Prediction of monthly groundwater level using a new hybrid intelligent approach in the Tabriz plain, Iran
Predicting the groundwater level (GWL) is essential in water resource management and irrigation planning in arid and semi-arid areas. In this study, an artificial neural network (ANN) was combined with newly developed wild horse optimizer (WHO) and egret swarm optimization algorithm (ESOA) technique...
Saved in:
| Published in | Neural computing & applications Vol. 36; no. 20; pp. 12609 - 12624 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer London
01.07.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0941-0643 1433-3058 |
| DOI | 10.1007/s00521-024-09681-3 |
Cover
| Abstract | Predicting the groundwater level (GWL) is essential in water resource management and irrigation planning in arid and semi-arid areas. In this study, an artificial neural network (ANN) was combined with newly developed wild horse optimizer (WHO) and egret swarm optimization algorithm (ESOA) techniques to predict a one month lead-time GWL in the Tabriz plain of Iran. For the prediction of the GWL, the number of months and years, the one month lag of average temperature, evaporation, precipitation, and GWL were used as inputs. Model performances were compared using root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), coefficient of determination (
R
2
), and relative strength ratio (RSR) statistical indicators and scatter diagrams, time series graph, violin graph, and Taylor diagram. As a result of the analysis, the most successful estimation results were obtained with the input combinations of year, month, average temperature, evaporation, precipitation, and GWL (
t
− 1) for the prediction of the one month lead-time GWL. According to the results of evaluation indicators in the testing phase, ANN with (
R
2
= 0.871, RMSE = 0.306 (m), NSE = 0.832, and RSR = 0.410), WHO–ANN (
R
2
= 0.932, RMSE = 0.200 (m), NSE = 0.929, and RSR = 0.267), and ESOA–ANN (R
2
= 0.952, RMSE = 0.164 (m), NSE = 0.951, and RSR = 0.220). In addition, it was revealed that the ESOA–ANN hybrid model showed higher prediction success than the WHO–ANN and standalone ANN models. The study outputs contribute to decision-makers and planners for controlling land subsidence, assessing GWL and aquifer compaction, irrigation planning, and effective management of water resources. |
|---|---|
| AbstractList | Predicting the groundwater level (GWL) is essential in water resource management and irrigation planning in arid and semi-arid areas. In this study, an artificial neural network (ANN) was combined with newly developed wild horse optimizer (WHO) and egret swarm optimization algorithm (ESOA) techniques to predict a one month lead-time GWL in the Tabriz plain of Iran. For the prediction of the GWL, the number of months and years, the one month lag of average temperature, evaporation, precipitation, and GWL were used as inputs. Model performances were compared using root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), coefficient of determination (R2), and relative strength ratio (RSR) statistical indicators and scatter diagrams, time series graph, violin graph, and Taylor diagram. As a result of the analysis, the most successful estimation results were obtained with the input combinations of year, month, average temperature, evaporation, precipitation, and GWL (t − 1) for the prediction of the one month lead-time GWL. According to the results of evaluation indicators in the testing phase, ANN with (R2 = 0.871, RMSE = 0.306 (m), NSE = 0.832, and RSR = 0.410), WHO–ANN (R2 = 0.932, RMSE = 0.200 (m), NSE = 0.929, and RSR = 0.267), and ESOA–ANN (R2 = 0.952, RMSE = 0.164 (m), NSE = 0.951, and RSR = 0.220). In addition, it was revealed that the ESOA–ANN hybrid model showed higher prediction success than the WHO–ANN and standalone ANN models. The study outputs contribute to decision-makers and planners for controlling land subsidence, assessing GWL and aquifer compaction, irrigation planning, and effective management of water resources. Predicting the groundwater level (GWL) is essential in water resource management and irrigation planning in arid and semi-arid areas. In this study, an artificial neural network (ANN) was combined with newly developed wild horse optimizer (WHO) and egret swarm optimization algorithm (ESOA) techniques to predict a one month lead-time GWL in the Tabriz plain of Iran. For the prediction of the GWL, the number of months and years, the one month lag of average temperature, evaporation, precipitation, and GWL were used as inputs. Model performances were compared using root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), coefficient of determination ( R 2 ), and relative strength ratio (RSR) statistical indicators and scatter diagrams, time series graph, violin graph, and Taylor diagram. As a result of the analysis, the most successful estimation results were obtained with the input combinations of year, month, average temperature, evaporation, precipitation, and GWL ( t − 1) for the prediction of the one month lead-time GWL. According to the results of evaluation indicators in the testing phase, ANN with ( R 2 = 0.871, RMSE = 0.306 (m), NSE = 0.832, and RSR = 0.410), WHO–ANN ( R 2 = 0.932, RMSE = 0.200 (m), NSE = 0.929, and RSR = 0.267), and ESOA–ANN (R 2 = 0.952, RMSE = 0.164 (m), NSE = 0.951, and RSR = 0.220). In addition, it was revealed that the ESOA–ANN hybrid model showed higher prediction success than the WHO–ANN and standalone ANN models. The study outputs contribute to decision-makers and planners for controlling land subsidence, assessing GWL and aquifer compaction, irrigation planning, and effective management of water resources. |
| Author | Achite, Mohammed Elshaboury, Nehal Saroughi, Mohsen Mirzania, Ehsan Katipoğlu, Okan Mert |
| Author_xml | – sequence: 1 givenname: Ehsan surname: Mirzania fullname: Mirzania, Ehsan organization: Department of Water Engineering, Faculty of Agriculture, University of Tabriz – sequence: 2 givenname: Mohammed surname: Achite fullname: Achite, Mohammed organization: Faculty of Nature and Life Sciences, Laboratory of Water and Environment, Hassiba Benbouali University of Chlef – sequence: 3 givenname: Nehal surname: Elshaboury fullname: Elshaboury, Nehal email: nehal.elshabory@hbrc.edu.eg organization: Construction and Project Management Research Institute, Housing and Building National Research Center – sequence: 4 givenname: Okan Mert surname: Katipoğlu fullname: Katipoğlu, Okan Mert organization: Department of Civil Engineering, Erzincan Binali Yıldırım University – sequence: 5 givenname: Mohsen surname: Saroughi fullname: Saroughi, Mohsen email: mohsensaroughi@ut.ac.ir organization: Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Br67mYzebPUrxo1DQQz2HNDvbpmyzNUkt9debuoLgoaeBmfeZGZ4RGrjOAULXlNxRQsr7QEjBaEZYnpFKSJrxMzSkOecZJ4UcoCGp8jQWOb9AoxDWhJBcyGKI7JuH2ppoO4e7Bm86F1ftAS99t3P1XkfwuIVPaPEuWLfEGjvY49Vh4W2NrYvQtnYJLmK93fpOm1Vq4rgCPNcp8oW3rbbuFk-9dpfovNFtgKvfOkbvT4_zyUs2e32eTh5mmWE855lkVNYUwDDGy6oEytmiMkBrEDUtjBRGgK5IU8q6orKoKIdFYSoOgjeM0oaP0U2_Nz30sYMQ1brbeZdOKk5KIVlBc5FSsk8Z34XgoVHGRn3UEL22raJEHcWqXqxKYtWPWMUTyv6hW2832h9OQ7yHQgq7Jfi_r05Q31GRjWc |
| CitedBy_id | crossref_primary_10_3390_su17052250 crossref_primary_10_1007_s40710_024_00716_4 |
| Cites_doi | 10.1016/j.neucom.2022.03.014 10.1007/978-3-642-27172-4_86 10.1007/s00521-020-05553-8 10.5194/gmd-7-1247-2014 10.3390/w14050751 10.1016/j.jhydrol.2021.126735 10.1007/978-3-319-44234-1_1 10.1016/j.jhydrol.2020.125659 10.1016/j.gsd.2019.100237 10.2166/aqua.2019.062 10.2307/1521508 10.1007/s13201-017-0550-4 10.1648/0273-8570-75.3.266 10.1007/s40996-023-01068-z 10.5194/egusphere-egu23-12629 10.3390/su15021524 10.1063/1.5031983 10.1016/j.jhydrol.2019.123999 10.1029/1998WR900018 10.1080/10106049.2022.2158951 10.1007/s00521-019-04234-5 10.1016/j.epsr.2023.109400 10.3390/biomimetics7040144 10.3390/su14138209 10.1007/s11625-017-0490-9 10.1007/s12665-015-4123-2 10.1111/j.1557-9263.2007.00133.x 10.1007/s00366-021-01438-z 10.1016/B978-0-444-63289-0.00005-3 10.1016/j.scitotenv.2022.161035 10.1016/j.neucom.2020.07.061 10.1007/s13201-023-01885-7 10.3390/app13042743 10.1675/063.035.0304 10.1007/s11269-022-03217-x 10.1038/s41598-021-99269-x 10.1186/s13677-023-00401-1 10.1007/s12517-016-2454-2 10.3390/w13213130 10.1007/s13201-022-01861-7 10.3390/hydrology7030059 10.3390/systems10060201 10.1049/rpg2.12640 10.2307/1521140 10.2307/1521692 10.1016/j.aej.2021.04.100 10.1007/s41324-022-00494-x 10.1675/1524-4695(2005)028[0220:PSBSE]2.0.CO;2 10.1007/s00521-022-07009-7 10.1016/j.scitotenv.2017.04.189 10.1007/s11269-019-2193-8 10.1007/s12517-023-11387-0 10.1016/j.gsd.2018.02.004 10.1007/s11600-022-00826-3 10.3390/w14060949 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s00521-024-09681-3 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 12624 |
| ExternalDocumentID | 10_1007_s00521_024_09681_3 |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2343-8218d1eec223797e132b9ce1de6d15c86c6ea90f78d9185913eb5c93e63f211f3 |
| IEDL.DBID | BENPR |
| ISSN | 0941-0643 |
| IngestDate | Fri Jul 25 09:11:03 EDT 2025 Wed Oct 01 03:43:42 EDT 2025 Thu Apr 24 22:59:37 EDT 2025 Fri Feb 21 02:39:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Keywords | Tabriz plain Artificial neural networks (ANN) Egret swarm optimization algorithm (ESOA) Wild horse optimizer (WHO) Groundwater level |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2343-8218d1eec223797e132b9ce1de6d15c86c6ea90f78d9185913eb5c93e63f211f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3076825146 |
| PQPubID | 2043988 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3076825146 crossref_citationtrail_10_1007_s00521_024_09681_3 crossref_primary_10_1007_s00521_024_09681_3 springer_journals_10_1007_s00521_024_09681_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240700 2024-07-00 20240701 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 7 year: 2024 text: 20240700 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2024 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Fathy, Rezk, Yousri, Alhelou (CR16) 2023; 17 Band, Heggy, Bateni, Karami, Rabiee, Samadianfard, Chau, Mosavi (CR6) 2021; 15 Brzorad, Maccarone, Conley (CR11) 2004; 75 Malekzadeh, Kardar, Saeb, Shabanlou, Taghavi (CR33) 2019; 33 Kombo, Kumaran, Sheikh, Bovim, Jayavel (CR26) 2020; 7 Jafari, Torabian, Ghorbani, Mirbagheri, Hassani (CR20) 2019; 68 Natarajan, Sudheer (CR40) 2020; 32 Hosseini, Gharechelou, Nakhaei, Gharechelou (CR18) 2016; 9 Abiye, Masindi, Mengistu, Demlie (CR1) 2018; 7 Shahbazi, Zarei, Solgi (CR48) 2023; 13 Velis, Conti, Biermann (CR54) 2017; 12 Jeihouni, Delirhasannia, Alavipanah, Shahabi, Samadianfard (CR21) 2015; 32 Roshni, Mirzania, Hasanpour Kashani, Bui, Shamshirband (CR43) 2022; 70 Saravanan, Neelakandan, Ezhumalai, Maurya (CR46) 2023; 12 Ahmadi, Olyaei, Heydari, Emami, Zeynolabedin, Ghomlaghi, Daccache, Fogg, Sadegh (CR3) 2022; 14 Yang, Shami (CR56) 2020; 415 Bahmani, Ouarda (CR4) 2021; 595 Zhou, Wang, Band, Mirzania, Roshni (CR60) 2023; 17 Yin, Fan, Tangdamrongsub, Hu, Zhang (CR57) 2021; 602 Barzegar, Asghari Moghaddam, Kazemian (CR7) 2015; 74 CR5 Saroughi, Mirzania, Vishwakarma, Nivesh, Panda, Daneshvar (CR47) 2023; 47 Mohammed, Shabanlou, Rajabi, Yosefvand, Izadbakhsh (CR37) 2023; 13 Pham, Kumar, Di Nunno, Elbeltagi, Granata, Islam, Talukdar, Nguyen, Ahmed, Anh (CR41) 2022; 34 Ibrahim, Huang, Ahmed, Koo, El-Shafie (CR19) 2022; 61 CR42 Zeng, Yin, Jiang, Liu, Guo, Peduto (CR59) 2022; 12 Maccarone, Brzorad (CR30) 2007; 78 Kayhomayoon, Babaeian, Ghordoyee Milan, Arya Azar, Berndtsson (CR22) 2022; 14 Kent (CR23) 1986; 9 Adnan, Dai, Mostafa, Islam, Kisi, Heddam, Zounemat-Kermani (CR2) 2023; 38 Mirzania, Vishwakarma, Bui, Band, Dehghani (CR35) 2023; 16 Naruei, Keynia (CR39) 2022; 38 Motwakel, Alabdulkreem, Gaddah, Marzouk, Salem, Zamani, Abdelmageed, Eldesouki (CR38) 2023; 15 Chai, Draxler (CR12) 2014; 7 Moghaddam, Moghaddam, Kivi, Bahreinimotlagh, Alizadeh (CR36) 2019; 9 Li, Liu, Chen (CR28) 2022; 10 Dimalexis, Pyrovetsi, Sgardelis (CR15) 1997; 20 Maccarone, Brzorad, Stone (CR31) 2008; 31 Legates, McCabe (CR27) 1999; 35 Tao, Hameed, Marhoon, Zounemat-Kermani, Heddam, Kim, Sulaiman, Tan, Sa’adi, Mehr, Allawi, Abba, Zain, Falah, Jamei, Bokde, Bayatvarkeshi, Al-Mukhtar, Bhagat, Tiyasha, Khedher, Al-Ansari, Shahid, Yaseen (CR53) 2022; 489 CR10 CR52 Samani, Vadiati, Azizi, Zamani, Kisi (CR45) 2022; 36 Roy, Biswas, Mattar, El-Shafei, Murad, Saha, Datta, Dewidar (CR44) 2021; 13 Wiggins (CR55) 1991; 14 Zare, Koch (CR58) 2021; 33 Maccarone, Brzorad, Stone (CR32) 2012; 35 Chen, Francis, Li, Liao, Xiao, Ha, Li, Ding, Cao (CR13) 2022; 7 Khan, Lee, Balobaid, Kim (CR24) 2023; 13 Siade, Rathi, Prommer, Welter, Doherty (CR49) 2019; 577 Barzegar, Asghari Moghaddam, Tziritis (CR8) 2017; 7 CR29 CR25 Chidepudi, Massei, Jardani, Henriot, Allier, Baulon (CR14) 2023; 865 Goel, Goel, Kumar (CR17) 2023; 31 Master, Leiser, Bennett, Bretsch, Wolfe (CR34) 2005; 28 Barzegar, Fijani, Moghaddam, Tziritis (CR9) 2017; 599 Singh, Kumar, Ali, Al-Ansari, Vishwakarma, Kushwaha, Panda, Sagar, Mirzania, Elbeltagi, Kuriqi, Heddam (CR50) 2022; 14 Spea (CR51) 2023; 221 Z Hosseini (9681_CR18) 2016; 9 9681_CR52 JN Brzorad (9681_CR11) 2004; 75 9681_CR10 M Jeihouni (9681_CR21) 2015; 32 W Yin (9681_CR57) 2021; 602 M Saroughi (9681_CR47) 2023; 47 SS Band (9681_CR6) 2021; 15 M Malekzadeh (9681_CR33) 2019; 33 RM Adnan (9681_CR2) 2023; 38 AD Maccarone (9681_CR30) 2007; 78 A Motwakel (9681_CR38) 2023; 15 AK Singh (9681_CR50) 2022; 14 R Barzegar (9681_CR9) 2017; 599 HK Moghaddam (9681_CR36) 2019; 9 KS Mohammed (9681_CR37) 2023; 13 9681_CR5 OH Kombo (9681_CR26) 2020; 7 T Chai (9681_CR12) 2014; 7 DM Kent (9681_CR23) 1986; 9 M Velis (9681_CR54) 2017; 12 R Bahmani (9681_CR4) 2021; 595 9681_CR25 A Siade (9681_CR49) 2019; 577 DA Wiggins (9681_CR55) 1991; 14 9681_CR29 H Tao (9681_CR53) 2022; 489 DR Legates (9681_CR27) 1999; 35 Z Chen (9681_CR13) 2022; 7 T Li (9681_CR28) 2022; 10 KSMH Ibrahim (9681_CR19) 2022; 61 M Shahbazi (9681_CR48) 2023; 13 T Roshni (9681_CR43) 2022; 70 AD Maccarone (9681_CR31) 2008; 31 M Zare (9681_CR58) 2021; 33 SR Spea (9681_CR51) 2023; 221 T Zeng (9681_CR59) 2022; 12 R Barzegar (9681_CR8) 2017; 7 N Natarajan (9681_CR40) 2020; 32 A Fathy (9681_CR16) 2023; 17 QB Pham (9681_CR41) 2022; 34 E Mirzania (9681_CR35) 2023; 16 DK Roy (9681_CR44) 2021; 13 G Saravanan (9681_CR46) 2023; 12 J Zhou (9681_CR60) 2023; 17 A Dimalexis (9681_CR15) 1997; 20 A Goel (9681_CR17) 2023; 31 Z Kayhomayoon (9681_CR22) 2022; 14 9681_CR42 A Ahmadi (9681_CR3) 2022; 14 I Naruei (9681_CR39) 2022; 38 S Samani (9681_CR45) 2022; 36 TL Master (9681_CR34) 2005; 28 J Khan (9681_CR24) 2023; 13 L Yang (9681_CR56) 2020; 415 R Barzegar (9681_CR7) 2015; 74 SKR Chidepudi (9681_CR14) 2023; 865 R Jafari (9681_CR20) 2019; 68 AD Maccarone (9681_CR32) 2012; 35 T Abiye (9681_CR1) 2018; 7 |
| References_xml | – volume: 13 start-page: 3130 issue: 21 year: 2021 ident: CR44 article-title: Groundwater level prediction using a multiple objective genetic algorithm-grey relational analysis based weighted ensemble of ANFIS models publication-title: Water – volume: 33 start-page: 1609 issue: 4 year: 2019 end-page: 1628 ident: CR33 article-title: A novel approach for prediction of monthly ground water level using a hybrid wavelet and non-tuned self-adaptive machine learning model publication-title: Water Resour Manag – volume: 7 start-page: 1 year: 2018 end-page: 7 ident: CR1 article-title: Understanding the groundwater-level fluctuations for better management of groundwater resource: a case in the Johannesburg region publication-title: Groundw Sustain Dev – volume: 15 start-page: 1147 issue: 1 year: 2021 end-page: 1158 ident: CR6 article-title: Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression publication-title: Eng Appl Comput Fluid Mech – volume: 38 start-page: 3025 issue: 4 year: 2022 end-page: 3056 ident: CR39 article-title: Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems publication-title: Eng Comput – volume: 38 start-page: 2158951 issue: 1 year: 2023 ident: CR2 article-title: Modelling groundwater level fluctuations by ELM merged advanced metaheuristic algorithms using hydroclimatic data publication-title: Geocarto Int – volume: 12 start-page: 1 issue: 1 year: 2022 end-page: 19 ident: CR59 article-title: Groundwater level prediction based on a combined intelligence method for the Sifangbei landslide in the Three Gorges Reservoir Area publication-title: Sci Rep – volume: 7 start-page: 3997 year: 2017 end-page: 4011 ident: CR8 article-title: Hydrogeochemical features of groundwater resources in Tabriz plain, northwest of Iran publication-title: Appl Water Sci – volume: 13 start-page: 2743 issue: 4 year: 2023 ident: CR24 article-title: A comprehensive review of conventional, machine leaning, and deep learning models for groundwater level (GWL) forecasting publication-title: Appl Sci – ident: CR29 – volume: 14 start-page: 8209 issue: 13 year: 2022 ident: CR50 article-title: An integrated statistical-machine learning approach for runoff prediction publication-title: Sustainability – ident: CR25 – volume: 489 start-page: 271 year: 2022 end-page: 308 ident: CR53 article-title: Groundwater level prediction using machine learning models: a comprehensive review publication-title: Neurocomputing – ident: CR42 – volume: 7 start-page: 1247 issue: 3 year: 2014 end-page: 1250 ident: CR12 article-title: Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature publication-title: Geosci Model Dev – volume: 36 start-page: 3627 issue: 10 year: 2022 end-page: 3647 ident: CR45 article-title: Groundwater level simulation using soft computing methods with emphasis on major meteorological components publication-title: Water Resour Manag – volume: 78 start-page: 411 issue: 4 year: 2007 end-page: 419 ident: CR30 article-title: Foraging behavior and energetics of Great Egrets and Snowy Egrets at interior rivers and weirs publication-title: J Field Ornithol – volume: 28 start-page: 220 issue: 2 year: 2005 end-page: 224 ident: CR34 article-title: Patch selection by snowy egrets publication-title: Waterbirds – volume: 75 start-page: 266 issue: 3 year: 2004 end-page: 280 ident: CR11 article-title: Foraging energetics of great egrets and snowy egrets publication-title: J Field Ornithol – volume: 13 start-page: 88 issue: 4 year: 2023 ident: CR48 article-title: De-noising groundwater level modeling using data decomposition techniques in combination with artificial intelligence (case study ) publication-title: Appl Water Sci – volume: 599 start-page: 20 year: 2017 end-page: 31 ident: CR9 article-title: Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models publication-title: Sci Total Environ – volume: 61 start-page: 279 issue: 1 year: 2022 end-page: 303 ident: CR19 article-title: A review of the hybrid artificial intelligence and optimization modelling of hydrological streamflow forecasting publication-title: Alex Eng J – volume: 221 start-page: 109400 year: 2023 ident: CR51 article-title: Social network search algorithm for combined heat and power economic dispatch publication-title: Electr Power Syst Res – ident: CR5 – volume: 47 start-page: 3147 year: 2023 end-page: 3164 ident: CR47 article-title: A novel hybrid algorithms for groundwater level prediction publication-title: Iran J Sci Technol Trans Civ Eng – volume: 13 start-page: 54 issue: 2 year: 2023 ident: CR37 article-title: Prediction of groundwater level fluctuations using artificial intelligence-based models and GMS publication-title: Appl Water Sci – volume: 12 start-page: 24 issue: 1 year: 2023 ident: CR46 article-title: Improved wild horse optimization with levy flight algorithm for effective task scheduling in cloud computing publication-title: J Cloud Comput – volume: 865 start-page: 161035 year: 2023 ident: CR14 article-title: A wavelet-assisted deep learning approach for simulating groundwater levels affected by low-frequency variability publication-title: Sci Total Environ – volume: 17 start-page: 856 issue: 4 year: 2023 end-page: 872 ident: CR16 article-title: Recent approach of wild horse optimizer for identifying the optimal parameters of high efficiency triple-junction solar system publication-title: IET Renew Power Gener – volume: 70 start-page: 1885 issue: 4 year: 2022 end-page: 1898 ident: CR43 article-title: Hybrid support vector regression models with algorithm of innovative gunner for the simulation of groundwater level publication-title: Acta Geophys – volume: 10 start-page: 201 issue: 6 year: 2022 ident: CR28 article-title: Application of sine cosine egret swarm optimization algorithm in gas turbine cooling system publication-title: Systems – volume: 14 start-page: 176 year: 1991 end-page: 179 ident: CR55 article-title: Foraging success and aggression in solitary and group-feeding Great Egrets ( ) publication-title: Colon Waterbirds – volume: 31 start-page: 275 issue: 3 year: 2023 end-page: 285 ident: CR17 article-title: The role of artificial neural network and machine learning in utilizing spatial information publication-title: Spat Inf Res – volume: 20 start-page: 261 issue: 2 year: 1997 end-page: 272 ident: CR15 article-title: Foraging ecology of the grey heron ( ), great egret ( ) and little egret ( ) in response to habitat, at 2 Greek wetlands publication-title: Colon Waterbirds – ident: CR10 – volume: 35 start-page: 394 issue: 3 year: 2012 end-page: 401 ident: CR32 article-title: A telemetry-based study of Snowy Egret ( ) nest-activity patterns, food-provisioning rates and foraging energetics publication-title: Waterbirds – volume: 16 start-page: 1 issue: 5 year: 2023 end-page: 14 ident: CR35 article-title: A novel hybrid AIG-SVR model for estimating daily reference evapotranspiration publication-title: Arab J Geosci – volume: 14 start-page: 751 issue: 5 year: 2022 ident: CR22 article-title: A combination of metaheuristic optimization algorithms and machine learning methods improves the prediction of groundwater level publication-title: Water – volume: 9 start-page: 1 issue: 6 year: 2016 end-page: 16 ident: CR18 article-title: Optimal design of BP algorithm by ACOR model for groundwater-level forecasting: a case study on Shabestar plain, Iran publication-title: Arab J Geosci – volume: 35 start-page: 233 issue: 1 year: 1999 end-page: 241 ident: CR27 article-title: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation publication-title: Water Resour Res – volume: 74 start-page: 297 issue: 1 year: 2015 end-page: 313 ident: CR7 article-title: Assessment of heavy metals concentrations with emphasis on arsenic in the Tabriz plain aquifers publication-title: Iran Environ Earth Sci – volume: 15 start-page: 1524 issue: 2 year: 2023 ident: CR38 article-title: Wild horse optimization with deep learning-driven short-term load forecasting scheme for smart grids publication-title: Sustainability – volume: 415 start-page: 295 year: 2020 end-page: 316 ident: CR56 article-title: On hyperparameter optimization of machine learning algorithms: theory and practice publication-title: Neurocomputing – volume: 14 start-page: 949 issue: 6 year: 2022 ident: CR3 article-title: Groundwater level modeling with machine learning: a systematic review and meta-analysis publication-title: Water – volume: 31 start-page: 541 issue: 4 year: 2008 end-page: 549 ident: CR31 article-title: Characteristics and energetics of Great Egret and Snowy Egret foraging flights publication-title: Waterbirds – volume: 602 start-page: 126735 year: 2021 ident: CR57 article-title: Comparison of physical and data-driven models to forecast groundwater level changes with the inclusion of GRACE—a case study over the state of Victoria publication-title: Aust J Hydrol – volume: 9 start-page: 100237 year: 2019 ident: CR36 article-title: Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels publication-title: Groundw Sustain Dev – volume: 17 start-page: 2174189 issue: 1 year: 2023 ident: CR60 article-title: Atmosphere air temperature forecasting using the honey badger optimization algorithm: on the warmest and coldest areas of the world publication-title: Eng Appl Comput Fluid Mech – volume: 595 start-page: 125659 year: 2021 ident: CR4 article-title: Groundwater level modeling with hybrid artificial intelligence techniques publication-title: J Hydrol – volume: 34 start-page: 10751 issue: 13 year: 2022 end-page: 10773 ident: CR41 article-title: Groundwater level prediction using machine learning algorithms in a drought-prone area publication-title: Neural Comput Appl – volume: 12 start-page: 1007 issue: 6 year: 2017 end-page: 1017 ident: CR54 article-title: Groundwater and human development: synergies and trade-offs within the context of the sustainable development goals publication-title: Sustain Sci – ident: CR52 – volume: 7 start-page: 59 issue: 3 year: 2020 ident: CR26 article-title: Long-term groundwater level prediction model based on hybrid KNN-RF technique publication-title: Hydrology – volume: 7 start-page: 144 issue: 4 year: 2022 ident: CR13 article-title: Egret swarm optimization algorithm: An evolutionary computation approach for model free optimization publication-title: Biomimetics – volume: 33 start-page: 8067 issue: 13 year: 2021 end-page: 8088 ident: CR58 article-title: Hybrid signal processing/machine learning and PSO optimization model for conjunctive management of surface–groundwater resources publication-title: Neural Comput Appl – volume: 68 start-page: 573 issue: 7 year: 2019 end-page: 584 ident: CR20 article-title: Prediction of groundwater quality parameter in the Tabriz plain, Iran using soft computing methods publication-title: J Water Supply Res Technol AQUA – volume: 9 start-page: 25 issue: 1 year: 1986 end-page: 30 ident: CR23 article-title: Behavior, habitat use, and food of three egrets in a marine habitat publication-title: Colon Waterbirds – volume: 32 start-page: 191 issue: 2 year: 2015 end-page: 208 ident: CR21 article-title: Spatial analysis of groundwater electrical conductivity using ordinary kriging and artificial intelligence methods (Case Study: Tabriz Plain, Iran) publication-title: G eofizika – volume: 32 start-page: 7691 issue: 12 year: 2020 end-page: 7708 ident: CR40 article-title: Groundwater level forecasting using soft computing techniques publication-title: Neural Comput Appl – volume: 577 start-page: 123999 year: 2019 ident: CR49 article-title: Using heuristic multi-objective optimization for quantifying predictive uncertainty associated with groundwater flow and reactive transport models publication-title: J Hydrol – volume: 489 start-page: 271 year: 2022 ident: 9681_CR53 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.03.014 – ident: 9681_CR52 doi: 10.1007/978-3-642-27172-4_86 – volume: 33 start-page: 8067 issue: 13 year: 2021 ident: 9681_CR58 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-05553-8 – volume: 7 start-page: 1247 issue: 3 year: 2014 ident: 9681_CR12 publication-title: Geosci Model Dev doi: 10.5194/gmd-7-1247-2014 – volume: 14 start-page: 751 issue: 5 year: 2022 ident: 9681_CR22 publication-title: Water doi: 10.3390/w14050751 – volume: 602 start-page: 126735 year: 2021 ident: 9681_CR57 publication-title: Aust J Hydrol doi: 10.1016/j.jhydrol.2021.126735 – ident: 9681_CR29 doi: 10.1007/978-3-319-44234-1_1 – volume: 595 start-page: 125659 year: 2021 ident: 9681_CR4 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125659 – volume: 9 start-page: 100237 year: 2019 ident: 9681_CR36 publication-title: Groundw Sustain Dev doi: 10.1016/j.gsd.2019.100237 – volume: 68 start-page: 573 issue: 7 year: 2019 ident: 9681_CR20 publication-title: J Water Supply Res Technol AQUA doi: 10.2166/aqua.2019.062 – volume: 14 start-page: 176 year: 1991 ident: 9681_CR55 publication-title: Colon Waterbirds doi: 10.2307/1521508 – volume: 7 start-page: 3997 year: 2017 ident: 9681_CR8 publication-title: Appl Water Sci doi: 10.1007/s13201-017-0550-4 – volume: 75 start-page: 266 issue: 3 year: 2004 ident: 9681_CR11 publication-title: J Field Ornithol doi: 10.1648/0273-8570-75.3.266 – volume: 47 start-page: 3147 year: 2023 ident: 9681_CR47 publication-title: Iran J Sci Technol Trans Civ Eng doi: 10.1007/s40996-023-01068-z – ident: 9681_CR10 doi: 10.5194/egusphere-egu23-12629 – volume: 15 start-page: 1524 issue: 2 year: 2023 ident: 9681_CR38 publication-title: Sustainability doi: 10.3390/su15021524 – ident: 9681_CR5 doi: 10.1063/1.5031983 – volume: 577 start-page: 123999 year: 2019 ident: 9681_CR49 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.123999 – volume: 35 start-page: 233 issue: 1 year: 1999 ident: 9681_CR27 publication-title: Water Resour Res doi: 10.1029/1998WR900018 – volume: 38 start-page: 2158951 issue: 1 year: 2023 ident: 9681_CR2 publication-title: Geocarto Int doi: 10.1080/10106049.2022.2158951 – volume: 32 start-page: 7691 issue: 12 year: 2020 ident: 9681_CR40 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04234-5 – volume: 221 start-page: 109400 year: 2023 ident: 9681_CR51 publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2023.109400 – volume: 31 start-page: 541 issue: 4 year: 2008 ident: 9681_CR31 publication-title: Waterbirds – volume: 7 start-page: 144 issue: 4 year: 2022 ident: 9681_CR13 publication-title: Biomimetics doi: 10.3390/biomimetics7040144 – volume: 14 start-page: 8209 issue: 13 year: 2022 ident: 9681_CR50 publication-title: Sustainability doi: 10.3390/su14138209 – volume: 12 start-page: 1007 issue: 6 year: 2017 ident: 9681_CR54 publication-title: Sustain Sci doi: 10.1007/s11625-017-0490-9 – volume: 74 start-page: 297 issue: 1 year: 2015 ident: 9681_CR7 publication-title: Iran Environ Earth Sci doi: 10.1007/s12665-015-4123-2 – volume: 78 start-page: 411 issue: 4 year: 2007 ident: 9681_CR30 publication-title: J Field Ornithol doi: 10.1111/j.1557-9263.2007.00133.x – volume: 38 start-page: 3025 issue: 4 year: 2022 ident: 9681_CR39 publication-title: Eng Comput doi: 10.1007/s00366-021-01438-z – ident: 9681_CR42 doi: 10.1016/B978-0-444-63289-0.00005-3 – volume: 17 start-page: 2174189 issue: 1 year: 2023 ident: 9681_CR60 publication-title: Eng Appl Comput Fluid Mech – volume: 865 start-page: 161035 year: 2023 ident: 9681_CR14 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.161035 – volume: 415 start-page: 295 year: 2020 ident: 9681_CR56 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.061 – volume: 13 start-page: 88 issue: 4 year: 2023 ident: 9681_CR48 publication-title: Appl Water Sci doi: 10.1007/s13201-023-01885-7 – ident: 9681_CR25 – volume: 13 start-page: 2743 issue: 4 year: 2023 ident: 9681_CR24 publication-title: Appl Sci doi: 10.3390/app13042743 – volume: 35 start-page: 394 issue: 3 year: 2012 ident: 9681_CR32 publication-title: Waterbirds doi: 10.1675/063.035.0304 – volume: 36 start-page: 3627 issue: 10 year: 2022 ident: 9681_CR45 publication-title: Water Resour Manag doi: 10.1007/s11269-022-03217-x – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 9681_CR59 publication-title: Sci Rep doi: 10.1038/s41598-021-99269-x – volume: 12 start-page: 24 issue: 1 year: 2023 ident: 9681_CR46 publication-title: J Cloud Comput doi: 10.1186/s13677-023-00401-1 – volume: 9 start-page: 1 issue: 6 year: 2016 ident: 9681_CR18 publication-title: Arab J Geosci doi: 10.1007/s12517-016-2454-2 – volume: 32 start-page: 191 issue: 2 year: 2015 ident: 9681_CR21 publication-title: G eofizika – volume: 13 start-page: 3130 issue: 21 year: 2021 ident: 9681_CR44 publication-title: Water doi: 10.3390/w13213130 – volume: 15 start-page: 1147 issue: 1 year: 2021 ident: 9681_CR6 publication-title: Eng Appl Comput Fluid Mech – volume: 13 start-page: 54 issue: 2 year: 2023 ident: 9681_CR37 publication-title: Appl Water Sci doi: 10.1007/s13201-022-01861-7 – volume: 7 start-page: 59 issue: 3 year: 2020 ident: 9681_CR26 publication-title: Hydrology doi: 10.3390/hydrology7030059 – volume: 10 start-page: 201 issue: 6 year: 2022 ident: 9681_CR28 publication-title: Systems doi: 10.3390/systems10060201 – volume: 17 start-page: 856 issue: 4 year: 2023 ident: 9681_CR16 publication-title: IET Renew Power Gener doi: 10.1049/rpg2.12640 – volume: 9 start-page: 25 issue: 1 year: 1986 ident: 9681_CR23 publication-title: Colon Waterbirds doi: 10.2307/1521140 – volume: 20 start-page: 261 issue: 2 year: 1997 ident: 9681_CR15 publication-title: Colon Waterbirds doi: 10.2307/1521692 – volume: 61 start-page: 279 issue: 1 year: 2022 ident: 9681_CR19 publication-title: Alex Eng J doi: 10.1016/j.aej.2021.04.100 – volume: 31 start-page: 275 issue: 3 year: 2023 ident: 9681_CR17 publication-title: Spat Inf Res doi: 10.1007/s41324-022-00494-x – volume: 28 start-page: 220 issue: 2 year: 2005 ident: 9681_CR34 publication-title: Waterbirds doi: 10.1675/1524-4695(2005)028[0220:PSBSE]2.0.CO;2 – volume: 34 start-page: 10751 issue: 13 year: 2022 ident: 9681_CR41 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07009-7 – volume: 599 start-page: 20 year: 2017 ident: 9681_CR9 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.04.189 – volume: 33 start-page: 1609 issue: 4 year: 2019 ident: 9681_CR33 publication-title: Water Resour Manag doi: 10.1007/s11269-019-2193-8 – volume: 16 start-page: 1 issue: 5 year: 2023 ident: 9681_CR35 publication-title: Arab J Geosci doi: 10.1007/s12517-023-11387-0 – volume: 7 start-page: 1 year: 2018 ident: 9681_CR1 publication-title: Groundw Sustain Dev doi: 10.1016/j.gsd.2018.02.004 – volume: 70 start-page: 1885 issue: 4 year: 2022 ident: 9681_CR43 publication-title: Acta Geophys doi: 10.1007/s11600-022-00826-3 – volume: 14 start-page: 949 issue: 6 year: 2022 ident: 9681_CR3 publication-title: Water doi: 10.3390/w14060949 |
| SSID | ssj0004685 |
| Score | 2.3731859 |
| Snippet | Predicting the groundwater level (GWL) is essential in water resource management and irrigation planning in arid and semi-arid areas. In this study, an... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 12609 |
| SubjectTerms | Algorithms Aquifers Aridity Artificial Intelligence Artificial neural networks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Effectiveness Evaporation Groundwater levels Image Processing and Computer Vision Indicators Irrigation Lead time Original Article Probability and Statistics in Computer Science Root-mean-square errors Semi arid areas Water resources management |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXLyIz4ii2YM3KWG7pbBHYkDUaDxAgqdmXxUiKQRKDPx6Z0sLStTEa7vbtDuznW92Zr4BuPYU95WoCtxIEh0UNMmOMFo6OuTUlVTUXGkP9J-e_U7Pe-jX-mlR2CzLds9Cksmfel3sZk8w0fV1PQdhd4M6bBfyCd9WDvLNu9fH1pd6yKQVJ3ouNqvHY2mxzM9P-W6QNihzKzCa2Jt2AXrZm67STN4r81hW1HKLxPG_n3IA-ykAJc2VxhzCjomOoJA1dyDpXj-G4cvUxnCs3Mg4JKit8WC0ILYKJNIfwo4d2YQjYjPn34ggiM_JYGELwMhwzfMZk4y0HC8SBJukK3DIkkxGYhiVyT2ayhPotVvd246T9mVwlMs85jQQFmhqjEJoUed1gw6t5MpQbXxNa6rhK98IXg3rDc2p5cdjRtYUZ8ZnIfqbITuFXDSOzBkQrpnkliMuxMWQmglhFada1dSXXPB6EWgmnEClpOW2d8YoWNMtJ2sZ4PQgWcuAFeFmPWeyouz4c3Qpk3mQbt9ZwGx8EpGf5xehnIlwc_v3p53_b_gF7LmJFtj03xLk4uncXCLIieVVqtOfi2LxHg priority: 102 providerName: Springer Nature |
| Title | Prediction of monthly groundwater level using a new hybrid intelligent approach in the Tabriz plain, Iran |
| URI | https://link.springer.com/article/10.1007/s00521-024-09681-3 https://www.proquest.com/docview/3076825146 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1433-3058 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: ADMLS dateStart: 19930301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1433-3058 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: 8FG dateStart: 20180401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu3DhjRiPKQduULE0XdccEBqw8Z4QMAlOVV6FSVM3YAjBr8cu7QZIcKqUl1Q7ie3Y_gywFRgZGlVTeJA0Gigokj3lrPZsIrmvuar7mh70LzvhSTc4u6vfTUGnyIWhsMriTswuajsw9Ea-K8hlhMI4CPeHTx5VjSLvalFCQ-WlFexeBjE2DWWfkLFKUD5oda6uv2VKZkU60aaheJ9A5Gk0WTIdvZBiqx94qNZH3BM_RdVE__zlMs0kUXseZnMVkjW_eL4AUy5dhLmiPAPLT-sS9K6eyQtDlGeDhOEPjB7774zyOFL7pmhsn0KGGMW-PzDFUMNmj--UwsV6Y6TOEStgx7GRobrIbhUO-WDDvuqlO-wUhd0ydNut28MTL6-s4BlfBMKLULBb7pxB5aAhGw5NUi2N49aFltdNFJrQKVlLGpGVnBDuhNN1I4ULRYIWYyJWoJQOUrcKTFqhJaG8JUg5bYVSxPpazfJQSyUbFeAFEWOTw45T9Yt-PAZMzggf4_Q4I3wsKrA9njP8At34d_RGwZs4P4Av8WS7VGCn4Nek--_V1v5fbR1m_GyLUMDuBpRGz69uE9WSka7CdNQ-rkK5eXR5cUPf4_vzVjXfgdjb9ZufcAbiuw |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxtBDLYoHNoLFNqKAC0-lFNZNbOz2WQOCAEFJQUiVAWJ23ZeC5GiTYAgFH5cf1vtZTaBSuXGdV4H2zO2x_ZngK-JVanVdU0XyZCDQio50t6ZyOVKxEboRmz4Q_-0m7bPk58XjYs5-FPVwnBaZfUmlg-1G1r-I_8uOWREyjhJd0fXEXeN4uhq1UJDh9YKbqeEGAuFHcd-ck8u3O1O5wfxeyuOjw57B-0odBmIbCwTGbVIyTnhvSVF2VRNT-6ZUdYL51MnGraV2tRrVc-bLacEo71JbxpWSZ_KnLynXNK5b2AhkYki529h_7B79utJZWbZFJR8KM4vSmQo2ymL9_hHlkbjJCI3oiUi-Vw1zuzdf0K0peY7eg-LwWTFvUcZW4Y5X6zAUtUOAsPr8AH6Zzcc9WFO4zBHItj4ajBBrhsp3L3mtQNOUULOtb9EjWTR49WES8awP0UGHWMFc06DSOYp9jQtecDRQPeLbeyQcv0I569C408wXwwLvwqonDSKUeVyopxxUmsWtXrdidQorZo1EBURMxtgzrnbxiCbAjSXhM9oe1YSPpM1-DbdM3oE-Xhx9UbFmyxc-NtsJp412K74NZv-_2lrL5-2CW_bvdOT7KTTPV6Hd3EpLpwsvAHz45s7_5lMorH5EuQO4fdri_pfygoZ0w |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oJsaLbyOKugdv0sB2S2GPRCXgg3CAhFuzrwpJUwjWGPz1zpQW0KiJ13Z2D7OzmW92Zr4h5NrTwteyKuEiKQhQwCU70hrlmFAwVzFZcxU-6D93_fbAexjWhmtd_Gm1e56SXPQ0IEtTnFSmJqwsG9_wNRPCYNdzAII3mMM3yZaHRAlg0QO3udYZmQ7lhBgG63s8nrXN_LzHV9e0wpvfUqSp52ntk90MMtLm4owPyIaND8lePo6BZrfziIx7M8y6oKbpJKRgX8komlPs24jNu0TZCEuEKNa6v1BJAVHT0Rxbtuh4ycyZ0JxmHD5SgIe0L0Hkg04jOY7LtAPO7ZgMWvf927aTTVJwtMs97jTAkRtmrQYwUBd1CyGoEtoyY33Darrha99KUQ3rDSMYMtpxq2pacOvzECLEkJ-QQjyJ7SmhwnAlkNUtBM0pw6XEo65WDfOVkKJeJCxXYqAzmnGcdhEFS4LkVPEBLA9SxQe8SG6Wa6YLko0_pUv52QTZhXsNOGYUAat5fpGU8_Na_f59t7P_iV-R7d5dK3jqdB_PyY6bWg_W7pZIIZm92QtAKIm6TI3wE5t020g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+monthly+groundwater+level+using+a+new+hybrid+intelligent+approach+in+the+Tabriz+plain%2C+Iran&rft.jtitle=Neural+computing+%26+applications&rft.au=Mirzania%2C+Ehsan&rft.au=Achite%2C+Mohammed&rft.au=Elshaboury%2C+Nehal&rft.au=Katipo%C4%9Flu%2C+Okan+Mert&rft.date=2024-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=20&rft.spage=12609&rft.epage=12624&rft_id=info:doi/10.1007%2Fs00521-024-09681-3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |