Implementation of artificial neural network using Levenberg Marquardt algorithm for Casson–Carreau nanofluid flow over exponentially stretching curved surface

A theoretical framework is constructed for the Casson–Carreau nanofluid flow over a curved surface that is stretched exponentially. Artificial intelligence and machine learning are in vogue as the technologies that involve them, have expanded exponentially. In the current analysis, the Levenberg–Mar...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 36; no. 31; pp. 19393 - 19415
Main Authors Almeida, F., Kumar, Pradeep, Ajaykumar, A. R., Nagaraja, B.
Format Journal Article
LanguageEnglish
Published London Springer London 01.11.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-024-10193-3

Cover

Abstract A theoretical framework is constructed for the Casson–Carreau nanofluid flow over a curved surface that is stretched exponentially. Artificial intelligence and machine learning are in vogue as the technologies that involve them, have expanded exponentially. In the current analysis, the Levenberg–Marquardt algorithm is used to train a machine learning language made of artificial neural networks to train the mathematical model constructed by including chemical reaction, and an exponential heat source component. The activation energy effect is taken into account while analyzing the impact of fluid concentration. Double stratification and Stefan blowing boundary conditions are used. Runge–Kutta Fehlberg 4–5th order is a numerical method applied to form the solution. An artificial neural network is used to train, test, and validate numerical computations. The linear regression models, histograms, and mean squared errors are used to verify the model's accuracy. The accuracy of the training is predicted by the least error in the range of 10 −3 –10 −4 as per the absolute error analysis carried out individually for the six parameters under consideration. Results reveal that the velocity is augmented by Weissenberg number and the mixed convection parameter. The temperature enhances for increasing unsteadiness parameter and depletes for increasing thermal stratification parameter. The concentration increases with increasing activation energy parameter and decreasing Schmidt number. Consequently, this study reveals that artificial neural network can be used as an alternative for the prediction of prolonged calculations. Nevertheless, the flow structure designed for the fluid considered in the model can be a pathway to fabricate an optimized industrial design.
AbstractList A theoretical framework is constructed for the Casson–Carreau nanofluid flow over a curved surface that is stretched exponentially. Artificial intelligence and machine learning are in vogue as the technologies that involve them, have expanded exponentially. In the current analysis, the Levenberg–Marquardt algorithm is used to train a machine learning language made of artificial neural networks to train the mathematical model constructed by including chemical reaction, and an exponential heat source component. The activation energy effect is taken into account while analyzing the impact of fluid concentration. Double stratification and Stefan blowing boundary conditions are used. Runge–Kutta Fehlberg 4–5th order is a numerical method applied to form the solution. An artificial neural network is used to train, test, and validate numerical computations. The linear regression models, histograms, and mean squared errors are used to verify the model's accuracy. The accuracy of the training is predicted by the least error in the range of 10−3–10−4 as per the absolute error analysis carried out individually for the six parameters under consideration. Results reveal that the velocity is augmented by Weissenberg number and the mixed convection parameter. The temperature enhances for increasing unsteadiness parameter and depletes for increasing thermal stratification parameter. The concentration increases with increasing activation energy parameter and decreasing Schmidt number. Consequently, this study reveals that artificial neural network can be used as an alternative for the prediction of prolonged calculations. Nevertheless, the flow structure designed for the fluid considered in the model can be a pathway to fabricate an optimized industrial design.
A theoretical framework is constructed for the Casson–Carreau nanofluid flow over a curved surface that is stretched exponentially. Artificial intelligence and machine learning are in vogue as the technologies that involve them, have expanded exponentially. In the current analysis, the Levenberg–Marquardt algorithm is used to train a machine learning language made of artificial neural networks to train the mathematical model constructed by including chemical reaction, and an exponential heat source component. The activation energy effect is taken into account while analyzing the impact of fluid concentration. Double stratification and Stefan blowing boundary conditions are used. Runge–Kutta Fehlberg 4–5th order is a numerical method applied to form the solution. An artificial neural network is used to train, test, and validate numerical computations. The linear regression models, histograms, and mean squared errors are used to verify the model's accuracy. The accuracy of the training is predicted by the least error in the range of 10 −3 –10 −4 as per the absolute error analysis carried out individually for the six parameters under consideration. Results reveal that the velocity is augmented by Weissenberg number and the mixed convection parameter. The temperature enhances for increasing unsteadiness parameter and depletes for increasing thermal stratification parameter. The concentration increases with increasing activation energy parameter and decreasing Schmidt number. Consequently, this study reveals that artificial neural network can be used as an alternative for the prediction of prolonged calculations. Nevertheless, the flow structure designed for the fluid considered in the model can be a pathway to fabricate an optimized industrial design.
Author Ajaykumar, A. R.
Nagaraja, B.
Almeida, F.
Kumar, Pradeep
Author_xml – sequence: 1
  givenname: F.
  surname: Almeida
  fullname: Almeida, F.
  organization: Department of Mathematics, School of Engineering, Presidency University
– sequence: 2
  givenname: Pradeep
  orcidid: 0000-0002-4875-5387
  surname: Kumar
  fullname: Kumar, Pradeep
  email: pradeepkumar@presidencyuniversity.in
  organization: Department of Mathematics, School of Engineering, Presidency University
– sequence: 3
  givenname: A. R.
  surname: Ajaykumar
  fullname: Ajaykumar, A. R.
  organization: Department of Mathematics, School of Engineering, Presidency University
– sequence: 4
  givenname: B.
  surname: Nagaraja
  fullname: Nagaraja, B.
  organization: Department of Mathematics, School of Engineering, Presidency University
BookMark eNp9kUtuFDEQhi2USEweF2BliXWD7XL39CzRiEekQWzIuuWxyxOHHntSdk_IjjtwAc7GSXDSSEgssqqS6v_q9Z-xk5giMvZKijdSiOXbLESrZCOUbqSQK2jgBVtIDTURbX_CFmKla7nT8JKd5XwrhNBd3y7Yr6v9YcQ9xmJKSJEnzw2V4IMNZuQRJ3oK5T7RNz7lEHd8g0eMW6Qd_2zobjLkCjfjLlEoN3vuE_G1yTnF3z9-rg0RmolHE5Mfp-C4H9M9T0ckjt8P9YZY6pzxgedCWOzNY3870REdzxN5Y_GCnXozZrz8G8_Z9Yf3X9efms2Xj1frd5vGKtDQOIdeW9Ur2G6XVrXaGeNQAYDv0AuwaJ21wqEF14HuOhBuKZWGlZJOo4Zz9nrue6B0N2Euw22aKNaRA0gp2or0bVX1s8pSypnQDzbMnytkwjhIMTz6Mcx-DNWP4cmPASqq_kMPFPaGHp6HYIZyFccd0r-tnqH-AOFApas
CitedBy_id crossref_primary_10_1016_j_padiff_2024_101061
crossref_primary_10_1007_s41939_024_00585_2
crossref_primary_10_1007_s41939_024_00586_1
Cites_doi 10.1016/j.csite.2023.103505
10.3390/math10214133
10.1007/s00521-023-08379-2
10.1007/s42452-021-04339-4
10.1016/j.jnnms.2015.02.001
10.3390/pr7100665
10.1038/s41598-021-93790-9
10.1016/j.jmmm.2023.170959
10.1016/j.aej.2023.02.031
10.1038/s41598-021-95859-x
10.1016/j.applthermaleng.2016.01.063
10.1016/j.icheatmasstransfer.2021.105799
10.1016/j.asej.2021.08.015
10.1038/s41598-023-39354-5
10.1007/s10973-019-08977-0
10.4028/www.scientific.net/DDF.401.79
10.1115/1.2150834
10.1615/HeatTransRes.2021041018
10.1142/S0217979224500267
10.1016/j.icheatmasstransfer.2022.106313
10.1016/j.cjche.2016.06.008
10.1007/s00521-023-08443-x
10.1080/02286203.2023.2237845
10.1016/j.aej.2021.09.045
10.1142/S0217979223501199
10.1142/S0217979223501242
10.1063/1.5127634
10.1007/s00521-023-08317-2
10.1016/j.csite.2021.100982
10.1016/j.cmpb.2019.105294
10.1080/01430750.2020.1712240
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s00521-024-10193-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 19415
ExternalDocumentID 10_1007_s00521_024_10193_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c2343-ddef4c2823bb7c254daade2333f6ef03cecdcc0dec3d6346630d71243921d4e43
IEDL.DBID U2A
ISSN 0941-0643
IngestDate Sat Jul 26 01:13:12 EDT 2025
Thu Apr 24 23:05:55 EDT 2025
Wed Oct 01 03:43:43 EDT 2025
Fri Feb 21 02:41:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords Artificial neural network
Casson–Carreau nanofluid
Activation energy
Exponential stretching sheet
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2343-ddef4c2823bb7c254daade2333f6ef03cecdcc0dec3d6346630d71243921d4e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4875-5387
PQID 3110546685
PQPubID 2043988
PageCount 23
ParticipantIDs proquest_journals_3110546685
crossref_citationtrail_10_1007_s00521_024_10193_3
crossref_primary_10_1007_s00521_024_10193_3
springer_journals_10_1007_s00521_024_10193_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241100
2024-11-00
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241100
