Deep Learning Feature Extraction Architectures for Real-Time Face Detection

A Video Surveillance system can be used for a variety of purposes, including protection, secure data, crowd flux analytics and congestion analysis, individual recognition, anomalous activity detection, and so on. Video Surveillance systems play the key role in the human detection using the face feat...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 4; no. 5; p. 645
Main Authors B, Ravi Teja, D, Mythili, Duvva, Laxmiprasanna, Bethu, Srikanth, Garapati, Yugandhar
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2661-8907
2662-995X
2661-8907
DOI10.1007/s42979-023-02023-5

Cover

Abstract A Video Surveillance system can be used for a variety of purposes, including protection, secure data, crowd flux analytics and congestion analysis, individual recognition, anomalous activity detection, and so on. Video Surveillance systems play the key role in the human detection using the face features extraction. It helps in many applications like terrorists attack, thief identifying by detecting the face of the person but mostly failed in real-time aspect. In this context, we propose a method that significantly aids in the extraction and learning of features. To reduce the face recognition error, we use a bounding box regression model. To train the features, we utilized a CNN-based feature learning model with log-likelihood ratio calculations between inter- and intra-features. To increase the quality of video frames, we used a histogram redistribution image enhancement technique. Finally, a Background Subtracted Faster RCNN for video-based face recognition (BSF-RCNN-VFR) is used to discriminate the groups of detected faces. A comprehensive experiment is carried out on their datasets to demonstrate that the proposed solution performs better, and we compared the existing models with proposed models. We achieved 94.2 accuracy percentage. In this paper, the CNN models like AlexNet, ResNet and datasets like UADFV, Celeb-DF, FF++, DFDC, etc., accuracies are compared.
AbstractList A Video Surveillance system can be used for a variety of purposes, including protection, secure data, crowd flux analytics and congestion analysis, individual recognition, anomalous activity detection, and so on. Video Surveillance systems play the key role in the human detection using the face features extraction. It helps in many applications like terrorists attack, thief identifying by detecting the face of the person but mostly failed in real-time aspect. In this context, we propose a method that significantly aids in the extraction and learning of features. To reduce the face recognition error, we use a bounding box regression model. To train the features, we utilized a CNN-based feature learning model with log-likelihood ratio calculations between inter- and intra-features. To increase the quality of video frames, we used a histogram redistribution image enhancement technique. Finally, a Background Subtracted Faster RCNN for video-based face recognition (BSF-RCNN-VFR) is used to discriminate the groups of detected faces. A comprehensive experiment is carried out on their datasets to demonstrate that the proposed solution performs better, and we compared the existing models with proposed models. We achieved 94.2 accuracy percentage. In this paper, the CNN models like AlexNet, ResNet and datasets like UADFV, Celeb-DF, FF++, DFDC, etc., accuracies are compared.
ArticleNumber 645
Author Bethu, Srikanth
Garapati, Yugandhar
Duvva, Laxmiprasanna
B, Ravi Teja
D, Mythili
Author_xml – sequence: 1
  givenname: Ravi Teja
  surname: B
  fullname: B, Ravi Teja
  organization: Department of Computer Science and Engineering, GITAM School of Technology, GITAM Deemed-to-be University
– sequence: 2
  givenname: Mythili
  surname: D
  fullname: D, Mythili
  organization: Department of Computer Science and Engineering, Vasavi College of Engineering
– sequence: 3
  givenname: Laxmiprasanna
  surname: Duvva
  fullname: Duvva, Laxmiprasanna
  organization: Department of Computer Science and Engineering, Vasavi College of Engineering
– sequence: 4
  givenname: Srikanth
  orcidid: 0000-0002-1091-4901
  surname: Bethu
  fullname: Bethu, Srikanth
  email: srikanthbethu@gmail.com
  organization: Department of Computer Science and Engineering, CVR College of Engineering
– sequence: 5
  givenname: Yugandhar
  surname: Garapati
  fullname: Garapati, Yugandhar
  organization: Department of Computer Science and Engineering, GITAM School of Technology, GITAM Deemed-to-be University
BookMark eNp9kF1LwzAUhoNMcM79Aa8CXleTNG3Ty7GtKg4EmdchPT2ZHVs7kw7035taQfFiF_kgeZ9zkueSjJq2QUKuObvljGV3Xoo8yyMm4jD6OTkjY5GmPFI5y0Z_9hdk6v2WMSYSJmWajMnTAvFAV2hcUzcbWqDpjg7p8qNzBrq6bejMwVvdIfTnntrW0Rc0u2hd75EWBpAusL8N0Stybs3O4_RnnZDXYrmeP0Sr5_vH-WwVgYhlEhnIjJWJKjlUtuIKS1NWWJagbCaNjJWQGEtQLFOAVZkoDiqVlYVM2dIqiCfkZqh7cO37EX2nt-3RNaGlFrngPI9ZKkNKDClwrfcOrT64em_cp-ZM99704E0HY_rbm04CpP5BUHem_1zwUe9Oo_GA-tCn2aD7fdUJ6gti94R4
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3436531
Cites_doi 10.1016/j.cviu.2013.09.004
10.1109/LSP.2016.2603342
10.1016/j.eswa.2019.02.008
10.1016/j.patcog.2016.10.022
10.1016/j.ymssp.2017.07.019
10.1007/978-3-319-46487-9_26
10.1109/ICMEW.2019.00099
10.1109/CISP-BMEI.2017.8301981
10.1016/j.neucom.2015.10.139
10.1109/CVPR46437.2021.00434
10.1504/ijista.2022.128525
10.1007/s10044-021-00972-2
10.1109/CVPR.2016.90
10.3390/e19010026
10.1109/ICCVW54120.2021.00224.
10.1109/ICPR.2016.7899906
10.1007/s11042-019-7577-5
10.1109/TPAMI.2020.2997456
10.1051/matecconf/202133606006
10.1109/ICCRE.2019.8724212
10.1109/TMM.2015.2477042
10.1007/978-3-030-39431-8_11
10.18280/ria.340501
10.1109/ACCESS.2021.3061572
10.1109/TPAMI.2015.2462338
10.18280/ria.340304
10.1109/TIFS.2015.2446438
10.1109/APSIPA.2015.7415375
10.1109/CSITSS.2016.7779430
10.1109/ISPA.2017.8073586
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s42979-023-02023-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_023_02023_5
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
CCPQU
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2345-ac7af458b1cdfd18ebabdebbc8f74a43824e34c8078cedb581c864dfc78fbf8c3
IEDL.DBID BENPR
ISSN 2661-8907
2662-995X
IngestDate Fri Jul 25 23:34:19 EDT 2025
Thu Apr 24 22:56:25 EDT 2025
Wed Oct 01 00:37:46 EDT 2025
Fri Feb 21 02:43:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Feature extraction
CNN
Deep Learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2345-ac7af458b1cdfd18ebabdebbc8f74a43824e34c8078cedb581c864dfc78fbf8c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1091-4901
PQID 2921193064
PQPubID 6623307
ParticipantIDs proquest_journals_2921193064
crossref_primary_10_1007_s42979_023_02023_5
crossref_citationtrail_10_1007_s42979_023_02023_5
springer_journals_10_1007_s42979_023_02023_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References https://www.geeksforgeeks.org/vgg-16-cnn-model/. Accessed 12 Jan 2023
Soldić M, Marčetić D, Maračić M, Mihalić D, Ribarić S. Real-time face tracking under long-term full occlusions. In: Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis. IEEE, 2017, September; pp. 147–152.
GaoSZhangYJiaKLuJZhangYSingle sample face recognition via learning deep supervised autoencodersIEEE Trans Inf Forensics Secur201510102108211810.1109/TIFS.2015.2446438
Zhang S, Chi C, Lei Z, Li S Z. Refineface: refinement neural network for high performance face detection. IEEE Trans Pattern Anal Mach Intell. 2020
https://builtin.com/machine-learning/relu-activation-function. Accessed 7 Feb 2023
HuXChenLTangBCaoDHeHDynamic path planning for autonomous driving on various roads with avoidance of static and moving obstaclesMech Syst Signal Process201810048250010.1016/j.ymssp.2017.07.019
Huang J, Wang X, Du B, Du P, Xu C. DeepFake MNIST+: a DeepFake facial animation dataset. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 2021; pp. 1973-1982. https://doi.org/10.1109/ICCVW54120.2021.00224.
DingCTaoDRobust face recognition via multimodal deep face representationIEEE Trans Multimed201517112049205810.1109/TMM.2015.2477042
RejeeshMRInterest point based face recognition using adaptive neuro fuzzy inference systemMultimed Tools Appl20197816226912271010.1007/s11042-019-7577-5
Yuan, S., Yu, X., Majid, A. Robust face tracking using Siamese VGG with pre-training and fine-tuning. In: 2019 4th International Conference on Control and Robotics Engineering (ICCRE). IEEE, 2019, April; pp. 170-74.
Lin K, Zhao H, Lv J, Zhan J, Liu X, Chen R, Huang Z. Face detection and segmentation with generalized intersection over union based on mask R- CNN. In: International Conference on brain inspired cognitive systems. Springer, Cham, 2019; pp. 106-116.
AyecheFAltiAHDG and HDGG: an extensible feature extraction descriptor for effective face and facial expressions recognitionPattern Anal Appl2021241095111010.1007/s10044-021-00972-2
Congcong Z, Zhenhua Y, Suping W, Hao L. Dual-cycle deep reinforcement learning for stabilizing face tracking. In 2019 IEEE International Conference on Multimedia Expo Workshops (ICMEW). IEEE, 2019, July; pp. 543–48.
AyacheFAltiAPerformance evaluation of machine learning for recognizing human facial emotionsRevue d’Intell Artif202034326727510.18280/ria.340304
RenGLuXLiYA cross-camera multi-face tracking system based on double triplet networksIEEE Access20219437594377410.1109/ACCESS.2021.3061572
Savaliya R, Kalaria V. A Video Surveillance system for traffic application. SIJ Trans Comput Sci En. Appl (CSEA). 2014;2(8).pp 1–5.
Sun Y, Liang D, Wang X, Tang X. Deepid3: face recognition with very deep neural networks. 2015. arXiv preprint arXiv:1502.00873.
Ng CJ, Teoh ABJ. DCTNet: A simple learning-free approach for face recognition. In: 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). IEEE, 2015, December; pp. 761-68.
Ayeche F, Alti A. Local directional gradients extension for recognising face and facial expressions. Int J Intell Syst Technol Appl. 2022;20(6):487–509. https://doi.org/10.1504/ijista.2022.128525
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, 2016; pp. 770–78.
TaoQQZhanSLiXHKuriharaTRobust face detection using local CNN and SVM based on kernel combinationNeurocomputing20162119810510.1016/j.neucom.2015.10.139
Pham HX, Pavlovic V, Cai J, Cham TJ. Robust real- time performance-driven 3D face tracking. In: 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE. 2016, December, pp. 1851–56.
PujolFAPujolMJimeno-MorenillaAPujolMJFace detection based on skin color segmentation using fuzzy entropyEntropy20171912610.3390/e19010026
WuBHuBGJiQA coupled hidden Markov random field model for simultaneous face clustering and tracking in videosPattern Recogn20176436137310.1016/j.patcog.2016.10.022
Li Y, Xie Y, Lu X. Multi-face recognition and dynamic tracking based on reinforcement learning algorithm. In: MATEC Web of Conferences (Vol. 336, p. 06006). EDP Sciences. 2021.
MalešLMarčetićDRibarićSA multi-agent dynamic system for robust multi-face trackingExpert Syst Appl201912624626410.1016/j.eswa.2019.02.008
DingCChoiJTaoDDavisLSMulti-directional multi-level dual-cross patterns for robust face recognitionIEEE Trans Pattern Anal Mach Intell201538351853110.1109/TPAMI.2015.2462338
Wu X, Zhao J, Wang H. Face segmentation based on leve set and deep learning prior shape. In: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2017; pp. 1-5.
https://www.kaggle.com/code/blurredmachine/alexnet-architecture-a-complete-guide. Accessed 20 Sept 2021
He Y, et al. ForgeryNet: a versatile benchmark for comprehensive forgery analysis. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021; pp. 4358–4367. https://doi.org/10.1109/CVPR46437.2021.00434.
ZhangKZhangZLiZQiaoYJoint face detection and alignment using multitask cascaded convolutional networksIEEE Signal Process Lett201623101499150310.1109/LSP.2016.2603342
LeiZZhangXYangSRenZAkindipeOFRFR-DLVT: a hybrid method for real-time face recognition using deep learning and visual trackingEnterp Inform Syst2020149–1013391379
https://paperswithcode.com/datasets. Accessed 12 Feb 2023
Li Y, Sun B, Wu T, Wang Y. Face detection with end-to-end integration of a convnet and a 3d model. In: European Conference on computer vision. Cham: Springer; Leibe et al. (Eds.): ECCV 2016, October, pp. 420–36.
Ranganatha S, Gowramma YP. A novel fused algorithm for human face tracking in video sequences. In 2016 International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS). IEEE. 2016, October, pp. 1–6.
https://ngrok.com/. Accessed 20 Dec 2022
AyecheFAltiANovel descriptors for effective recognition of face and facial expressionsRevue d’Intell Artif202034552153010.18280/ria.340501
OrtizEGBeckerBCFace recognition for web-scale datasetsComput Vis Image Underst201411815317010.1016/j.cviu.2013.09.004
2023_CR20
F Ayache (2023_CR35) 2020; 34
EG Ortiz (2023_CR26) 2014; 118
L Maleš (2023_CR9) 2019; 126
S Gao (2023_CR18) 2015; 10
2023_CR2
2023_CR1
K Zhang (2023_CR3) 2016; 23
2023_CR6
G Ren (2023_CR21) 2021; 9
2023_CR5
QQ Tao (2023_CR4) 2016; 211
2023_CR29
2023_CR28
F Ayeche (2023_CR38) 2020; 34
2023_CR7
2023_CR27
2023_CR25
Z Lei (2023_CR19) 2020; 14
2023_CR24
2023_CR23
2023_CR33
2023_CR10
2023_CR32
2023_CR31
2023_CR30
C Ding (2023_CR13) 2015; 17
X Hu (2023_CR8) 2018; 100
C Ding (2023_CR16) 2015; 38
FA Pujol (2023_CR22) 2017; 19
B Wu (2023_CR11) 2017; 64
2023_CR17
MR Rejeesh (2023_CR15) 2019; 78
2023_CR37
2023_CR14
2023_CR12
2023_CR34
F Ayeche (2023_CR36) 2021; 24
References_xml – reference: Soldić M, Marčetić D, Maračić M, Mihalić D, Ribarić S. Real-time face tracking under long-term full occlusions. In: Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis. IEEE, 2017, September; pp. 147–152.
– reference: LeiZZhangXYangSRenZAkindipeOFRFR-DLVT: a hybrid method for real-time face recognition using deep learning and visual trackingEnterp Inform Syst2020149–1013391379
– reference: AyecheFAltiAHDG and HDGG: an extensible feature extraction descriptor for effective face and facial expressions recognitionPattern Anal Appl2021241095111010.1007/s10044-021-00972-2
– reference: Ayeche F, Alti A. Local directional gradients extension for recognising face and facial expressions. Int J Intell Syst Technol Appl. 2022;20(6):487–509. https://doi.org/10.1504/ijista.2022.128525
– reference: DingCChoiJTaoDDavisLSMulti-directional multi-level dual-cross patterns for robust face recognitionIEEE Trans Pattern Anal Mach Intell201538351853110.1109/TPAMI.2015.2462338
– reference: Li Y, Xie Y, Lu X. Multi-face recognition and dynamic tracking based on reinforcement learning algorithm. In: MATEC Web of Conferences (Vol. 336, p. 06006). EDP Sciences. 2021.
– reference: DingCTaoDRobust face recognition via multimodal deep face representationIEEE Trans Multimed201517112049205810.1109/TMM.2015.2477042
– reference: WuBHuBGJiQA coupled hidden Markov random field model for simultaneous face clustering and tracking in videosPattern Recogn20176436137310.1016/j.patcog.2016.10.022
– reference: RenGLuXLiYA cross-camera multi-face tracking system based on double triplet networksIEEE Access20219437594377410.1109/ACCESS.2021.3061572
– reference: Savaliya R, Kalaria V. A Video Surveillance system for traffic application. SIJ Trans Comput Sci En. Appl (CSEA). 2014;2(8).pp 1–5.
– reference: MalešLMarčetićDRibarićSA multi-agent dynamic system for robust multi-face trackingExpert Syst Appl201912624626410.1016/j.eswa.2019.02.008
– reference: Zhang S, Chi C, Lei Z, Li S Z. Refineface: refinement neural network for high performance face detection. IEEE Trans Pattern Anal Mach Intell. 2020
– reference: https://builtin.com/machine-learning/relu-activation-function. Accessed 7 Feb 2023
– reference: HuXChenLTangBCaoDHeHDynamic path planning for autonomous driving on various roads with avoidance of static and moving obstaclesMech Syst Signal Process201810048250010.1016/j.ymssp.2017.07.019
– reference: Wu X, Zhao J, Wang H. Face segmentation based on leve set and deep learning prior shape. In: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2017; pp. 1-5.
– reference: Pham HX, Pavlovic V, Cai J, Cham TJ. Robust real- time performance-driven 3D face tracking. In: 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE. 2016, December, pp. 1851–56.
– reference: RejeeshMRInterest point based face recognition using adaptive neuro fuzzy inference systemMultimed Tools Appl20197816226912271010.1007/s11042-019-7577-5
– reference: GaoSZhangYJiaKLuJZhangYSingle sample face recognition via learning deep supervised autoencodersIEEE Trans Inf Forensics Secur201510102108211810.1109/TIFS.2015.2446438
– reference: https://www.geeksforgeeks.org/vgg-16-cnn-model/. Accessed 12 Jan 2023
– reference: Ng CJ, Teoh ABJ. DCTNet: A simple learning-free approach for face recognition. In: 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). IEEE, 2015, December; pp. 761-68.
– reference: OrtizEGBeckerBCFace recognition for web-scale datasetsComput Vis Image Underst201411815317010.1016/j.cviu.2013.09.004
– reference: TaoQQZhanSLiXHKuriharaTRobust face detection using local CNN and SVM based on kernel combinationNeurocomputing20162119810510.1016/j.neucom.2015.10.139
– reference: Yuan, S., Yu, X., Majid, A. Robust face tracking using Siamese VGG with pre-training and fine-tuning. In: 2019 4th International Conference on Control and Robotics Engineering (ICCRE). IEEE, 2019, April; pp. 170-74.
– reference: Lin K, Zhao H, Lv J, Zhan J, Liu X, Chen R, Huang Z. Face detection and segmentation with generalized intersection over union based on mask R- CNN. In: International Conference on brain inspired cognitive systems. Springer, Cham, 2019; pp. 106-116.
– reference: https://ngrok.com/. Accessed 20 Dec 2022
– reference: https://www.kaggle.com/code/blurredmachine/alexnet-architecture-a-complete-guide. Accessed 20 Sept 2021
– reference: Congcong Z, Zhenhua Y, Suping W, Hao L. Dual-cycle deep reinforcement learning for stabilizing face tracking. In 2019 IEEE International Conference on Multimedia Expo Workshops (ICMEW). IEEE, 2019, July; pp. 543–48.
– reference: Ranganatha S, Gowramma YP. A novel fused algorithm for human face tracking in video sequences. In 2016 International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS). IEEE. 2016, October, pp. 1–6.
– reference: ZhangKZhangZLiZQiaoYJoint face detection and alignment using multitask cascaded convolutional networksIEEE Signal Process Lett201623101499150310.1109/LSP.2016.2603342
– reference: AyecheFAltiANovel descriptors for effective recognition of face and facial expressionsRevue d’Intell Artif202034552153010.18280/ria.340501
– reference: https://paperswithcode.com/datasets. Accessed 12 Feb 2023
– reference: Huang J, Wang X, Du B, Du P, Xu C. DeepFake MNIST+: a DeepFake facial animation dataset. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 2021; pp. 1973-1982. https://doi.org/10.1109/ICCVW54120.2021.00224.
– reference: PujolFAPujolMJimeno-MorenillaAPujolMJFace detection based on skin color segmentation using fuzzy entropyEntropy20171912610.3390/e19010026
– reference: AyacheFAltiAPerformance evaluation of machine learning for recognizing human facial emotionsRevue d’Intell Artif202034326727510.18280/ria.340304
– reference: Sun Y, Liang D, Wang X, Tang X. Deepid3: face recognition with very deep neural networks. 2015. arXiv preprint arXiv:1502.00873.
– reference: He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, 2016; pp. 770–78.
– reference: Li Y, Sun B, Wu T, Wang Y. Face detection with end-to-end integration of a convnet and a 3d model. In: European Conference on computer vision. Cham: Springer; Leibe et al. (Eds.): ECCV 2016, October, pp. 420–36.
– reference: He Y, et al. ForgeryNet: a versatile benchmark for comprehensive forgery analysis. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021; pp. 4358–4367. https://doi.org/10.1109/CVPR46437.2021.00434.
– volume: 118
  start-page: 153
  year: 2014
  ident: 2023_CR26
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2013.09.004
– volume: 23
  start-page: 1499
  issue: 10
  year: 2016
  ident: 2023_CR3
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2016.2603342
– volume: 126
  start-page: 246
  year: 2019
  ident: 2023_CR9
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.02.008
– volume: 14
  start-page: 1339
  issue: 9–10
  year: 2020
  ident: 2023_CR19
  publication-title: Enterp Inform Syst
– volume: 64
  start-page: 361
  year: 2017
  ident: 2023_CR11
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2016.10.022
– volume: 100
  start-page: 482
  year: 2018
  ident: 2023_CR8
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2017.07.019
– ident: 2023_CR2
  doi: 10.1007/978-3-319-46487-9_26
– ident: 2023_CR12
  doi: 10.1109/ICMEW.2019.00099
– ident: 2023_CR23
  doi: 10.1109/CISP-BMEI.2017.8301981
– ident: 2023_CR28
– volume: 211
  start-page: 98
  year: 2016
  ident: 2023_CR4
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.139
– ident: 2023_CR33
  doi: 10.1109/CVPR46437.2021.00434
– ident: 2023_CR32
– ident: 2023_CR37
  doi: 10.1504/ijista.2022.128525
– ident: 2023_CR29
– volume: 24
  start-page: 1095
  year: 2021
  ident: 2023_CR36
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-021-00972-2
– ident: 2023_CR25
  doi: 10.1109/CVPR.2016.90
– ident: 2023_CR34
– volume: 19
  start-page: 26
  issue: 1
  year: 2017
  ident: 2023_CR22
  publication-title: Entropy
  doi: 10.3390/e19010026
– ident: 2023_CR30
– ident: 2023_CR31
  doi: 10.1109/ICCVW54120.2021.00224.
– ident: 2023_CR5
  doi: 10.1109/ICPR.2016.7899906
– volume: 78
  start-page: 22691
  issue: 16
  year: 2019
  ident: 2023_CR15
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7577-5
– ident: 2023_CR1
  doi: 10.1109/TPAMI.2020.2997456
– ident: 2023_CR20
  doi: 10.1051/matecconf/202133606006
– ident: 2023_CR10
  doi: 10.1109/ICCRE.2019.8724212
– ident: 2023_CR27
– volume: 17
  start-page: 2049
  issue: 11
  year: 2015
  ident: 2023_CR13
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2015.2477042
– ident: 2023_CR24
  doi: 10.1007/978-3-030-39431-8_11
– volume: 34
  start-page: 521
  issue: 5
  year: 2020
  ident: 2023_CR38
  publication-title: Revue d’Intell Artif
  doi: 10.18280/ria.340501
– volume: 9
  start-page: 43759
  year: 2021
  ident: 2023_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3061572
– volume: 38
  start-page: 518
  issue: 3
  year: 2015
  ident: 2023_CR16
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2462338
– volume: 34
  start-page: 267
  issue: 3
  year: 2020
  ident: 2023_CR35
  publication-title: Revue d’Intell Artif
  doi: 10.18280/ria.340304
– volume: 10
  start-page: 2108
  issue: 10
  year: 2015
  ident: 2023_CR18
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2015.2446438
– ident: 2023_CR17
  doi: 10.1109/APSIPA.2015.7415375
– ident: 2023_CR6
  doi: 10.1109/CSITSS.2016.7779430
– ident: 2023_CR7
  doi: 10.1109/ISPA.2017.8073586
– ident: 2023_CR14
SSID ssj0002504465
Score 2.2473774
Snippet A Video Surveillance system can be used for a variety of purposes, including protection, secure data, crowd flux analytics and congestion analysis, individual...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 645
SubjectTerms Accuracy
Activity recognition
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Datasets
Deep learning
Enabling Innovative Computational Intelligence Technologies for IOT
Face recognition
Feature extraction
Image enhancement
Information Systems and Communication Service
Likelihood ratio
Machine learning
Neural networks
Original Research
Pattern Recognition and Graphics
Real time
Regression models
Software Engineering/Programming and Operating Systems
Surveillance systems
Vision
Title Deep Learning Feature Extraction Architectures for Real-Time Face Detection
URI https://link.springer.com/article/10.1007/s42979-023-02023-5
https://www.proquest.com/docview/2921193064
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: AFBBN
  dateStart: 20190625
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2661-8907
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0gXLwYjRpRJHvwphttu9tuD8aggEQjMUQSbk33o15MQSiJP9-dpQU1kUN7abtpZj_mZWffewAXFiOHWagMtelZU-bLmMpUKDvxLN7Qhhupke_8MgwHY_Y04ZMaDCsuDB6rrNZEt1DrqcI98ms_Ri0yxMt3s0-KrlFYXa0sNNLSWkHfOomxHWj4qIxVh8Z9b_g6Wu-6oGAXc_6S9h99Gsd8UjJpHJ_OLs5RTG0asxfe-e9stYGgf6qmLhn192GvRJGks-r2A6iZ_BCeu8bMSCmY-k4Q3C3nhvS-ivmKvUA6P6oGC2LhKhlZnEiRBkL6qTKkawp3NCs_gnG_9_YwoKVXAlV-wDhNVZRmjAvpKZ1pTxiZSm2kVCKLWIrVPmYCplBdXhktufCUCJnOVCQymQkVHEM9n-bmBEgUIF038EIbVKbRYDLSjNlGY67ljQma4FUxSVQpJI5-Fh_JWgLZxTGxEUxcHBPehMv1N7OVjMbWt1tVqJNySi2SzQBowlUV_s3j_1s73d7aGey6vnbnxlpQL-ZLc26BRiHbsCP6j-1yDH0DkyfPMQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xOMAFgQoiJRQf2hO1YHftfRxQRZtESQNRhUDKbVnbs1yqJOQh4M_x2xg73qStVG457F52dw7jsefzjr9vAD4TRo7LWCOn9Gy4CFXGVZFqmniENwxKVMbyna97cftO_OzL_hq8VlwYe6yyWhPdQm2G2v4jPwszq0Vm8fK30SO3XaNsdbVqoVH41grmwkmMeWJHF1-eaAs3ueg0aLy_hGGrefujzX2XAa7DSEhe6KQohUxVoE1pghRVoQwqpdMyEYWtkwmMhLa67BqNkmmg01iYUidpqcpUR2R3HTZFJDLa_G1-b_Z-3Sz-8liBMOH6WZJPQp5lsu-ZO46_R8kgyTilTbrsXf6dHZeQ958qrUt-rV3Y8aiVXc7DbA_WcPABug3EEfMCrQ_MgsnZGFnzeTqesyXY5R9VigkjeMxuCJdySzthrUIja-DUHQUb7MPdSrx2ABuD4QAPgSWRpQdHQUyDKIxtaJkYIchoJo06x6gGQeWTXHvhcts_43e-kFx2fszJg7nzYy5rcLr4ZjSX7Xj37Xrl6txP4Um-DLgafK3cv3z8f2sf37d2Alvt2-ur_KrT6x7Btht3d2atDhvT8QyPCeRM1ScfSQzuVx28b4eFDnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Feature+Extraction+Architectures+for+Real-Time+Face+Detection&rft.jtitle=SN+computer+science&rft.au=B%2C+Ravi+Teja&rft.au=D%2C+Mythili&rft.au=Duvva%2C+Laxmiprasanna&rft.au=Bethu%2C+Srikanth&rft.date=2023-09-01&rft.pub=Springer+Nature+Singapore&rft.eissn=2661-8907&rft.volume=4&rft.issue=5&rft_id=info:doi/10.1007%2Fs42979-023-02023-5&rft.externalDocID=10_1007_s42979_023_02023_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon