Implementation of artificial neural network using Levenberg Marquardt algorithm for Casson–Carreau nanofluid flow over exponentially stretching curved surface
A theoretical framework is constructed for the Casson–Carreau nanofluid flow over a curved surface that is stretched exponentially. Artificial intelligence and machine learning are in vogue as the technologies that involve them, have expanded exponentially. In the current analysis, the Levenberg–Mar...
        Saved in:
      
    
          | Published in | Neural computing & applications Vol. 36; no. 31; pp. 19393 - 19415 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Springer London
    
        01.11.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0941-0643 1433-3058  | 
| DOI | 10.1007/s00521-024-10193-3 | 
Cover
| Abstract | A theoretical framework is constructed for the Casson–Carreau nanofluid flow over a curved surface that is stretched exponentially. Artificial intelligence and machine learning are in vogue as the technologies that involve them, have expanded exponentially. In the current analysis, the Levenberg–Marquardt algorithm is used to train a machine learning language made of artificial neural networks to train the mathematical model constructed by including chemical reaction, and an exponential heat source component. The activation energy effect is taken into account while analyzing the impact of fluid concentration. Double stratification and Stefan blowing boundary conditions are used. Runge–Kutta Fehlberg 4–5th order is a numerical method applied to form the solution. An artificial neural network is used to train, test, and validate numerical computations. The linear regression models, histograms, and mean squared errors are used to verify the model's accuracy. The accuracy of the training is predicted by the least error in the range of 10
−3
–10
−4
as per the absolute error analysis carried out individually for the six parameters under consideration. Results reveal that the velocity is augmented by Weissenberg number and the mixed convection parameter. The temperature enhances for increasing unsteadiness parameter and depletes for increasing thermal stratification parameter. The concentration increases with increasing activation energy parameter and decreasing Schmidt number. Consequently, this study reveals that artificial neural network can be used as an alternative for the prediction of prolonged calculations. Nevertheless, the flow structure designed for the fluid considered in the model can be a pathway to fabricate an optimized industrial design. | 
    
|---|---|
| AbstractList | A theoretical framework is constructed for the Casson–Carreau nanofluid flow over a curved surface that is stretched exponentially. Artificial intelligence and machine learning are in vogue as the technologies that involve them, have expanded exponentially. In the current analysis, the Levenberg–Marquardt algorithm is used to train a machine learning language made of artificial neural networks to train the mathematical model constructed by including chemical reaction, and an exponential heat source component. The activation energy effect is taken into account while analyzing the impact of fluid concentration. Double stratification and Stefan blowing boundary conditions are used. Runge–Kutta Fehlberg 4–5th order is a numerical method applied to form the solution. An artificial neural network is used to train, test, and validate numerical computations. The linear regression models, histograms, and mean squared errors are used to verify the model's accuracy. The accuracy of the training is predicted by the least error in the range of 10−3–10−4 as per the absolute error analysis carried out individually for the six parameters under consideration. Results reveal that the velocity is augmented by Weissenberg number and the mixed convection parameter. The temperature enhances for increasing unsteadiness parameter and depletes for increasing thermal stratification parameter. The concentration increases with increasing activation energy parameter and decreasing Schmidt number. Consequently, this study reveals that artificial neural network can be used as an alternative for the prediction of prolonged calculations. Nevertheless, the flow structure designed for the fluid considered in the model can be a pathway to fabricate an optimized industrial design. A theoretical framework is constructed for the Casson–Carreau nanofluid flow over a curved surface that is stretched exponentially. Artificial intelligence and machine learning are in vogue as the technologies that involve them, have expanded exponentially. In the current analysis, the Levenberg–Marquardt algorithm is used to train a machine learning language made of artificial neural networks to train the mathematical model constructed by including chemical reaction, and an exponential heat source component. The activation energy effect is taken into account while analyzing the impact of fluid concentration. Double stratification and Stefan blowing boundary conditions are used. Runge–Kutta Fehlberg 4–5th order is a numerical method applied to form the solution. An artificial neural network is used to train, test, and validate numerical computations. The linear regression models, histograms, and mean squared errors are used to verify the model's accuracy. The accuracy of the training is predicted by the least error in the range of 10 −3 –10 −4 as per the absolute error analysis carried out individually for the six parameters under consideration. Results reveal that the velocity is augmented by Weissenberg number and the mixed convection parameter. The temperature enhances for increasing unsteadiness parameter and depletes for increasing thermal stratification parameter. The concentration increases with increasing activation energy parameter and decreasing Schmidt number. Consequently, this study reveals that artificial neural network can be used as an alternative for the prediction of prolonged calculations. Nevertheless, the flow structure designed for the fluid considered in the model can be a pathway to fabricate an optimized industrial design.  | 
    