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Raja, Shoaib, Khan, Zuhra, Saleel, Nisar, Islam, Khan (CR5) 2022; 13
Alblawi, Malik, Nadeem, Abbas (CR23) 2019; 7
Hayat, Khan, Waqas, Alsaedi, Yasmeen (CR14) 2017; 25
Ragupathi, Ahammad, Wakif, Shah, Jeon (CR25) 2022; 10
Shi, Wang (CR31) 2023; 35
Wahid, Arifin, Khashi'ie, Pop, Bachok, Hafidzuddin (CR35) 2021; 25
Okechi, Jalil, Asghar (CR7) 2017; 7
Babu, Parandhama, Vijaya (CR16) 2021; 3
Nagaraja, Almeida, Ali, Kumar, Ajaykumar, Al-Mdallal (CR29) 2023; 50
Nagaraja, Gireesha, Almeida, Kumar, Ajaykumar (CR20) 2023; 10
Reddy, Sreedevi (CR28) 2022; 43
Lone, Shamshuddin, Shahab, Iftikhar, Saeed, Galal (CR12) 2023; 580
Yilmazkaya (CR32) 2023; 35
Zhang, Zeng, Lo, Fan (CR34) 2023; 35
Goud, Reddy, Asogwa (CR17) 2023; 37
Serbest, Ozkan, Cilli (CR33) 2023; 35
Kumar, Sugunamma, Sandeep (CR8) 2020; 140
Ramzan, Shaheen, Ghazwani, Nisar, Saleel (CR27) 2023; 37
Almeida, Keerthi, Gireesha, Venkatesh, Kumar, Nagaraja (CR21) 2023
Shi, Shabbir, Mushtaq, Khan, Shah, Kumam (CR9) 2021; 11
Cui, Razzaq, Farooq, Khan, Farooq, Muhammad (CR10) 2022; 61
Buongiorno (CR22) 2006; 128
Ziaei-Rad, Saeedan, Afshari (CR1) 2016; 99
Animasaun, Adebile, Fagbade (CR13) 2016; 35
Shahzad, Ashiq, Waqas, Pasha, Islam, Zubair (CR18) 2023; 140
Kumar, Nagaraja, Almeida, Ajaykumar, Al-Mdallal, Jarad (CR19) 2023; 13
Shafiq, Çolak, Sindhu, Muhammad (CR6) 2022; 53
Abbas, Tumreen, Shatanawi, Qasim, Shatnawi (CR26) 2023; 70
Abbas, Ali, Shatanawi (CR11) 2023; 38
Saleem, Hussain (CR30) 2023; 17
Kumar, Sugunamma, Sandeep, Sivaiah (CR15) 2020; 401
Muhammad, Khan, Khan, Jameel (CR24) 2020; 189
Raja, Shoaib, Hussain, Nisar, Islam (CR4) 2022; 130
Elayarani, Shanmugapriya (CR2) 2019
Shafiq, Çolak, Sindhu, Al-Mdallal, Abdeljawad (CR3) 2021; 11
A Shafiq (10193_CR3) 2021; 11
KS Babu (10193_CR16) 2021; 3
T Hayat (10193_CR14) 2017; 25
E Yilmazkaya (10193_CR32) 2023; 35
M Saleem (10193_CR30) 2023; 17
NS Wahid (10193_CR35) 2021; 25
R Muhammad (10193_CR24) 2020; 189
Y Shi (10193_CR31) 2023; 35
M Ziaei-Rad (10193_CR1) 2016; 99
N Abbas (10193_CR11) 2023; 38
PS Reddy (10193_CR28) 2022; 43
Q Zhang (10193_CR34) 2023; 35
A Alblawi (10193_CR23) 2019; 7
BS Goud (10193_CR17) 2023; 37
QH Shi (10193_CR9) 2021; 11
MAZ Raja (10193_CR5) 2022; 13
F Shahzad (10193_CR18) 2023; 140
P Kumar (10193_CR19) 2023; 13
B Nagaraja (10193_CR29) 2023; 50
KA Kumar (10193_CR15) 2020; 401
B Nagaraja (10193_CR20) 2023; 10
J Cui (10193_CR10) 2022; 61
N Abbas (10193_CR26) 2023; 70
MAZ Raja (10193_CR4) 2022; 130
IL Animasaun (10193_CR13) 2016; 35
M Elayarani (10193_CR2) 2019
J Buongiorno (10193_CR22) 2006; 128
K Serbest (10193_CR33) 2023; 35
NF Okechi (10193_CR7) 2017; 7
SA Lone (10193_CR12) 2023; 580
M Ramzan (10193_CR27) 2023; 37
F Almeida (10193_CR21) 2023
KA Kumar (10193_CR8) 2020; 140
A Shafiq (10193_CR6) 2022; 53
P Ragupathi (10193_CR25) 2022; 10
References_xml – volume: 50
  year: 2023
  ident: CR29
  article-title: Empirical study for Nusselt number optimization for the flow using ANOVA and Taguchi method
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2023.103505
– volume: 10
  start-page: 4133
  issue: 21
  year: 2022
  ident: CR25
  article-title: Exploration of multiple transfer phenomena within viscous fluid flows over a curved stretching sheet in the co-existence of gyrotactic micro-organisms and tiny particles
  publication-title: Mathematics
  doi: 10.3390/math10214133
– volume: 35
  start-page: 12513
  issue: 17
  year: 2023
  end-page: 12529
  ident: CR33
  article-title: Estimation of joint torques using an artificial neural network model based on kinematic and anthropometric data
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-023-08379-2
– volume: 3
  start-page: 382
  issue: 3
  year: 2021
  ident: CR16
  article-title: Non-linear MHD convective flow of Carreau nanofluid over an exponentially stretching surface with activation energy and viscous dissipation
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-021-04339-4
– volume: 35
  start-page: 1
  issue: 1
  year: 2016
  end-page: 17
  ident: CR13
  article-title: Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method
  publication-title: J Niger Math Soc
  doi: 10.1016/j.jnnms.2015.02.001
– volume: 7
  start-page: 665
  issue: 10
  year: 2019
  ident: CR23
  article-title: Buongiorno’s nanofluid model over a curved exponentially stretching surface
  publication-title: Processes
  doi: 10.3390/pr7100665
– volume: 11
  start-page: 14509
  issue: 1
  year: 2021
  ident: CR3
  article-title: Estimation of unsteady hydromagnetic Williamson fluid flow in a radiative surface through numerical and artificial neural network modelling
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-93790-9
– volume: 580
  year: 2023
  ident: CR12
  article-title: Computational analysis of MHD driven bioconvective flow of hybrid Casson nanofluid past a permeable exponential stretching sheet with thermophoresis and Brownian motion effects
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2023.170959
– volume: 70
  start-page: 219
  year: 2023
  end-page: 230
  ident: CR26
  article-title: Thermodynamic properties of second grade nanofluid flow with radiation and chemical reaction over slendering stretching sheet
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2023.02.031
– volume: 11
  start-page: 16351
  issue: 1
  year: 2021
  ident: CR9
  article-title: Modelling and numerical computation for flow of micropolar fluid towards an exponential curved surface: a Keller box method
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-95859-x
– volume: 35
  start-page: 8873
  issue: 12
  year: 2023
  end-page: 8882
  ident: CR31
  article-title: Optimization algorithm of an artificial neural network-based controller and simulation method for animated virtual idol characters
  publication-title: Neural Comput Appl
– volume: 99
  start-page: 373
  year: 2016
  end-page: 382
  ident: CR1
  article-title: Simulation and prediction of MHD dissipative nanofluid flow on a permeable stretching surface using artificial neural network
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.01.063
– volume: 130
  year: 2022
  ident: CR4
  article-title: Computational intelligence of Levenberg-Marquardt backpropagation neural networks to study thermal radiation and Hall effects on boundary layer flow past a stretching sheet
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2021.105799
– volume: 13
  issue: 2
  year: 2022
  ident: CR5
  article-title: Supervised neural networks learning algorithm for three-dimensional hybrid nanofluid flow with radiative heat and mass fluxes
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2021.08.015
– volume: 13
  start-page: 12770
  issue: 1
  year: 2023
  ident: CR19
  article-title: Magnetic dipole effects on unsteady flow of Casson-Williamson nanofluid propelled by stretching slippery curved melting sheet with buoyancy force
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-39354-5
– volume: 140
  start-page: 2377
  year: 2020
  end-page: 2385
  ident: CR8
  article-title: Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-019-08977-0
– volume: 401
  start-page: 79
  year: 2020
  end-page: 91
  ident: CR15
  article-title: Physical aspects on MHD micropolar fluid flow past an exponentially stretching curved surface
  publication-title: Defect Diffus Forum
  doi: 10.4028/www.scientific.net/DDF.401.79
– volume: 128
  start-page: 240
  issue: 3
  year: 2006
  end-page: 250
  ident: CR22
  article-title: Convective transport in nanofluids
  publication-title: J Heat Transf
  doi: 10.1115/1.2150834
– volume: 53
  start-page: 67
  issue: 3
  year: 2022
  end-page: 89
  ident: CR6
  article-title: Optimization of Darcy-Forchheimer squeezing flow in nonlinear stratified fluid under convective conditions with artificial neural network
  publication-title: Heat Transf Res
  doi: 10.1615/HeatTransRes.2021041018
– volume: 38
  start-page: 2450026
  year: 2023
  ident: CR11
  article-title: Chemical reactive second-grade nanofluid flow past an exponential curved stretching surface: Numerically
  publication-title: Int J Mod Phys B
  doi: 10.1142/S0217979224500267
– volume: 10
  start-page: 287
  issue: 2
  year: 2023
  end-page: 303
  ident: CR20
  article-title: Entropy analysis of Darcy-Forchheimer Model of Prandtl nanofluid over a curved stretching sheet and heat transfer optimization by ANOVA-Taguchi technique
  publication-title: J Appl Comput Mech
– volume: 140
  start-page: 106313
  year: 2023
  ident: CR18
  article-title: Chemically reactive Carreau nanoliquid radiative flow induced by exponentially extending surface capturing variable liquid characteristics: a three-dimensional analysis
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2022.106313
– volume: 25
  start-page: 257
  issue: 3
  year: 2017
  end-page: 263
  ident: CR14
  article-title: Diffusion of chemically reactive species in third grade fluid flow over an exponentially stretching sheet considering magnetic field effects
  publication-title: Chin J Chem Eng
  doi: 10.1016/j.cjche.2016.06.008
– volume: 35
  start-page: 13343
  issue: 18
  year: 2023
  end-page: 13358
  ident: CR32
  article-title: Amperage prediction in mono-wire cutting operation using multiple regression and artificial neural network models
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-023-08443-x
– year: 2023
  ident: CR21
  article-title: Consistent ramifications of prescribed surface temperature and prescribed heat flux boundary conditions for the slip flow of Walter B fluid in a stretching channel
  publication-title: Int J Model Simul
  doi: 10.1080/02286203.2023.2237845
– volume: 61
  start-page: 4253
  issue: 6
  year: 2022
  end-page: 4261
  ident: CR10
  article-title: Impact of non-similar modeling for forced convection analysis of nano-fluid flow over stretching sheet with chemical reaction and heat generation
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2021.09.045
– volume: 37
  start-page: 2350119
  issue: 12
  year: 2023
  ident: CR27
  article-title: Heat transfer performance of temperature-dependent Xue and Yamada-Ota hybrid nanofluid flow models past a curved stretching sheet with generalized Fourier law
  publication-title: Int J Mod Phys B
  doi: 10.1142/S0217979223501199
– volume: 37
  start-page: 2350124
  issue: 13
  year: 2023
  ident: CR17
  article-title: Chemical reaction, Soret and Dufour impacts on magnetohydrodynamic heat transfer Casson fluid over an exponentially permeable stretching surface with slip effects
  publication-title: Int J Mod Phys B
  doi: 10.1142/S0217979223501242
– year: 2019
  ident: CR2
  article-title: Artificial neural network modeling of MHD stagnation point flow and heat transfer towards a porous stretching sheet
  publication-title: AIP Conf Proc
  doi: 10.1063/1.5127634
– volume: 35
  start-page: 25143
  issue: 36
  year: 2023
  end-page: 25156
  ident: CR34
  article-title: Enterprise innovation evaluation method based on swarm optimization algorithm and artificial neural network
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-023-08317-2
– volume: 17
  year: 2023
  ident: CR30
  article-title: Impression of nonlinear radiation and Stefan blowing on the magneto cross nano-Williamson fluid above exponentially stretching sheet
  publication-title: Res Eng
– volume: 25
  year: 2021
  ident: CR35
  article-title: Flow and heat transfer of hybrid nanofluid induced by an exponentially stretching/shrinking curved surface
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2021.100982
– volume: 7
  start-page: 2851
  year: 2017
  end-page: 2854
  ident: CR7
  article-title: Flow of viscous fluid along an exponentially stretching curved surface
  publication-title: Res Phys
– volume: 189
  year: 2020
  ident: CR24
  article-title: Magnetohydrodynamics (MHD) radiated nanomaterial viscous material flow by a curved surface with second order slip and entropy generation
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.105294
– volume: 43
  start-page: 1626
  issue: 1
  year: 2022
  end-page: 1636
  ident: CR28
  article-title: Impact of chemical reaction and double stratification on heat and mass transfer characteristics of nanofluid flow over porous stretching sheet with thermal radiation
  publication-title: Int J Ambient Energy
  doi: 10.1080/01430750.2020.1712240
– volume: 11
  start-page: 16351
  issue: 1
  year: 2021
  ident: 10193_CR9
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-95859-x
– volume: 10
  start-page: 287
  issue: 2
  year: 2023
  ident: 10193_CR20
  publication-title: J Appl Comput Mech
– volume: 37
  start-page: 2350119
  issue: 12
  year: 2023
  ident: 10193_CR27
  publication-title: Int J Mod Phys B
  doi: 10.1142/S0217979223501199
– volume: 580
  year: 2023
  ident: 10193_CR12
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2023.170959
– volume: 130
  year: 2022
  ident: 10193_CR4
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2021.105799
– volume: 17
  year: 2023
  ident: 10193_CR30
  publication-title: Res Eng
– volume: 35
  start-page: 25143
  issue: 36
  year: 2023
  ident: 10193_CR34
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-023-08317-2
– volume: 128
  start-page: 240
  issue: 3
  year: 2006
  ident: 10193_CR22
  publication-title: J Heat Transf
  doi: 10.1115/1.2150834
– volume: 50
  year: 2023
  ident: 10193_CR29
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2023.103505
– volume: 99
  start-page: 373
  year: 2016
  ident: 10193_CR1
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.01.063
– volume: 37
  start-page: 2350124
  issue: 13
  year: 2023
  ident: 10193_CR17
  publication-title: Int J Mod Phys B
  doi: 10.1142/S0217979223501242
– volume: 35
  start-page: 12513
  issue: 17
  year: 2023
  ident: 10193_CR33
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-023-08379-2
– volume: 25
  start-page: 257
  issue: 3
  year: 2017
  ident: 10193_CR14
  publication-title: Chin J Chem Eng
  doi: 10.1016/j.cjche.2016.06.008
– year: 2019
  ident: 10193_CR2
  publication-title: AIP Conf Proc
  doi: 10.1063/1.5127634
– volume: 140
  start-page: 2377
  year: 2020
  ident: 10193_CR8
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-019-08977-0
– volume: 189
  year: 2020
  ident: 10193_CR24
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.105294
– volume: 13
  start-page: 12770
  issue: 1
  year: 2023
  ident: 10193_CR19
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-39354-5
– volume: 35
  start-page: 8873
  issue: 12
  year: 2023
  ident: 10193_CR31
  publication-title: Neural Comput Appl
– volume: 25
  year: 2021
  ident: 10193_CR35
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2021.100982
– volume: 13
  issue: 2
  year: 2022
  ident: 10193_CR5
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2021.08.015
– volume: 7
  start-page: 665
  issue: 10
  year: 2019
  ident: 10193_CR23
  publication-title: Processes
  doi: 10.3390/pr7100665
– volume: 10
  start-page: 4133
  issue: 21
  year: 2022
  ident: 10193_CR25
  publication-title: Mathematics
  doi: 10.3390/math10214133
– volume: 70
  start-page: 219
  year: 2023
  ident: 10193_CR26
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2023.02.031
– volume: 11
  start-page: 14509
  issue: 1
  year: 2021
  ident: 10193_CR3
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-93790-9
– volume: 61
  start-page: 4253
  issue: 6
  year: 2022
  ident: 10193_CR10
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2021.09.045
– volume: 53
  start-page: 67
  issue: 3
  year: 2022
  ident: 10193_CR6
  publication-title: Heat Transf Res
  doi: 10.1615/HeatTransRes.2021041018
– volume: 7
  start-page: 2851
  year: 2017
  ident: 10193_CR7
  publication-title: Res Phys
– volume: 35
  start-page: 1
  issue: 1
  year: 2016
  ident: 10193_CR13
  publication-title: J Niger Math Soc
  doi: 10.1016/j.jnnms.2015.02.001
– volume: 401
  start-page: 79
  year: 2020
  ident: 10193_CR15
  publication-title: Defect Diffus Forum
  doi: 10.4028/www.scientific.net/DDF.401.79
– volume: 3
  start-page: 382
  issue: 3
  year: 2021
  ident: 10193_CR16
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-021-04339-4
– volume: 35
  start-page: 13343
  issue: 18
  year: 2023
  ident: 10193_CR32
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-023-08443-x
– year: 2023
  ident: 10193_CR21
  publication-title: Int J Model Simul
  doi: 10.1080/02286203.2023.2237845
– volume: 140
  start-page: 106313
  year: 2023
  ident: 10193_CR18
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2022.106313
– volume: 38
  start-page: 2450026
  year: 2023
  ident: 10193_CR11
  publication-title: Int J Mod Phys B
  doi: 10.1142/S0217979224500267
– volume: 43
  start-page: 1626
  issue: 1
  year: 2022
  ident: 10193_CR28
  publication-title: Int J Ambient Energy
  doi: 10.1080/01430750.2020.1712240
SSID ssj0004685
Score 2.365242
Snippet A theoretical framework is constructed for the Casson–Carreau nanofluid flow over a curved surface that is stretched exponentially. Artificial intelligence and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19393
SubjectTerms Accuracy
Activation analysis
Activation energy
Algorithms
Artificial Intelligence
Artificial neural networks
Boundary conditions
Chemical reactions
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Design engineering
Error analysis
Fluid flow
Image Processing and Computer Vision
Impact analysis
Machine learning
Nanofluids
Neural networks
Numerical methods
Original Article
Parameters
Predictions
Probability and Statistics in Computer Science
Regression models
Runge-Kutta method
Schmidt number
Thermal stratification
Title Implementation of artificial neural network using Levenberg Marquardt algorithm for Casson–Carreau nanofluid flow over exponentially stretching curved surface
URI https://link.springer.com/article/10.1007/s00521-024-10193-3
https://www.proquest.com/docview/3110546685
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZoe-EC5U8slNUcuEGk3YydrI_LardVSyuEWKmcIsc_pVKatNmEn1vfgRfg2XgSxt5kCwiQOPmQxIkyY_sb-5tvGHuuUUjttIpUnEwiLlFGhONkZKXQk1wQJk58NvLxSXKw5Ien4rRLClv1bPf-SDLM1JtkN7-DSaFvzGnqINgR4RbbEV7Oi7x4GU9_yoYMhTgpbvGcHo5dqsyf-_h1ObrBmL8di4bVZrHL7nQwEaZru95jt2x5n93tSzBANyIfsG9B3feiSyAqoXLgfWEtCwFerDI0geoNnuN-Bq-9ZpNndcGxqq-8hzSgirOqPm8-XABhWJgRoK7K79dfZ57Hq1ooVVm5oj034IrqE3jWJ9jPl1XpqUaqKL6ATzlpAi0TdFt_tAZWbe2Utg_ZcjF_NzuIuqILkY6RY0TTneOaAjHM81RT-GiUMjZGRJdYN0JttdF6ZKxGkyAnwDIyKYEEwlljwy3HR2y7pPc_ZuDGSaIxRTlCR2GqyCVPrdAyNVrGBu2Ajft_n-lOkdwXxiiyjZZysFdG9sqCvTIcsBebZy7Xehz_vHuvN2nWjc1VhoR4BH34RAzYy97MN5f_3tuT_7v9KbsdB0_z-zV7bLupW_uMEEyTD9nWZLE_ZDvT_fdHc2pfzU_evB0GN_4B2_nvZg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NctMwENZAeoAL5XdIKbAHbuBO4pXt-NjJtASa9NTMlJNHXkmlg2u3ic3fiXfgBXg2noSVYqfQAWZ68sGybM-upG-lb78V4gVhlJIlFagwHgUyxTRgHJcGJo1olEeMiWOXjTw7jCdz-fY4Om6TwpYd2707kvQz9TrZze1gcugbSp46GHYEeFNsSA5Qwp7Y2H397mDvt3xIX4qTIxfH6pHYJsv8vZc_F6RLlHnlYNSvN_ubYt596Ypm8mGnqfMd-npFxPG6v3JX3GkBKOyuPOaeuGHK-2KzK-4A7Vh_IH543eCzNjWphMqC87KV4AQ4GUx_8SRycOz5E5g6NSjHF4OZWlw436tBFSfV4rR-fwaMjmHMUL0qf377PnYMYdVAqcrKFs2pBltUn8DxScF8Pq9KR2JSRfEFXDJL7QmfQM3io9GwbBZWkXko5vt7R-NJ0JZzCChEiQFPpFYSh3iY5wlxYKqV0iZERBsbO0AypIkG2hDqGCVDoYFOGH4wghtqaSQ-Er2S3_9YgB3GMWGC6QAtB8BRnsrERJQmmtJQo-mLYWfTjFqtc1dyo8jWKs3eBBmbIPMmyLAvXq6fOV8pffy39XbnKlk76pcZMpaK-MNHUV-86ix_efvfvW1dr_lzcWtyNJtm0zeHB0_E7dA7ktsV2ha9etGYp4yT6vxZOyx-AXXwCzQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagSIgL5VcsFJgDN4i6m3GS9bFaWBVoKw6s1FvkjO1SKU2WNOHn1nfoC_TZeBLG3mRbECBxyiGOE2XG9jf2N98I8YIwUeRIRzpOp5FUqCLGcSqyKqFpkTAmTn028v5BuruQ7w6TwytZ_IHtPhxJrnIavEpT1W4vjdteJ7753UwOg2PJ0whDkAivixvSCyWwRy_inSuZkaEoJ8cwnt8jsU-b-XMfvy5Nl3jztyPSsPLM74jbPWSEnZWN74prtronNodyDNCPzvviIij9nvTJRBXUDrxfrCQiwAtXhkugfYPnux_Bntdv8gwv2NfNZ-8tLejyqG6O208nwHgWZgyu6-rH2fnMc3p1B5Wuald2xwZcWX8FzwAF-21ZV552pMvyO_j0kzZQNIG65os1cNo1TpN9IBbzNx9nu1FfgCGiGCVGPPU5SRyUYVFkxKGk0drYGBFdat0YyZIhGhtLaFKUDF7GJmPAwJhrYqSV-FBsVPz-RwLcJE0JM1RjdByyJoWSmU1IZYZUbNCOxGT49zn16uS-SEaZr3WVg71ytlce7JXjSLxcP7NcaXP8s_XWYNK8H6enOTL6SfjDp8lIvBrMfHn77709_r_mz8XND6_n-d7bg_dPxK04OJ3fxtkSG23T2acMbNriWfDdnyT78no
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+artificial+neural+network+using+Levenberg+Marquardt+algorithm+for+Casson%E2%80%93Carreau+nanofluid+flow+over+exponentially+stretching+curved+surface&rft.jtitle=Neural+computing+%26+applications&rft.au=Almeida%2C+F.&rft.au=Kumar%2C+Pradeep&rft.au=Ajaykumar%2C+A.+R.&rft.au=Nagaraja%2C+B.&rft.date=2024-11-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=31&rft.spage=19393&rft.epage=19415&rft_id=info:doi/10.1007%2Fs00521-024-10193-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_024_10193_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon