ident: 1278_CR29
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3033557
– volume: 14
  start-page: 79
  year: 2022
  ident: 1278_CR5
  publication-title: Int J Inf Tecnol
  doi: 10.1007/s41870-021-00753-4
– year: 2020
  ident: 1278_CR27
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1109/TCC.2020.3021084
– volume: 39
  year: 2021
  ident: 1278_CR21
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2021.100366
– volume: 99
  year: 2020
  ident: 1278_CR25
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2019.102038
– volume: 77
  year: 2020
  ident: 1278_CR11
  publication-title: Tour Manag
  doi: 10.1016/j.tourman.2019.104021
– volume: 151
  start-page: 183
  year: 2020
  ident: 1278_CR31
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2019.12.050
– volume: 19
  start-page: 33
  issue: 1
  year: 2018
  ident: 1278_CR30
  publication-title: Egypt Inform J
  doi: 10.1016/j.eij.2017.07.001
– volume: 30
  year: 2021
  ident: 1278_CR6
  publication-title: Sustain Comput Inform Syst
– volume: 9
  start-page: 1
  issue: 1
  year: 2020
  ident: 1278_CR10
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-020-00174-x
– volume: 77
  start-page: 8787
  year: 2021
  ident: 1278_CR22
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03601-7
– volume: 168
  year: 2022
  ident: 1278_CR34
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2022.108037
– start-page: 421
  volume-title: Energy internet
  year: 2020
  ident: 1278_CR15
  doi: 10.1007/978-3-030-45453-1_15
– ident: 1278_CR18
  doi: 10.1007/978-981-15-8530-2_63
– volume: 28
  year: 2020
  ident: 1278_CR33
  publication-title: Sustain Comput Inform Syst
– volume: 25
  start-page: 619
  issue: 1
  year: 2022
  ident: 1278_CR36
  publication-title: Clust Comput
  doi: 10.1007/s10586-021-03436-8
– volume: 76
  start-page: 9493
  issue: 12
  year: 2020
  ident: 1278_CR9
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03213-1
SSID ssib031263571
ssj0002710285
Score 2.3064737
Snippet In contemporary technology, cloud computing is applicable in many fields like biomedical systems, transactions, data mining, etc. In that, cloud computing job...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2409
SubjectTerms Algorithms
Artificial Intelligence
Big Data
Biomedical data
Chemical research
Cloud computing
Computer Imaging
Computer Science
Data mining
Deadlines
Efficiency
Energy consumption
Energy resources
Image Processing and Computer Vision
Machine Learning
Optimization
Original Research
Pattern Recognition and Graphics
Resource allocation
Scheduling
Software Engineering
Virtual environments
Vision
Title Proficient job scheduling in cloud computation using an optimized machine learning strategy
URI https://link.springer.com/article/10.1007/s41870-023-01278-8
https://www.proquest.com/docview/3255213586
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2511-2112
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002710285
  issn: 2511-2104
  databaseCode: AFBBN
  dateStart: 20170301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB1BcimHirZUpITIh95ai6zX2bUPCBFEiio1iqpUQuKw8teiRGGXrxzg1-NxvKQgwXV37cN47JlZz3sP4Hvp_UT3M0eZs4xyVmrqK1tOUTfMSG1LLhCN_Gecnf3jv88H5xswbrAw2FbZnInhoLa1wX_kB6nPfVmSDkR2dH1DUTUKb1cbCQ0VpRXsYaAY24Q2Q2asFrSHp-PJ38bD0gS5V2ICNA_Xbhhgsc8RU23qh_CIrAn4Op4I1GVh2HLEfLklXkavdUr66hY1BKfRNnyMWSU5XrnBJ9hw1WfY-o9r8AtcTFCdO8AfybzWxFe1PsogGJ3MKmIW9dISEyQewloRbIi_JKoitT9UrmaPzpKr0HjpSFSauCR3K2rbhx2Yjk6nJ2c0KitQw1IuqNZSyFL6DZzbvjaMW2kdQnIH2mrllJOydEqaXCMDmNKC61yUvvbKEy1Knn6FVlVXbhdIluuBf9ovU2M5Zh9CqdRajQBXlWWyA0ljsMJE1nEUv1gUz3zJwciFN3IRjFyIDvx4HnO94tx49-tusw5F3H93xdpbOvCzWZv167dn-_b-bHvwgQV3wN8wXWjd3y7dvs9K7nUPNsXoVw_ax6PhcNyLjvcEtN7eFQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEE91oYAPcAKLjeNN7EOFeLTa0nZVoUWqxMHyK1WrNilsK1T-G_-NGa_TBSR66zUPH8Zf7Jl4vu8DeNEgTtywilzEILgUjeNY2UpOvmFeu9BIRWzk3Uk1_iI_7Y_2l-BXz4Whtsp-TUwLdeg8_SN_U2LuK4pypKq3p984uUbR6WpvoWGztUJYTxJjmdixHS9-YAk3W9_6iPP9UojNjemHMc8uA9yLUirunFa60QjmOgydFzLoEImeOnLB2Wij1k202teO1LCsU9LVqsE6pC6camSJw96AFVlKjbXfyvuNyd7nHtBlQVIvOd86Sqd8tJ9TWyVl9hzLLZmJPInOJwtFNjCCOpwEVnfq781ykQH_c2ib9sLNu3AnJ7Hs3Rx192Aptvfh9h_Shg_g6x6ZgSe2JTvqHMMiGjc14r6zw5b54-48MJ8cJRI0GPXfHzDbsg7XsJPDnzGwk9TnGVk2tjhgs7mS7sVDmF5HiB_Bctu1cRVYVbsRXh02pQ-Skh1lbRmCIz6trSo9gKIPmPFZ5Jy8No7NpTxzCrLBIJsUZKMG8OryndO5xMeVT6_182Dy5z4zC3AO4HU_N4vb_x_t8dWjPYeb4-nujtnZmmw_gVsiQYP-AK3B8tn38_gUE6Iz9yzDjoG5ZqD_BuMQGN4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxRBEK3gmhg9EEUNK6h9wBN22Onpnek-GGLEFUQIB0xIPHSmvzYQmFlYiMF_5r-jqneGVRO5cZ2PPlS_6a6arvcewFpEnNhBEbgIXnApouVY2UpOvmFOWx-lIjby3n6x_V1-PRoeLcDvjgtDbZXdmpgWat84-ke-kWPuK7J8qIqN2LZFHGyNNifnnByk6KS1s9OYQWQ3XP_E8m36YWcL5_qdEKPPh5-2eeswwJ3IpeLWaqWjRiCXfmCdkF77QNTUofW2ClXQOoZKu9KSElZllbSliliDlJlVUeY47AN4WJKIO5HUR186KOcZiby0mdZJOt-jnZwaKimn51hoyZbCk4h8MlNkACOot0lgXaf-3ibnue8_x7VpFxw9hcU2fWUfZ3h7BguhXoInf4gaPocfB2QDnniW7KSxDMtn3M6I9c6Oa-ZOmyvPXPKSSKBg1Hk_ZlXNGly9zo5_Bc_OUodnYK2lxZhNZxq61y_g8D4C_BJ6dVOHZWBFaYd4dRBz5yWlOaqqcu8tMWmrotB9yLqAGdfKm5PLxqm5FWZOQTYYZJOCbFQf1m_fmczEPe58erWbB9N-6FMzh2Uf3ndzM7_9_9Fe3T3aW3iE8DbfdvZ3V-CxSMigXz-r0Lu8uAqvMRO6tG8S5hiYe8b4DSQ8Fng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proficient+job+scheduling+in+cloud+computation+using+an+optimized+machine+learning+strategy&rft.jtitle=International+journal+of+information+technology+%28Singapore.+Online%29&rft.au=Neelakantan%2C+P.&rft.au=Yadav%2C+N.+Sudhakar&rft.date=2023-06-01&rft.issn=2511-2104&rft.eissn=2511-2112&rft.volume=15&rft.issue=5&rft.spage=2409&rft.epage=2421&rft_id=info:doi/10.1007%2Fs41870-023-01278-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s41870_023_01278_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-2104&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-2104&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-2104&client=summon