| Author | Ajaykumar, A. R. Nagaraja, B. Almeida, F. Kumar, Pradeep  | 
    
| Author_xml | – sequence: 1 givenname: F. surname: Almeida fullname: Almeida, F. organization: Department of Mathematics, School of Engineering, Presidency University – sequence: 2 givenname: Pradeep orcidid: 0000-0002-4875-5387 surname: Kumar fullname: Kumar, Pradeep email: pradeepkumar@presidencyuniversity.in organization: Department of Mathematics, School of Engineering, Presidency University – sequence: 3 givenname: A. R. surname: Ajaykumar fullname: Ajaykumar, A. R. organization: Department of Mathematics, School of Engineering, Presidency University – sequence: 4 givenname: B. surname: Nagaraja fullname: Nagaraja, B. organization: Department of Mathematics, School of Engineering, Presidency University  | 
    
| BookMark | eNp9kUtuFDEQhi2USEweF2BliXWD7XL39CzRiEekQWzIuuWxyxOHHntSdk_IjjtwAc7GSXDSSEgssqqS6v_q9Z-xk5giMvZKijdSiOXbLESrZCOUbqSQK2jgBVtIDTURbX_CFmKla7nT8JKd5XwrhNBd3y7Yr6v9YcQ9xmJKSJEnzw2V4IMNZuQRJ3oK5T7RNz7lEHd8g0eMW6Qd_2zobjLkCjfjLlEoN3vuE_G1yTnF3z9-rg0RmolHE5Mfp-C4H9M9T0ckjt8P9YZY6pzxgedCWOzNY3870REdzxN5Y_GCnXozZrz8G8_Z9Yf3X9efms2Xj1frd5vGKtDQOIdeW9Ur2G6XVrXaGeNQAYDv0AuwaJ21wqEF14HuOhBuKZWGlZJOo4Zz9nrue6B0N2Euw22aKNaRA0gp2or0bVX1s8pSypnQDzbMnytkwjhIMTz6Mcx-DNWP4cmPASqq_kMPFPaGHp6HYIZyFccd0r-tnqH-AOFApas | 
    
| CitedBy_id | crossref_primary_10_1016_j_padiff_2024_101061 crossref_primary_10_1007_s41939_024_00585_2 crossref_primary_10_1007_s41939_024_00586_1  | 
    
| Cites_doi | 10.1016/j.csite.2023.103505 10.3390/math10214133 10.1007/s00521-023-08379-2 10.1007/s42452-021-04339-4 10.1016/j.jnnms.2015.02.001 10.3390/pr7100665 10.1038/s41598-021-93790-9 10.1016/j.jmmm.2023.170959 10.1016/j.aej.2023.02.031 10.1038/s41598-021-95859-x 10.1016/j.applthermaleng.2016.01.063 10.1016/j.icheatmasstransfer.2021.105799 10.1016/j.asej.2021.08.015 10.1038/s41598-023-39354-5 10.1007/s10973-019-08977-0 10.4028/www.scientific.net/DDF.401.79 10.1115/1.2150834 10.1615/HeatTransRes.2021041018 10.1142/S0217979224500267 10.1016/j.icheatmasstransfer.2022.106313 10.1016/j.cjche.2016.06.008 10.1007/s00521-023-08443-x 10.1080/02286203.2023.2237845 10.1016/j.aej.2021.09.045 10.1142/S0217979223501199 10.1142/S0217979223501242 10.1063/1.5127634 10.1007/s00521-023-08317-2 10.1016/j.csite.2021.100982 10.1016/j.cmpb.2019.105294 10.1080/01430750.2020.1712240  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1007/s00521-024-10193-3 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1433-3058 | 
    
| EndPage | 19415 | 
    
| ExternalDocumentID | 10_1007_s00521_024_10193_3 | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO  | 
    
| ID | FETCH-LOGICAL-c2343-ddef4c2823bb7c254daade2333f6ef03cecdcc0dec3d6346630d71243921d4e43 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0941-0643 | 
    
| IngestDate | Sat Jul 26 01:13:12 EDT 2025 Thu Apr 24 23:05:55 EDT 2025 Wed Oct 01 03:43:43 EDT 2025 Fri Feb 21 02:41:41 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 31 | 
    
| Keywords | Artificial neural network Casson–Carreau nanofluid Activation energy Exponential stretching sheet  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2343-ddef4c2823bb7c254daade2333f6ef03cecdcc0dec3d6346630d71243921d4e43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-4875-5387 | 
    
| PQID | 3110546685 | 
    
| PQPubID | 2043988 | 
    
| PageCount | 23 | 
    
| ParticipantIDs | proquest_journals_3110546685 crossref_citationtrail_10_1007_s00521_024_10193_3 crossref_primary_10_1007_s00521_024_10193_3 springer_journals_10_1007_s00521_024_10193_3  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20241100 2024-11-00 20241101  | 
    
| PublicationDateYYYYMMDD | 2024-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2024 text: 20241100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: Heidelberg  | 
    
| PublicationTitle | Neural computing & applications | 
    
| PublicationTitleAbbrev | Neural Comput & Applic | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer London Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer London – name: Springer Nature B.V  | 
    
| References | Raja, Shoaib, Khan, Zuhra, Saleel, Nisar, Islam, Khan (CR5) 2022; 13 Alblawi, Malik, Nadeem, Abbas (CR23) 2019; 7 Hayat, Khan, Waqas, Alsaedi, Yasmeen (CR14) 2017; 25 Ragupathi, Ahammad, Wakif, Shah, Jeon (CR25) 2022; 10 Shi, Wang (CR31) 2023; 35 Wahid, Arifin, Khashi'ie, Pop, Bachok, Hafidzuddin (CR35) 2021; 25 Okechi, Jalil, Asghar (CR7) 2017; 7 Babu, Parandhama, Vijaya (CR16) 2021; 3 Nagaraja, Almeida, Ali, Kumar, Ajaykumar, Al-Mdallal (CR29) 2023; 50 Nagaraja, Gireesha, Almeida, Kumar, Ajaykumar (CR20) 2023; 10 Reddy, Sreedevi (CR28) 2022; 43 Lone, Shamshuddin, Shahab, Iftikhar, Saeed, Galal (CR12) 2023; 580 Yilmazkaya (CR32) 2023; 35 Zhang, Zeng, Lo, Fan (CR34) 2023; 35 Goud, Reddy, Asogwa (CR17) 2023; 37 Serbest, Ozkan, Cilli (CR33) 2023; 35 Kumar, Sugunamma, Sandeep (CR8) 2020; 140 Ramzan, Shaheen, Ghazwani, Nisar, Saleel (CR27) 2023; 37 Almeida, Keerthi, Gireesha, Venkatesh, Kumar, Nagaraja (CR21) 2023 Shi, Shabbir, Mushtaq, Khan, Shah, Kumam (CR9) 2021; 11 Cui, Razzaq, Farooq, Khan, Farooq, Muhammad (CR10) 2022; 61 Buongiorno (CR22) 2006; 128 Ziaei-Rad, Saeedan, Afshari (CR1) 2016; 99 Animasaun, Adebile, Fagbade (CR13) 2016; 35 Shahzad, Ashiq, Waqas, Pasha, Islam, Zubair (CR18) 2023; 140 Kumar, Nagaraja, Almeida, Ajaykumar, Al-Mdallal, Jarad (CR19) 2023; 13 Shafiq, Çolak, Sindhu, Muhammad (CR6) 2022; 53 Abbas, Tumreen, Shatanawi, Qasim, Shatnawi (CR26) 2023; 70 Abbas, Ali, Shatanawi (CR11) 2023; 38 Saleem, Hussain (CR30) 2023; 17 Kumar, Sugunamma, Sandeep, Sivaiah (CR15) 2020; 401 Muhammad, Khan, Khan, Jameel (CR24) 2020; 189 Raja, Shoaib, Hussain, Nisar, Islam (CR4) 2022; 130 Elayarani, Shanmugapriya (CR2) 2019 Shafiq, Çolak, Sindhu, Al-Mdallal, Abdeljawad (CR3) 2021; 11 A Shafiq (10193_CR3) 2021; 11 KS Babu (10193_CR16) 2021; 3 T Hayat (10193_CR14) 2017; 25 E Yilmazkaya (10193_CR32) 2023; 35 M Saleem (10193_CR30) 2023; 17 NS Wahid (10193_CR35) 2021; 25 R Muhammad (10193_CR24) 2020; 189 Y Shi (10193_CR31) 2023; 35 M Ziaei-Rad (10193_CR1) 2016; 99 N Abbas (10193_CR11) 2023; 38 PS Reddy (10193_CR28) 2022; 43 Q Zhang (10193_CR34) 2023; 35 A Alblawi (10193_CR23) 2019; 7 BS Goud (10193_CR17) 2023; 37 QH Shi (10193_CR9) 2021; 11 MAZ Raja (10193_CR5) 2022; 13 F Shahzad (10193_CR18) 2023; 140 P Kumar (10193_CR19) 2023; 13 B Nagaraja (10193_CR29) 2023; 50 KA Kumar (10193_CR15) 2020; 401 B Nagaraja (10193_CR20) 2023; 10 J Cui (10193_CR10) 2022; 61 N Abbas (10193_CR26) 2023; 70 MAZ Raja (10193_CR4) 2022; 130 IL Animasaun (10193_CR13) 2016; 35 M Elayarani (10193_CR2) 2019 J Buongiorno (10193_CR22) 2006; 128 K Serbest (10193_CR33) 2023; 35 NF Okechi (10193_CR7) 2017; 7 SA Lone (10193_CR12) 2023; 580 M Ramzan (10193_CR27) 2023; 37 F Almeida (10193_CR21) 2023 KA Kumar (10193_CR8) 2020; 140 A Shafiq (10193_CR6) 2022; 53 P Ragupathi (10193_CR25) 2022; 10  | 
    
| References_xml | – volume: 50 year: 2023 ident: CR29 article-title: Empirical study for Nusselt number optimization for the flow using ANOVA and Taguchi method publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2023.103505 – volume: 10 start-page: 4133 issue: 21 year: 2022 ident: CR25 article-title: Exploration of multiple transfer phenomena within viscous fluid flows over a curved stretching sheet in the co-existence of gyrotactic micro-organisms and tiny particles publication-title: Mathematics doi: 10.3390/math10214133 – volume: 35 start-page: 12513 issue: 17 year: 2023 end-page: 12529 ident: CR33 article-title: Estimation of joint torques using an artificial neural network model based on kinematic and anthropometric data publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08379-2 – volume: 3 start-page: 382 issue: 3 year: 2021 ident: CR16 article-title: Non-linear MHD convective flow of Carreau nanofluid over an exponentially stretching surface with activation energy and viscous dissipation publication-title: SN Appl Sci doi: 10.1007/s42452-021-04339-4 – volume: 35 start-page: 1 issue: 1 year: 2016 end-page: 17 ident: CR13 article-title: Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method publication-title: J Niger Math Soc doi: 10.1016/j.jnnms.2015.02.001 – volume: 7 start-page: 665 issue: 10 year: 2019 ident: CR23 article-title: Buongiorno’s nanofluid model over a curved exponentially stretching surface publication-title: Processes doi: 10.3390/pr7100665 – volume: 11 start-page: 14509 issue: 1 year: 2021 ident: CR3 article-title: Estimation of unsteady hydromagnetic Williamson fluid flow in a radiative surface through numerical and artificial neural network modelling publication-title: Sci Rep doi: 10.1038/s41598-021-93790-9 – volume: 580 year: 2023 ident: CR12 article-title: Computational analysis of MHD driven bioconvective flow of hybrid Casson nanofluid past a permeable exponential stretching sheet with thermophoresis and Brownian motion effects publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2023.170959 – volume: 70 start-page: 219 year: 2023 end-page: 230 ident: CR26 article-title: Thermodynamic properties of second grade nanofluid flow with radiation and chemical reaction over slendering stretching sheet publication-title: Alex Eng J doi: 10.1016/j.aej.2023.02.031 – volume: 11 start-page: 16351 issue: 1 year: 2021 ident: CR9 article-title: Modelling and numerical computation for flow of micropolar fluid towards an exponential curved surface: a Keller box method publication-title: Sci Rep doi: 10.1038/s41598-021-95859-x – volume: 35 start-page: 8873 issue: 12 year: 2023 end-page: 8882 ident: CR31 article-title: Optimization algorithm of an artificial neural network-based controller and simulation method for animated virtual idol characters publication-title: Neural Comput Appl – volume: 99 start-page: 373 year: 2016 end-page: 382 ident: CR1 article-title: Simulation and prediction of MHD dissipative nanofluid flow on a permeable stretching surface using artificial neural network publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.01.063 – volume: 130 year: 2022 ident: CR4 article-title: Computational intelligence of Levenberg-Marquardt backpropagation neural networks to study thermal radiation and Hall effects on boundary layer flow past a stretching sheet publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2021.105799 – volume: 13 issue: 2 year: 2022 ident: CR5 article-title: Supervised neural networks learning algorithm for three-dimensional hybrid nanofluid flow with radiative heat and mass fluxes publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2021.08.015 – volume: 13 start-page: 12770 issue: 1 year: 2023 ident: CR19 article-title: Magnetic dipole effects on unsteady flow of Casson-Williamson nanofluid propelled by stretching slippery curved melting sheet with buoyancy force publication-title: Sci Rep doi: 10.1038/s41598-023-39354-5 – volume: 140 start-page: 2377 year: 2020 end-page: 2385 ident: CR8 article-title: Effect of thermal radiation on MHD Casson fluid flow over an exponentially stretching curved sheet publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-08977-0 – volume: 401 start-page: 79 year: 2020 end-page: 91 ident: CR15 article-title: Physical aspects on MHD micropolar fluid flow past an exponentially stretching curved surface publication-title: Defect Diffus Forum doi: 10.4028/www.scientific.net/DDF.401.79 – volume: 128 start-page: 240 issue: 3 year: 2006 end-page: 250 ident: CR22 article-title: Convective transport in nanofluids publication-title: J Heat Transf doi: 10.1115/1.2150834 – volume: 53 start-page: 67 issue: 3 year: 2022 end-page: 89 ident: CR6 article-title: Optimization of Darcy-Forchheimer squeezing flow in nonlinear stratified fluid under convective conditions with artificial neural network publication-title: Heat Transf Res doi: 10.1615/HeatTransRes.2021041018 – volume: 38 start-page: 2450026 year: 2023 ident: CR11 article-title: Chemical reactive second-grade nanofluid flow past an exponential curved stretching surface: Numerically publication-title: Int J Mod Phys B doi: 10.1142/S0217979224500267 – volume: 10 start-page: 287 issue: 2 year: 2023 end-page: 303 ident: CR20 article-title: Entropy analysis of Darcy-Forchheimer Model of Prandtl nanofluid over a curved stretching sheet and heat transfer optimization by ANOVA-Taguchi technique publication-title: J Appl Comput Mech – volume: 140 start-page: 106313 year: 2023 ident: CR18 article-title: Chemically reactive Carreau nanoliquid radiative flow induced by exponentially extending surface capturing variable liquid characteristics: a three-dimensional analysis publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2022.106313 – volume: 25 start-page: 257 issue: 3 year: 2017 end-page: 263 ident: CR14 article-title: Diffusion of chemically reactive species in third grade fluid flow over an exponentially stretching sheet considering magnetic field effects publication-title: Chin J Chem Eng doi: 10.1016/j.cjche.2016.06.008 – volume: 35 start-page: 13343 issue: 18 year: 2023 end-page: 13358 ident: CR32 article-title: Amperage prediction in mono-wire cutting operation using multiple regression and artificial neural network models publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08443-x – year: 2023 ident: CR21 article-title: Consistent ramifications of prescribed surface temperature and prescribed heat flux boundary conditions for the slip flow of Walter B fluid in a stretching channel publication-title: Int J Model Simul doi: 10.1080/02286203.2023.2237845 – volume: 61 start-page: 4253 issue: 6 year: 2022 end-page: 4261 ident: CR10 article-title: Impact of non-similar modeling for forced convection analysis of nano-fluid flow over stretching sheet with chemical reaction and heat generation publication-title: Alex Eng J doi: 10.1016/j.aej.2021.09.045 – volume: 37 start-page: 2350119 issue: 12 year: 2023 ident: CR27 article-title: Heat transfer performance of temperature-dependent Xue and Yamada-Ota hybrid nanofluid flow models past a curved stretching sheet with generalized Fourier law publication-title: Int J Mod Phys B doi: 10.1142/S0217979223501199 – volume: 37 start-page: 2350124 issue: 13 year: 2023 ident: CR17 article-title: Chemical reaction, Soret and Dufour impacts on magnetohydrodynamic heat transfer Casson fluid over an exponentially permeable stretching surface with slip effects publication-title: Int J Mod Phys B doi: 10.1142/S0217979223501242 – year: 2019 ident: CR2 article-title: Artificial neural network modeling of MHD stagnation point flow and heat transfer towards a porous stretching sheet publication-title: AIP Conf Proc doi: 10.1063/1.5127634 – volume: 35 start-page: 25143 issue: 36 year: 2023 end-page: 25156 ident: CR34 article-title: Enterprise innovation evaluation method based on swarm optimization algorithm and artificial neural network publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08317-2 – volume: 17 year: 2023 ident: CR30 article-title: Impression of nonlinear radiation and Stefan blowing on the magneto cross nano-Williamson fluid above exponentially stretching sheet publication-title: Res Eng – volume: 25 year: 2021 ident: CR35 article-title: Flow and heat transfer of hybrid nanofluid induced by an exponentially stretching/shrinking curved surface publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2021.100982 – volume: 7 start-page: 2851 year: 2017 end-page: 2854 ident: CR7 article-title: Flow of viscous fluid along an exponentially stretching curved surface publication-title: Res Phys – volume: 189 year: 2020 ident: CR24 article-title: Magnetohydrodynamics (MHD) radiated nanomaterial viscous material flow by a curved surface with second order slip and entropy generation publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.105294 – volume: 43 start-page: 1626 issue: 1 year: 2022 end-page: 1636 ident: CR28 article-title: Impact of chemical reaction and double stratification on heat and mass transfer characteristics of nanofluid flow over porous stretching sheet with thermal radiation publication-title: Int J Ambient Energy doi: 10.1080/01430750.2020.1712240 – volume: 11 start-page: 16351 issue: 1 year: 2021 ident: 10193_CR9 publication-title: Sci Rep doi: 10.1038/s41598-021-95859-x – volume: 10 start-page: 287 issue: 2 year: 2023 ident: 10193_CR20 publication-title: J Appl Comput Mech – volume: 37 start-page: 2350119 issue: 12 year: 2023 ident: 10193_CR27 publication-title: Int J Mod Phys B doi: 10.1142/S0217979223501199 – volume: 580 year: 2023 ident: 10193_CR12 publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2023.170959 – volume: 130 year: 2022 ident: 10193_CR4 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2021.105799 – volume: 17 year: 2023 ident: 10193_CR30 publication-title: Res Eng – volume: 35 start-page: 25143 issue: 36 year: 2023 ident: 10193_CR34 publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08317-2 – volume: 128 start-page: 240 issue: 3 year: 2006 ident: 10193_CR22 publication-title: J Heat Transf doi: 10.1115/1.2150834 – volume: 50 year: 2023 ident: 10193_CR29 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2023.103505 – volume: 99 start-page: 373 year: 2016 ident: 10193_CR1 publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.01.063 – volume: 37 start-page: 2350124 issue: 13 year: 2023 ident: 10193_CR17 publication-title: Int J Mod Phys B doi: 10.1142/S0217979223501242 – volume: 35 start-page: 12513 issue: 17 year: 2023 ident: 10193_CR33 publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08379-2 – volume: 25 start-page: 257 issue: 3 year: 2017 ident: 10193_CR14 publication-title: Chin J Chem Eng doi: 10.1016/j.cjche.2016.06.008 – year: 2019 ident: 10193_CR2 publication-title: AIP Conf Proc doi: 10.1063/1.5127634 – volume: 140 start-page: 2377 year: 2020 ident: 10193_CR8 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-08977-0 – volume: 189 year: 2020 ident: 10193_CR24 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.105294 – volume: 13 start-page: 12770 issue: 1 year: 2023 ident: 10193_CR19 publication-title: Sci Rep doi: 10.1038/s41598-023-39354-5 – volume: 35 start-page: 8873 issue: 12 year: 2023 ident: 10193_CR31 publication-title: Neural Comput Appl – volume: 25 year: 2021 ident: 10193_CR35 publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2021.100982 – volume: 13 issue: 2 year: 2022 ident: 10193_CR5 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2021.08.015 – volume: 7 start-page: 665 issue: 10 year: 2019 ident: 10193_CR23 publication-title: Processes doi: 10.3390/pr7100665 – volume: 10 start-page: 4133 issue: 21 year: 2022 ident: 10193_CR25 publication-title: Mathematics doi: 10.3390/math10214133 – volume: 70 start-page: 219 year: 2023 ident: 10193_CR26 publication-title: Alex Eng J doi: 10.1016/j.aej.2023.02.031 – volume: 11 start-page: 14509 issue: 1 year: 2021 ident: 10193_CR3 publication-title: Sci Rep doi: 10.1038/s41598-021-93790-9 – volume: 61 start-page: 4253 issue: 6 year: 2022 ident: 10193_CR10 publication-title: Alex Eng J doi: 10.1016/j.aej.2021.09.045 – volume: 53 start-page: 67 issue: 3 year: 2022 ident: 10193_CR6 publication-title: Heat Transf Res doi: 10.1615/HeatTransRes.2021041018 – volume: 7 start-page: 2851 year: 2017 ident: 10193_CR7 publication-title: Res Phys – volume: 35 start-page: 1 issue: 1 year: 2016 ident: 10193_CR13 publication-title: J Niger Math Soc doi: 10.1016/j.jnnms.2015.02.001 – volume: 401 start-page: 79 year: 2020 ident: 10193_CR15 publication-title: Defect Diffus Forum doi: 10.4028/www.scientific.net/DDF.401.79 – volume: 3 start-page: 382 issue: 3 year: 2021 ident: 10193_CR16 publication-title: SN Appl Sci doi: 10.1007/s42452-021-04339-4 – volume: 35 start-page: 13343 issue: 18 year: 2023 ident: 10193_CR32 publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08443-x – year: 2023 ident: 10193_CR21 publication-title: Int J Model Simul doi: 10.1080/02286203.2023.2237845 – volume: 140 start-page: 106313 year: 2023 ident: 10193_CR18 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2022.106313 – volume: 38 start-page: 2450026 year: 2023 ident: 10193_CR11 publication-title: Int J Mod Phys B doi: 10.1142/S0217979224500267 – volume: 43 start-page: 1626 issue: 1 year: 2022 ident: 10193_CR28 publication-title: Int J Ambient Energy doi: 10.1080/01430750.2020.1712240  | 
    
| SSID | ssj0004685 | 
    
| Score | 2.365242 | 
    
| Snippet | A theoretical framework is constructed for the Casson–Carreau nanofluid flow over a curved surface that is stretched exponentially. Artificial intelligence and... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 19393 | 
    
| SubjectTerms | Accuracy Activation analysis Activation energy Algorithms Artificial Intelligence Artificial neural networks Boundary conditions Chemical reactions Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Design engineering Error analysis Fluid flow Image Processing and Computer Vision Impact analysis Machine learning Nanofluids Neural networks Numerical methods Original Article Parameters Predictions Probability and Statistics in Computer Science Regression models Runge-Kutta method Schmidt number Thermal stratification  | 
    
| Title | Implementation of artificial neural network using Levenberg Marquardt algorithm for Casson–Carreau nanofluid flow over exponentially stretching curved surface | 
    
| URI | https://link.springer.com/article/10.1007/s00521-024-10193-3 https://www.proquest.com/docview/3110546685  | 
    
| Volume | 36 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZoe-EC5U8slNUcuEGk3YydrI_LardVSyuEWKmcIsc_pVKatNmEn1vfgRfg2XgSxt5kCwiQOPmQxIkyY_sb-5tvGHuuUUjttIpUnEwiLlFGhONkZKXQk1wQJk58NvLxSXKw5Ien4rRLClv1bPf-SDLM1JtkN7-DSaFvzGnqINgR4RbbEV7Oi7x4GU9_yoYMhTgpbvGcHo5dqsyf-_h1ObrBmL8di4bVZrHL7nQwEaZru95jt2x5n93tSzBANyIfsG9B3feiSyAqoXLgfWEtCwFerDI0geoNnuN-Bq-9ZpNndcGxqq-8hzSgirOqPm8-XABhWJgRoK7K79dfZ57Hq1ooVVm5oj034IrqE3jWJ9jPl1XpqUaqKL6ATzlpAi0TdFt_tAZWbe2Utg_ZcjF_NzuIuqILkY6RY0TTneOaAjHM81RT-GiUMjZGRJdYN0JttdF6ZKxGkyAnwDIyKYEEwlljwy3HR2y7pPc_ZuDGSaIxRTlCR2GqyCVPrdAyNVrGBu2Ajft_n-lOkdwXxiiyjZZysFdG9sqCvTIcsBebZy7Xehz_vHuvN2nWjc1VhoR4BH34RAzYy97MN5f_3tuT_7v9KbsdB0_z-zV7bLupW_uMEEyTD9nWZLE_ZDvT_fdHc2pfzU_evB0GN_4B2_nvZg | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NctMwENZAeoAL5XdIKbAHbuBO4pXt-NjJtASa9NTMlJNHXkmlg2u3ic3fiXfgBXg2noSVYqfQAWZ68sGybM-upG-lb78V4gVhlJIlFagwHgUyxTRgHJcGJo1olEeMiWOXjTw7jCdz-fY4Om6TwpYd2707kvQz9TrZze1gcugbSp46GHYEeFNsSA5Qwp7Y2H397mDvt3xIX4qTIxfH6pHYJsv8vZc_F6RLlHnlYNSvN_ubYt596Ypm8mGnqfMd-npFxPG6v3JX3GkBKOyuPOaeuGHK-2KzK-4A7Vh_IH543eCzNjWphMqC87KV4AQ4GUx_8SRycOz5E5g6NSjHF4OZWlw436tBFSfV4rR-fwaMjmHMUL0qf377PnYMYdVAqcrKFs2pBltUn8DxScF8Pq9KR2JSRfEFXDJL7QmfQM3io9GwbBZWkXko5vt7R-NJ0JZzCChEiQFPpFYSh3iY5wlxYKqV0iZERBsbO0AypIkG2hDqGCVDoYFOGH4wghtqaSQ-Er2S3_9YgB3GMWGC6QAtB8BRnsrERJQmmtJQo-mLYWfTjFqtc1dyo8jWKs3eBBmbIPMmyLAvXq6fOV8pffy39XbnKlk76pcZMpaK-MNHUV-86ix_efvfvW1dr_lzcWtyNJtm0zeHB0_E7dA7ktsV2ha9etGYp4yT6vxZOyx-AXXwCzQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagSIgL5VcsFJgDN4i6m3GS9bFaWBVoKw6s1FvkjO1SKU2WNOHn1nfoC_TZeBLG3mRbECBxyiGOE2XG9jf2N98I8YIwUeRIRzpOp5FUqCLGcSqyKqFpkTAmTn028v5BuruQ7w6TwytZ_IHtPhxJrnIavEpT1W4vjdteJ7753UwOg2PJ0whDkAivixvSCyWwRy_inSuZkaEoJ8cwnt8jsU-b-XMfvy5Nl3jztyPSsPLM74jbPWSEnZWN74prtronNodyDNCPzvviIij9nvTJRBXUDrxfrCQiwAtXhkugfYPnux_Bntdv8gwv2NfNZ-8tLejyqG6O208nwHgWZgyu6-rH2fnMc3p1B5Wuald2xwZcWX8FzwAF-21ZV552pMvyO_j0kzZQNIG65os1cNo1TpN9IBbzNx9nu1FfgCGiGCVGPPU5SRyUYVFkxKGk0drYGBFdat0YyZIhGhtLaFKUDF7GJmPAwJhrYqSV-FBsVPz-RwLcJE0JM1RjdByyJoWSmU1IZYZUbNCOxGT49zn16uS-SEaZr3WVg71ytlce7JXjSLxcP7NcaXP8s_XWYNK8H6enOTL6SfjDp8lIvBrMfHn77709_r_mz8XND6_n-d7bg_dPxK04OJ3fxtkSG23T2acMbNriWfDdnyT78no | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+artificial+neural+network+using+Levenberg+Marquardt+algorithm+for+Casson%E2%80%93Carreau+nanofluid+flow+over+exponentially+stretching+curved+surface&rft.jtitle=Neural+computing+%26+applications&rft.au=Almeida%2C+F.&rft.au=Kumar%2C+Pradeep&rft.au=Ajaykumar%2C+A.+R.&rft.au=Nagaraja%2C+B.&rft.date=2024-11-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=31&rft.spage=19393&rft.epage=19415&rft_id=info:doi/10.1007%2Fs00521-024-10193-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_024_10193_3 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |