Deep Learning Feature Extraction Architectures for Real-Time Face Detection
A Video Surveillance system can be used for a variety of purposes, including protection, secure data, crowd flux analytics and congestion analysis, individual recognition, anomalous activity detection, and so on. Video Surveillance systems play the key role in the human detection using the face feat...
        Saved in:
      
    
          | Published in | SN computer science Vol. 4; no. 5; p. 645 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Singapore
          Springer Nature Singapore
    
        01.09.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2661-8907 2662-995X 2661-8907  | 
| DOI | 10.1007/s42979-023-02023-5 | 
Cover
| Abstract | A Video Surveillance system can be used for a variety of purposes, including protection, secure data, crowd flux analytics and congestion analysis, individual recognition, anomalous activity detection, and so on. Video Surveillance systems play the key role in the human detection using the face features extraction. It helps in many applications like terrorists attack, thief identifying by detecting the face of the person but mostly failed in real-time aspect. In this context, we propose a method that significantly aids in the extraction and learning of features. To reduce the face recognition error, we use a bounding box regression model. To train the features, we utilized a CNN-based feature learning model with log-likelihood ratio calculations between inter- and intra-features. To increase the quality of video frames, we used a histogram redistribution image enhancement technique. Finally, a Background Subtracted Faster RCNN for video-based face recognition (BSF-RCNN-VFR) is used to discriminate the groups of detected faces. A comprehensive experiment is carried out on their datasets to demonstrate that the proposed solution performs better, and we compared the existing models with proposed models. We achieved 94.2 accuracy percentage. In this paper, the CNN models like AlexNet, ResNet and datasets like UADFV, Celeb-DF, FF++, DFDC, etc., accuracies are compared. | 
    
|---|---|
| AbstractList | A Video Surveillance system can be used for a variety of purposes, including protection, secure data, crowd flux analytics and congestion analysis, individual recognition, anomalous activity detection, and so on. Video Surveillance systems play the key role in the human detection using the face features extraction. It helps in many applications like terrorists attack, thief identifying by detecting the face of the person but mostly failed in real-time aspect. In this context, we propose a method that significantly aids in the extraction and learning of features. To reduce the face recognition error, we use a bounding box regression model. To train the features, we utilized a CNN-based feature learning model with log-likelihood ratio calculations between inter- and intra-features. To increase the quality of video frames, we used a histogram redistribution image enhancement technique. Finally, a Background Subtracted Faster RCNN for video-based face recognition (BSF-RCNN-VFR) is used to discriminate the groups of detected faces. A comprehensive experiment is carried out on their datasets to demonstrate that the proposed solution performs better, and we compared the existing models with proposed models. We achieved 94.2 accuracy percentage. In this paper, the CNN models like AlexNet, ResNet and datasets like UADFV, Celeb-DF, FF++, DFDC, etc., accuracies are compared. | 
    
| ArticleNumber | 645 | 
    
| Author | Bethu, Srikanth Garapati, Yugandhar Duvva, Laxmiprasanna B, Ravi Teja D, Mythili  | 
    
| Author_xml | – sequence: 1 givenname: Ravi Teja surname: B fullname: B, Ravi Teja organization: Department of Computer Science and Engineering, GITAM School of Technology, GITAM Deemed-to-be University – sequence: 2 givenname: Mythili surname: D fullname: D, Mythili organization: Department of Computer Science and Engineering, Vasavi College of Engineering – sequence: 3 givenname: Laxmiprasanna surname: Duvva fullname: Duvva, Laxmiprasanna organization: Department of Computer Science and Engineering, Vasavi College of Engineering – sequence: 4 givenname: Srikanth orcidid: 0000-0002-1091-4901 surname: Bethu fullname: Bethu, Srikanth email: srikanthbethu@gmail.com organization: Department of Computer Science and Engineering, CVR College of Engineering – sequence: 5 givenname: Yugandhar surname: Garapati fullname: Garapati, Yugandhar organization: Department of Computer Science and Engineering, GITAM School of Technology, GITAM Deemed-to-be University  | 
    
| BookMark | eNp9kF1LwzAUhoNMcM79Aa8CXleTNG3Ty7GtKg4EmdchPT2ZHVs7kw7035taQfFiF_kgeZ9zkueSjJq2QUKuObvljGV3Xoo8yyMm4jD6OTkjY5GmPFI5y0Z_9hdk6v2WMSYSJmWajMnTAvFAV2hcUzcbWqDpjg7p8qNzBrq6bejMwVvdIfTnntrW0Rc0u2hd75EWBpAusL8N0Stybs3O4_RnnZDXYrmeP0Sr5_vH-WwVgYhlEhnIjJWJKjlUtuIKS1NWWJagbCaNjJWQGEtQLFOAVZkoDiqVlYVM2dIqiCfkZqh7cO37EX2nt-3RNaGlFrngPI9ZKkNKDClwrfcOrT64em_cp-ZM99704E0HY_rbm04CpP5BUHem_1zwUe9Oo_GA-tCn2aD7fdUJ6gti94R4 | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3436531 | 
    
| Cites_doi | 10.1016/j.cviu.2013.09.004 10.1109/LSP.2016.2603342 10.1016/j.eswa.2019.02.008 10.1016/j.patcog.2016.10.022 10.1016/j.ymssp.2017.07.019 10.1007/978-3-319-46487-9_26 10.1109/ICMEW.2019.00099 10.1109/CISP-BMEI.2017.8301981 10.1016/j.neucom.2015.10.139 10.1109/CVPR46437.2021.00434 10.1504/ijista.2022.128525 10.1007/s10044-021-00972-2 10.1109/CVPR.2016.90 10.3390/e19010026 10.1109/ICCVW54120.2021.00224. 10.1109/ICPR.2016.7899906 10.1007/s11042-019-7577-5 10.1109/TPAMI.2020.2997456 10.1051/matecconf/202133606006 10.1109/ICCRE.2019.8724212 10.1109/TMM.2015.2477042 10.1007/978-3-030-39431-8_11 10.18280/ria.340501 10.1109/ACCESS.2021.3061572 10.1109/TPAMI.2015.2462338 10.18280/ria.340304 10.1109/TIFS.2015.2446438 10.1109/APSIPA.2015.7415375 10.1109/CSITSS.2016.7779430 10.1109/ISPA.2017.8073586  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI  | 
    
| DOI | 10.1007/s42979-023-02023-5 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 2661-8907 | 
    
| ExternalDocumentID | 10_1007_s42979_023_02023_5 | 
    
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ CCPQU DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI  | 
    
| ID | FETCH-LOGICAL-c2345-ac7af458b1cdfd18ebabdebbc8f74a43824e34c8078cedb581c864dfc78fbf8c3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2661-8907 2662-995X  | 
    
| IngestDate | Fri Jul 25 23:34:19 EDT 2025 Thu Apr 24 22:56:25 EDT 2025 Wed Oct 01 00:37:46 EDT 2025 Fri Feb 21 02:43:10 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | Feature extraction CNN Deep Learning  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2345-ac7af458b1cdfd18ebabdebbc8f74a43824e34c8078cedb581c864dfc78fbf8c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-1091-4901 | 
    
| PQID | 2921193064 | 
    
| PQPubID | 6623307 | 
    
| ParticipantIDs | proquest_journals_2921193064 crossref_primary_10_1007_s42979_023_02023_5 crossref_citationtrail_10_1007_s42979_023_02023_5 springer_journals_10_1007_s42979_023_02023_5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-09-01 | 
    
| PublicationDateYYYYMMDD | 2023-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Singapore | 
    
| PublicationPlace_xml | – name: Singapore – name: Kolkata  | 
    
| PublicationTitle | SN computer science | 
    
| PublicationTitleAbbrev | SN COMPUT. SCI | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer Nature Singapore Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V  | 
    
| References | https://www.geeksforgeeks.org/vgg-16-cnn-model/. Accessed 12 Jan 2023 Soldić M, Marčetić D, Maračić M, Mihalić D, Ribarić S. Real-time face tracking under long-term full occlusions. In: Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis. IEEE, 2017, September; pp. 147–152. GaoSZhangYJiaKLuJZhangYSingle sample face recognition via learning deep supervised autoencodersIEEE Trans Inf Forensics Secur201510102108211810.1109/TIFS.2015.2446438 Zhang S, Chi C, Lei Z, Li S Z. Refineface: refinement neural network for high performance face detection. IEEE Trans Pattern Anal Mach Intell. 2020 https://builtin.com/machine-learning/relu-activation-function. Accessed 7 Feb 2023 HuXChenLTangBCaoDHeHDynamic path planning for autonomous driving on various roads with avoidance of static and moving obstaclesMech Syst Signal Process201810048250010.1016/j.ymssp.2017.07.019 Huang J, Wang X, Du B, Du P, Xu C. DeepFake MNIST+: a DeepFake facial animation dataset. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 2021; pp. 1973-1982. https://doi.org/10.1109/ICCVW54120.2021.00224. DingCTaoDRobust face recognition via multimodal deep face representationIEEE Trans Multimed201517112049205810.1109/TMM.2015.2477042 RejeeshMRInterest point based face recognition using adaptive neuro fuzzy inference systemMultimed Tools Appl20197816226912271010.1007/s11042-019-7577-5 Yuan, S., Yu, X., Majid, A. Robust face tracking using Siamese VGG with pre-training and fine-tuning. In: 2019 4th International Conference on Control and Robotics Engineering (ICCRE). IEEE, 2019, April; pp. 170-74. Lin K, Zhao H, Lv J, Zhan J, Liu X, Chen R, Huang Z. Face detection and segmentation with generalized intersection over union based on mask R- CNN. In: International Conference on brain inspired cognitive systems. Springer, Cham, 2019; pp. 106-116. AyecheFAltiAHDG and HDGG: an extensible feature extraction descriptor for effective face and facial expressions recognitionPattern Anal Appl2021241095111010.1007/s10044-021-00972-2 Congcong Z, Zhenhua Y, Suping W, Hao L. Dual-cycle deep reinforcement learning for stabilizing face tracking. In 2019 IEEE International Conference on Multimedia Expo Workshops (ICMEW). IEEE, 2019, July; pp. 543–48. AyacheFAltiAPerformance evaluation of machine learning for recognizing human facial emotionsRevue d’Intell Artif202034326727510.18280/ria.340304 RenGLuXLiYA cross-camera multi-face tracking system based on double triplet networksIEEE Access20219437594377410.1109/ACCESS.2021.3061572 Savaliya R, Kalaria V. A Video Surveillance system for traffic application. SIJ Trans Comput Sci En. Appl (CSEA). 2014;2(8).pp 1–5. Sun Y, Liang D, Wang X, Tang X. Deepid3: face recognition with very deep neural networks. 2015. arXiv preprint arXiv:1502.00873. Ng CJ, Teoh ABJ. DCTNet: A simple learning-free approach for face recognition. In: 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). IEEE, 2015, December; pp. 761-68. Ayeche F, Alti A. Local directional gradients extension for recognising face and facial expressions. Int J Intell Syst Technol Appl. 2022;20(6):487–509. https://doi.org/10.1504/ijista.2022.128525 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, 2016; pp. 770–78. TaoQQZhanSLiXHKuriharaTRobust face detection using local CNN and SVM based on kernel combinationNeurocomputing20162119810510.1016/j.neucom.2015.10.139 Pham HX, Pavlovic V, Cai J, Cham TJ. Robust real- time performance-driven 3D face tracking. In: 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE. 2016, December, pp. 1851–56. PujolFAPujolMJimeno-MorenillaAPujolMJFace detection based on skin color segmentation using fuzzy entropyEntropy20171912610.3390/e19010026 WuBHuBGJiQA coupled hidden Markov random field model for simultaneous face clustering and tracking in videosPattern Recogn20176436137310.1016/j.patcog.2016.10.022 Li Y, Xie Y, Lu X. Multi-face recognition and dynamic tracking based on reinforcement learning algorithm. In: MATEC Web of Conferences (Vol. 336, p. 06006). EDP Sciences. 2021. MalešLMarčetićDRibarićSA multi-agent dynamic system for robust multi-face trackingExpert Syst Appl201912624626410.1016/j.eswa.2019.02.008 DingCChoiJTaoDDavisLSMulti-directional multi-level dual-cross patterns for robust face recognitionIEEE Trans Pattern Anal Mach Intell201538351853110.1109/TPAMI.2015.2462338 Wu X, Zhao J, Wang H. Face segmentation based on leve set and deep learning prior shape. In: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2017; pp. 1-5. https://www.kaggle.com/code/blurredmachine/alexnet-architecture-a-complete-guide. Accessed 20 Sept 2021 He Y, et al. ForgeryNet: a versatile benchmark for comprehensive forgery analysis. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021; pp. 4358–4367. https://doi.org/10.1109/CVPR46437.2021.00434. ZhangKZhangZLiZQiaoYJoint face detection and alignment using multitask cascaded convolutional networksIEEE Signal Process Lett201623101499150310.1109/LSP.2016.2603342 LeiZZhangXYangSRenZAkindipeOFRFR-DLVT: a hybrid method for real-time face recognition using deep learning and visual trackingEnterp Inform Syst2020149–1013391379 https://paperswithcode.com/datasets. Accessed 12 Feb 2023 Li Y, Sun B, Wu T, Wang Y. Face detection with end-to-end integration of a convnet and a 3d model. In: European Conference on computer vision. Cham: Springer; Leibe et al. (Eds.): ECCV 2016, October, pp. 420–36. Ranganatha S, Gowramma YP. A novel fused algorithm for human face tracking in video sequences. In 2016 International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS). IEEE. 2016, October, pp. 1–6. https://ngrok.com/. Accessed 20 Dec 2022 AyecheFAltiANovel descriptors for effective recognition of face and facial expressionsRevue d’Intell Artif202034552153010.18280/ria.340501 OrtizEGBeckerBCFace recognition for web-scale datasetsComput Vis Image Underst201411815317010.1016/j.cviu.2013.09.004 2023_CR20 F Ayache (2023_CR35) 2020; 34 EG Ortiz (2023_CR26) 2014; 118 L Maleš (2023_CR9) 2019; 126 S Gao (2023_CR18) 2015; 10 2023_CR2 2023_CR1 K Zhang (2023_CR3) 2016; 23 2023_CR6 G Ren (2023_CR21) 2021; 9 2023_CR5 QQ Tao (2023_CR4) 2016; 211 2023_CR29 2023_CR28 F Ayeche (2023_CR38) 2020; 34 2023_CR7 2023_CR27 2023_CR25 Z Lei (2023_CR19) 2020; 14 2023_CR24 2023_CR23 2023_CR33 2023_CR10 2023_CR32 2023_CR31 2023_CR30 C Ding (2023_CR13) 2015; 17 X Hu (2023_CR8) 2018; 100 C Ding (2023_CR16) 2015; 38 FA Pujol (2023_CR22) 2017; 19 B Wu (2023_CR11) 2017; 64 2023_CR17 MR Rejeesh (2023_CR15) 2019; 78 2023_CR37 2023_CR14 2023_CR12 2023_CR34 F Ayeche (2023_CR36) 2021; 24  | 
    
| References_xml | – reference: Soldić M, Marčetić D, Maračić M, Mihalić D, Ribarić S. Real-time face tracking under long-term full occlusions. In: Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis. IEEE, 2017, September; pp. 147–152. – reference: LeiZZhangXYangSRenZAkindipeOFRFR-DLVT: a hybrid method for real-time face recognition using deep learning and visual trackingEnterp Inform Syst2020149–1013391379 – reference: AyecheFAltiAHDG and HDGG: an extensible feature extraction descriptor for effective face and facial expressions recognitionPattern Anal Appl2021241095111010.1007/s10044-021-00972-2 – reference: Ayeche F, Alti A. Local directional gradients extension for recognising face and facial expressions. Int J Intell Syst Technol Appl. 2022;20(6):487–509. https://doi.org/10.1504/ijista.2022.128525 – reference: DingCChoiJTaoDDavisLSMulti-directional multi-level dual-cross patterns for robust face recognitionIEEE Trans Pattern Anal Mach Intell201538351853110.1109/TPAMI.2015.2462338 – reference: Li Y, Xie Y, Lu X. Multi-face recognition and dynamic tracking based on reinforcement learning algorithm. In: MATEC Web of Conferences (Vol. 336, p. 06006). EDP Sciences. 2021. – reference: DingCTaoDRobust face recognition via multimodal deep face representationIEEE Trans Multimed201517112049205810.1109/TMM.2015.2477042 – reference: WuBHuBGJiQA coupled hidden Markov random field model for simultaneous face clustering and tracking in videosPattern Recogn20176436137310.1016/j.patcog.2016.10.022 – reference: RenGLuXLiYA cross-camera multi-face tracking system based on double triplet networksIEEE Access20219437594377410.1109/ACCESS.2021.3061572 – reference: Savaliya R, Kalaria V. A Video Surveillance system for traffic application. SIJ Trans Comput Sci En. Appl (CSEA). 2014;2(8).pp 1–5. – reference: MalešLMarčetićDRibarićSA multi-agent dynamic system for robust multi-face trackingExpert Syst Appl201912624626410.1016/j.eswa.2019.02.008 – reference: Zhang S, Chi C, Lei Z, Li S Z. Refineface: refinement neural network for high performance face detection. IEEE Trans Pattern Anal Mach Intell. 2020 – reference: https://builtin.com/machine-learning/relu-activation-function. Accessed 7 Feb 2023 – reference: HuXChenLTangBCaoDHeHDynamic path planning for autonomous driving on various roads with avoidance of static and moving obstaclesMech Syst Signal Process201810048250010.1016/j.ymssp.2017.07.019 – reference: Wu X, Zhao J, Wang H. Face segmentation based on leve set and deep learning prior shape. In: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2017; pp. 1-5. – reference: Pham HX, Pavlovic V, Cai J, Cham TJ. Robust real- time performance-driven 3D face tracking. In: 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE. 2016, December, pp. 1851–56. – reference: RejeeshMRInterest point based face recognition using adaptive neuro fuzzy inference systemMultimed Tools Appl20197816226912271010.1007/s11042-019-7577-5 – reference: GaoSZhangYJiaKLuJZhangYSingle sample face recognition via learning deep supervised autoencodersIEEE Trans Inf Forensics Secur201510102108211810.1109/TIFS.2015.2446438 – reference: https://www.geeksforgeeks.org/vgg-16-cnn-model/. Accessed 12 Jan 2023 – reference: Ng CJ, Teoh ABJ. DCTNet: A simple learning-free approach for face recognition. In: 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA). IEEE, 2015, December; pp. 761-68. – reference: OrtizEGBeckerBCFace recognition for web-scale datasetsComput Vis Image Underst201411815317010.1016/j.cviu.2013.09.004 – reference: TaoQQZhanSLiXHKuriharaTRobust face detection using local CNN and SVM based on kernel combinationNeurocomputing20162119810510.1016/j.neucom.2015.10.139 – reference: Yuan, S., Yu, X., Majid, A. Robust face tracking using Siamese VGG with pre-training and fine-tuning. In: 2019 4th International Conference on Control and Robotics Engineering (ICCRE). IEEE, 2019, April; pp. 170-74. – reference: Lin K, Zhao H, Lv J, Zhan J, Liu X, Chen R, Huang Z. Face detection and segmentation with generalized intersection over union based on mask R- CNN. In: International Conference on brain inspired cognitive systems. Springer, Cham, 2019; pp. 106-116. – reference: https://ngrok.com/. Accessed 20 Dec 2022 – reference: https://www.kaggle.com/code/blurredmachine/alexnet-architecture-a-complete-guide. Accessed 20 Sept 2021 – reference: Congcong Z, Zhenhua Y, Suping W, Hao L. Dual-cycle deep reinforcement learning for stabilizing face tracking. In 2019 IEEE International Conference on Multimedia Expo Workshops (ICMEW). IEEE, 2019, July; pp. 543–48. – reference: Ranganatha S, Gowramma YP. A novel fused algorithm for human face tracking in video sequences. In 2016 International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS). IEEE. 2016, October, pp. 1–6. – reference: ZhangKZhangZLiZQiaoYJoint face detection and alignment using multitask cascaded convolutional networksIEEE Signal Process Lett201623101499150310.1109/LSP.2016.2603342 – reference: AyecheFAltiANovel descriptors for effective recognition of face and facial expressionsRevue d’Intell Artif202034552153010.18280/ria.340501 – reference: https://paperswithcode.com/datasets. Accessed 12 Feb 2023 – reference: Huang J, Wang X, Du B, Du P, Xu C. DeepFake MNIST+: a DeepFake facial animation dataset. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 2021; pp. 1973-1982. https://doi.org/10.1109/ICCVW54120.2021.00224. – reference: PujolFAPujolMJimeno-MorenillaAPujolMJFace detection based on skin color segmentation using fuzzy entropyEntropy20171912610.3390/e19010026 – reference: AyacheFAltiAPerformance evaluation of machine learning for recognizing human facial emotionsRevue d’Intell Artif202034326727510.18280/ria.340304 – reference: Sun Y, Liang D, Wang X, Tang X. Deepid3: face recognition with very deep neural networks. 2015. arXiv preprint arXiv:1502.00873. – reference: He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, 2016; pp. 770–78. – reference: Li Y, Sun B, Wu T, Wang Y. Face detection with end-to-end integration of a convnet and a 3d model. In: European Conference on computer vision. Cham: Springer; Leibe et al. (Eds.): ECCV 2016, October, pp. 420–36. – reference: He Y, et al. ForgeryNet: a versatile benchmark for comprehensive forgery analysis. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2021; pp. 4358–4367. https://doi.org/10.1109/CVPR46437.2021.00434. – volume: 118 start-page: 153 year: 2014 ident: 2023_CR26 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2013.09.004 – volume: 23 start-page: 1499 issue: 10 year: 2016 ident: 2023_CR3 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2016.2603342 – volume: 126 start-page: 246 year: 2019 ident: 2023_CR9 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.02.008 – volume: 14 start-page: 1339 issue: 9–10 year: 2020 ident: 2023_CR19 publication-title: Enterp Inform Syst – volume: 64 start-page: 361 year: 2017 ident: 2023_CR11 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2016.10.022 – volume: 100 start-page: 482 year: 2018 ident: 2023_CR8 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2017.07.019 – ident: 2023_CR2 doi: 10.1007/978-3-319-46487-9_26 – ident: 2023_CR12 doi: 10.1109/ICMEW.2019.00099 – ident: 2023_CR23 doi: 10.1109/CISP-BMEI.2017.8301981 – ident: 2023_CR28 – volume: 211 start-page: 98 year: 2016 ident: 2023_CR4 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.10.139 – ident: 2023_CR33 doi: 10.1109/CVPR46437.2021.00434 – ident: 2023_CR32 – ident: 2023_CR37 doi: 10.1504/ijista.2022.128525 – ident: 2023_CR29 – volume: 24 start-page: 1095 year: 2021 ident: 2023_CR36 publication-title: Pattern Anal Appl doi: 10.1007/s10044-021-00972-2 – ident: 2023_CR25 doi: 10.1109/CVPR.2016.90 – ident: 2023_CR34 – volume: 19 start-page: 26 issue: 1 year: 2017 ident: 2023_CR22 publication-title: Entropy doi: 10.3390/e19010026 – ident: 2023_CR30 – ident: 2023_CR31 doi: 10.1109/ICCVW54120.2021.00224. – ident: 2023_CR5 doi: 10.1109/ICPR.2016.7899906 – volume: 78 start-page: 22691 issue: 16 year: 2019 ident: 2023_CR15 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7577-5 – ident: 2023_CR1 doi: 10.1109/TPAMI.2020.2997456 – ident: 2023_CR20 doi: 10.1051/matecconf/202133606006 – ident: 2023_CR10 doi: 10.1109/ICCRE.2019.8724212 – ident: 2023_CR27 – volume: 17 start-page: 2049 issue: 11 year: 2015 ident: 2023_CR13 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2015.2477042 – ident: 2023_CR24 doi: 10.1007/978-3-030-39431-8_11 – volume: 34 start-page: 521 issue: 5 year: 2020 ident: 2023_CR38 publication-title: Revue d’Intell Artif doi: 10.18280/ria.340501 – volume: 9 start-page: 43759 year: 2021 ident: 2023_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3061572 – volume: 38 start-page: 518 issue: 3 year: 2015 ident: 2023_CR16 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2462338 – volume: 34 start-page: 267 issue: 3 year: 2020 ident: 2023_CR35 publication-title: Revue d’Intell Artif doi: 10.18280/ria.340304 – volume: 10 start-page: 2108 issue: 10 year: 2015 ident: 2023_CR18 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2015.2446438 – ident: 2023_CR17 doi: 10.1109/APSIPA.2015.7415375 – ident: 2023_CR6 doi: 10.1109/CSITSS.2016.7779430 – ident: 2023_CR7 doi: 10.1109/ISPA.2017.8073586 – ident: 2023_CR14  | 
    
| SSID | ssj0002504465 | 
    
| Score | 2.2473774 | 
    
| Snippet | A Video Surveillance system can be used for a variety of purposes, including protection, secure data, crowd flux analytics and congestion analysis, individual... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 645 | 
    
| SubjectTerms | Accuracy Activity recognition Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Datasets Deep learning Enabling Innovative Computational Intelligence Technologies for IOT Face recognition Feature extraction Image enhancement Information Systems and Communication Service Likelihood ratio Machine learning Neural networks Original Research Pattern Recognition and Graphics Real time Regression models Software Engineering/Programming and Operating Systems Surveillance systems Vision  | 
    
| Title | Deep Learning Feature Extraction Architectures for Real-Time Face Detection | 
    
| URI | https://link.springer.com/article/10.1007/s42979-023-02023-5 https://www.proquest.com/docview/2921193064  | 
    
| Volume | 4 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: AFBBN dateStart: 20190625 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2661-8907 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0gXLwYjRpRJHvwphttu9tuD8aggEQjMUQSbk33o15MQSiJP9-dpQU1kUN7abtpZj_mZWffewAXFiOHWagMtelZU-bLmMpUKDvxLN7Qhhupke_8MgwHY_Y04ZMaDCsuDB6rrNZEt1DrqcI98ms_Ri0yxMt3s0-KrlFYXa0sNNLSWkHfOomxHWj4qIxVh8Z9b_g6Wu-6oGAXc_6S9h99Gsd8UjJpHJ_OLs5RTG0asxfe-e9stYGgf6qmLhn192GvRJGks-r2A6iZ_BCeu8bMSCmY-k4Q3C3nhvS-ivmKvUA6P6oGC2LhKhlZnEiRBkL6qTKkawp3NCs_gnG_9_YwoKVXAlV-wDhNVZRmjAvpKZ1pTxiZSm2kVCKLWIrVPmYCplBdXhktufCUCJnOVCQymQkVHEM9n-bmBEgUIF038EIbVKbRYDLSjNlGY67ljQma4FUxSVQpJI5-Fh_JWgLZxTGxEUxcHBPehMv1N7OVjMbWt1tVqJNySi2SzQBowlUV_s3j_1s73d7aGey6vnbnxlpQL-ZLc26BRiHbsCP6j-1yDH0DkyfPMQ | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xOMAFgQoiJRQf2hO1YHftfRxQRZtESQNRhUDKbVnbs1yqJOQh4M_x2xg73qStVG457F52dw7jsefzjr9vAD4TRo7LWCOn9Gy4CFXGVZFqmniENwxKVMbyna97cftO_OzL_hq8VlwYe6yyWhPdQm2G2v4jPwszq0Vm8fK30SO3XaNsdbVqoVH41grmwkmMeWJHF1-eaAs3ueg0aLy_hGGrefujzX2XAa7DSEhe6KQohUxVoE1pghRVoQwqpdMyEYWtkwmMhLa67BqNkmmg01iYUidpqcpUR2R3HTZFJDLa_G1-b_Z-3Sz-8liBMOH6WZJPQp5lsu-ZO46_R8kgyTilTbrsXf6dHZeQ958qrUt-rV3Y8aiVXc7DbA_WcPABug3EEfMCrQ_MgsnZGFnzeTqesyXY5R9VigkjeMxuCJdySzthrUIja-DUHQUb7MPdSrx2ABuD4QAPgSWRpQdHQUyDKIxtaJkYIchoJo06x6gGQeWTXHvhcts_43e-kFx2fszJg7nzYy5rcLr4ZjSX7Xj37Xrl6txP4Um-DLgafK3cv3z8f2sf37d2Alvt2-ur_KrT6x7Btht3d2atDhvT8QyPCeRM1ScfSQzuVx28b4eFDnQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Feature+Extraction+Architectures+for+Real-Time+Face+Detection&rft.jtitle=SN+computer+science&rft.au=B%2C+Ravi+Teja&rft.au=D%2C+Mythili&rft.au=Duvva%2C+Laxmiprasanna&rft.au=Bethu%2C+Srikanth&rft.date=2023-09-01&rft.pub=Springer+Nature+Singapore&rft.eissn=2661-8907&rft.volume=4&rft.issue=5&rft_id=info:doi/10.1007%2Fs42979-023-02023-5&rft.externalDocID=10_1007_s42979_023_02023_5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |