Prediction of monthly groundwater level using a new hybrid intelligent approach in the Tabriz plain, Iran

Predicting the groundwater level (GWL) is essential in water resource management and irrigation planning in arid and semi-arid areas. In this study, an artificial neural network (ANN) was combined with newly developed wild horse optimizer (WHO) and egret swarm optimization algorithm (ESOA) technique...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 36; no. 20; pp. 12609 - 12624
Main Authors Mirzania, Ehsan, Achite, Mohammed, Elshaboury, Nehal, Katipoğlu, Okan Mert, Saroughi, Mohsen
Format Journal Article
LanguageEnglish
Published London Springer London 01.07.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-024-09681-3

Cover

Abstract Predicting the groundwater level (GWL) is essential in water resource management and irrigation planning in arid and semi-arid areas. In this study, an artificial neural network (ANN) was combined with newly developed wild horse optimizer (WHO) and egret swarm optimization algorithm (ESOA) techniques to predict a one month lead-time GWL in the Tabriz plain of Iran. For the prediction of the GWL, the number of months and years, the one month lag of average temperature, evaporation, precipitation, and GWL were used as inputs. Model performances were compared using root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), coefficient of determination ( R 2 ), and relative strength ratio (RSR) statistical indicators and scatter diagrams, time series graph, violin graph, and Taylor diagram. As a result of the analysis, the most successful estimation results were obtained with the input combinations of year, month, average temperature, evaporation, precipitation, and GWL ( t  − 1) for the prediction of the one month lead-time GWL. According to the results of evaluation indicators in the testing phase, ANN with ( R 2  = 0.871, RMSE = 0.306 (m), NSE = 0.832, and RSR = 0.410), WHO–ANN ( R 2  = 0.932, RMSE = 0.200 (m), NSE = 0.929, and RSR = 0.267), and ESOA–ANN (R 2  = 0.952, RMSE = 0.164 (m), NSE = 0.951, and RSR = 0.220). In addition, it was revealed that the ESOA–ANN hybrid model showed higher prediction success than the WHO–ANN and standalone ANN models. The study outputs contribute to decision-makers and planners for controlling land subsidence, assessing GWL and aquifer compaction, irrigation planning, and effective management of water resources.
AbstractList Predicting the groundwater level (GWL) is essential in water resource management and irrigation planning in arid and semi-arid areas. In this study, an artificial neural network (ANN) was combined with newly developed wild horse optimizer (WHO) and egret swarm optimization algorithm (ESOA) techniques to predict a one month lead-time GWL in the Tabriz plain of Iran. For the prediction of the GWL, the number of months and years, the one month lag of average temperature, evaporation, precipitation, and GWL were used as inputs. Model performances were compared using root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), coefficient of determination (R2), and relative strength ratio (RSR) statistical indicators and scatter diagrams, time series graph, violin graph, and Taylor diagram. As a result of the analysis, the most successful estimation results were obtained with the input combinations of year, month, average temperature, evaporation, precipitation, and GWL (t − 1) for the prediction of the one month lead-time GWL. According to the results of evaluation indicators in the testing phase, ANN with (R2 = 0.871, RMSE = 0.306 (m), NSE = 0.832, and RSR = 0.410), WHO–ANN (R2 = 0.932, RMSE = 0.200 (m), NSE = 0.929, and RSR = 0.267), and ESOA–ANN (R2 = 0.952, RMSE = 0.164 (m), NSE = 0.951, and RSR = 0.220). In addition, it was revealed that the ESOA–ANN hybrid model showed higher prediction success than the WHO–ANN and standalone ANN models. The study outputs contribute to decision-makers and planners for controlling land subsidence, assessing GWL and aquifer compaction, irrigation planning, and effective management of water resources.
Predicting the groundwater level (GWL) is essential in water resource management and irrigation planning in arid and semi-arid areas. In this study, an artificial neural network (ANN) was combined with newly developed wild horse optimizer (WHO) and egret swarm optimization algorithm (ESOA) techniques to predict a one month lead-time GWL in the Tabriz plain of Iran. For the prediction of the GWL, the number of months and years, the one month lag of average temperature, evaporation, precipitation, and GWL were used as inputs. Model performances were compared using root mean square error (RMSE), Nash–Sutcliffe efficiency (NSE), coefficient of determination ( R 2 ), and relative strength ratio (RSR) statistical indicators and scatter diagrams, time series graph, violin graph, and Taylor diagram. As a result of the analysis, the most successful estimation results were obtained with the input combinations of year, month, average temperature, evaporation, precipitation, and GWL ( t  − 1) for the prediction of the one month lead-time GWL. According to the results of evaluation indicators in the testing phase, ANN with ( R 2  = 0.871, RMSE = 0.306 (m), NSE = 0.832, and RSR = 0.410), WHO–ANN ( R 2  = 0.932, RMSE = 0.200 (m), NSE = 0.929, and RSR = 0.267), and ESOA–ANN (R 2  = 0.952, RMSE = 0.164 (m), NSE = 0.951, and RSR = 0.220). In addition, it was revealed that the ESOA–ANN hybrid model showed higher prediction success than the WHO–ANN and standalone ANN models. The study outputs contribute to decision-makers and planners for controlling land subsidence, assessing GWL and aquifer compaction, irrigation planning, and effective management of water resources.
Author Achite, Mohammed
Elshaboury, Nehal
Saroughi, Mohsen
Mirzania, Ehsan
Katipoğlu, Okan Mert
Author_xml – sequence: 1
  givenname: Ehsan
  surname: Mirzania
  fullname: Mirzania, Ehsan
  organization: Department of Water Engineering, Faculty of Agriculture, University of Tabriz
– sequence: 2
  givenname: Mohammed
  surname: Achite
  fullname: Achite, Mohammed
  organization: Faculty of Nature and Life Sciences, Laboratory of Water and Environment, Hassiba Benbouali University of Chlef
– sequence: 3
  givenname: Nehal
  surname: Elshaboury
  fullname: Elshaboury, Nehal
  email: nehal.elshabory@hbrc.edu.eg
  organization: Construction and Project Management Research Institute, Housing and Building National Research Center
– sequence: 4
  givenname: Okan Mert
  surname: Katipoğlu
  fullname: Katipoğlu, Okan Mert
  organization: Department of Civil Engineering, Erzincan Binali Yıldırım University
– sequence: 5
  givenname: Mohsen
  surname: Saroughi
  fullname: Saroughi, Mohsen
  email: mohsensaroughi@ut.ac.ir
  organization: Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran
BookMark eNp9kE1LAzEQhoNUsK3-AU8Br67mYzebPUrxo1DQQz2HNDvbpmyzNUkt9debuoLgoaeBmfeZGZ4RGrjOAULXlNxRQsr7QEjBaEZYnpFKSJrxMzSkOecZJ4UcoCGp8jQWOb9AoxDWhJBcyGKI7JuH2ppoO4e7Bm86F1ftAS99t3P1XkfwuIVPaPEuWLfEGjvY49Vh4W2NrYvQtnYJLmK93fpOm1Vq4rgCPNcp8oW3rbbuFk-9dpfovNFtgKvfOkbvT4_zyUs2e32eTh5mmWE855lkVNYUwDDGy6oEytmiMkBrEDUtjBRGgK5IU8q6orKoKIdFYSoOgjeM0oaP0U2_Nz30sYMQ1brbeZdOKk5KIVlBc5FSsk8Z34XgoVHGRn3UEL22raJEHcWqXqxKYtWPWMUTyv6hW2832h9OQ7yHQgq7Jfi_r05Q31GRjWc
CitedBy_id crossref_primary_10_3390_su17052250
crossref_primary_10_1007_s40710_024_00716_4
Cites_doi 10.1016/j.neucom.2022.03.014
10.1007/978-3-642-27172-4_86
10.1007/s00521-020-05553-8
10.5194/gmd-7-1247-2014
10.3390/w14050751
10.1016/j.jhydrol.2021.126735
10.1007/978-3-319-44234-1_1
10.1016/j.jhydrol.2020.125659
10.1016/j.gsd.2019.100237
10.2166/aqua.2019.062
10.2307/1521508
10.1007/s13201-017-0550-4
10.1648/0273-8570-75.3.266
10.1007/s40996-023-01068-z
10.5194/egusphere-egu23-12629
10.3390/su15021524
10.1063/1.5031983
10.1016/j.jhydrol.2019.123999
10.1029/1998WR900018
10.1080/10106049.2022.2158951
10.1007/s00521-019-04234-5
10.1016/j.epsr.2023.109400
10.3390/biomimetics7040144
10.3390/su14138209
10.1007/s11625-017-0490-9
10.1007/s12665-015-4123-2
10.1111/j.1557-9263.2007.00133.x
10.1007/s00366-021-01438-z
10.1016/B978-0-444-63289-0.00005-3
10.1016/j.scitotenv.2022.161035
10.1016/j.neucom.2020.07.061
10.1007/s13201-023-01885-7
10.3390/app13042743
10.1675/063.035.0304
10.1007/s11269-022-03217-x
10.1038/s41598-021-99269-x
10.1186/s13677-023-00401-1
10.1007/s12517-016-2454-2
10.3390/w13213130
10.1007/s13201-022-01861-7
10.3390/hydrology7030059
10.3390/systems10060201
10.1049/rpg2.12640
10.2307/1521140
10.2307/1521692
10.1016/j.aej.2021.04.100
10.1007/s41324-022-00494-x
10.1675/1524-4695(2005)028[0220:PSBSE]2.0.CO;2
10.1007/s00521-022-07009-7
10.1016/j.scitotenv.2017.04.189
10.1007/s11269-019-2193-8
10.1007/s12517-023-11387-0
10.1016/j.gsd.2018.02.004
10.1007/s11600-022-00826-3
10.3390/w14060949
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. corrected publication 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-024-09681-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 12624
ExternalDocumentID 10_1007_s00521_024_09681_3
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2343-8218d1eec223797e132b9ce1de6d15c86c6ea90f78d9185913eb5c93e63f211f3
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Fri Jul 25 09:11:03 EDT 2025
Wed Oct 01 03:43:42 EDT 2025
Thu Apr 24 22:59:37 EDT 2025
Fri Feb 21 02:39:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords Tabriz plain
Artificial neural networks (ANN)
Egret swarm optimization algorithm (ESOA)
Wild horse optimizer (WHO)
Groundwater level
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2343-8218d1eec223797e132b9ce1de6d15c86c6ea90f78d9185913eb5c93e63f211f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3076825146
PQPubID 2043988
PageCount 16
ParticipantIDs proquest_journals_3076825146
crossref_citationtrail_10_1007_s00521_024_09681_3
crossref_primary_10_1007_s00521_024_09681_3
springer_journals_10_1007_s00521_024_09681_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240700
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 7
  year: 2024
  text: 20240700
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Fathy, Rezk, Yousri, Alhelou (CR16) 2023; 17
Band, Heggy, Bateni, Karami, Rabiee, Samadianfard, Chau, Mosavi (CR6) 2021; 15
Brzorad, Maccarone, Conley (CR11) 2004; 75
Malekzadeh, Kardar, Saeb, Shabanlou, Taghavi (CR33) 2019; 33
Kombo, Kumaran, Sheikh, Bovim, Jayavel (CR26) 2020; 7
Jafari, Torabian, Ghorbani, Mirbagheri, Hassani (CR20) 2019; 68
Natarajan, Sudheer (CR40) 2020; 32
Hosseini, Gharechelou, Nakhaei, Gharechelou (CR18) 2016; 9
Abiye, Masindi, Mengistu, Demlie (CR1) 2018; 7
Shahbazi, Zarei, Solgi (CR48) 2023; 13
Velis, Conti, Biermann (CR54) 2017; 12
Jeihouni, Delirhasannia, Alavipanah, Shahabi, Samadianfard (CR21) 2015; 32
Roshni, Mirzania, Hasanpour Kashani, Bui, Shamshirband (CR43) 2022; 70
Saravanan, Neelakandan, Ezhumalai, Maurya (CR46) 2023; 12
Ahmadi, Olyaei, Heydari, Emami, Zeynolabedin, Ghomlaghi, Daccache, Fogg, Sadegh (CR3) 2022; 14
Yang, Shami (CR56) 2020; 415
Bahmani, Ouarda (CR4) 2021; 595
Zhou, Wang, Band, Mirzania, Roshni (CR60) 2023; 17
Yin, Fan, Tangdamrongsub, Hu, Zhang (CR57) 2021; 602
Barzegar, Asghari Moghaddam, Kazemian (CR7) 2015; 74
CR5
Saroughi, Mirzania, Vishwakarma, Nivesh, Panda, Daneshvar (CR47) 2023; 47
Mohammed, Shabanlou, Rajabi, Yosefvand, Izadbakhsh (CR37) 2023; 13
Pham, Kumar, Di Nunno, Elbeltagi, Granata, Islam, Talukdar, Nguyen, Ahmed, Anh (CR41) 2022; 34
Ibrahim, Huang, Ahmed, Koo, El-Shafie (CR19) 2022; 61
CR42
Zeng, Yin, Jiang, Liu, Guo, Peduto (CR59) 2022; 12
Maccarone, Brzorad (CR30) 2007; 78
Kayhomayoon, Babaeian, Ghordoyee Milan, Arya Azar, Berndtsson (CR22) 2022; 14
Kent (CR23) 1986; 9
Adnan, Dai, Mostafa, Islam, Kisi, Heddam, Zounemat-Kermani (CR2) 2023; 38
Mirzania, Vishwakarma, Bui, Band, Dehghani (CR35) 2023; 16
Naruei, Keynia (CR39) 2022; 38
Motwakel, Alabdulkreem, Gaddah, Marzouk, Salem, Zamani, Abdelmageed, Eldesouki (CR38) 2023; 15
Chai, Draxler (CR12) 2014; 7
Moghaddam, Moghaddam, Kivi, Bahreinimotlagh, Alizadeh (CR36) 2019; 9
Li, Liu, Chen (CR28) 2022; 10
Dimalexis, Pyrovetsi, Sgardelis (CR15) 1997; 20
Maccarone, Brzorad, Stone (CR31) 2008; 31
Legates, McCabe (CR27) 1999; 35
Tao, Hameed, Marhoon, Zounemat-Kermani, Heddam, Kim, Sulaiman, Tan, Sa’adi, Mehr, Allawi, Abba, Zain, Falah, Jamei, Bokde, Bayatvarkeshi, Al-Mukhtar, Bhagat, Tiyasha, Khedher, Al-Ansari, Shahid, Yaseen (CR53) 2022; 489
CR10
CR52
Samani, Vadiati, Azizi, Zamani, Kisi (CR45) 2022; 36
Roy, Biswas, Mattar, El-Shafei, Murad, Saha, Datta, Dewidar (CR44) 2021; 13
Wiggins (CR55) 1991; 14
Zare, Koch (CR58) 2021; 33
Maccarone, Brzorad, Stone (CR32) 2012; 35
Chen, Francis, Li, Liao, Xiao, Ha, Li, Ding, Cao (CR13) 2022; 7
Khan, Lee, Balobaid, Kim (CR24) 2023; 13
Siade, Rathi, Prommer, Welter, Doherty (CR49) 2019; 577
Barzegar, Asghari Moghaddam, Tziritis (CR8) 2017; 7
CR29
CR25
Chidepudi, Massei, Jardani, Henriot, Allier, Baulon (CR14) 2023; 865
Goel, Goel, Kumar (CR17) 2023; 31
Master, Leiser, Bennett, Bretsch, Wolfe (CR34) 2005; 28
Barzegar, Fijani, Moghaddam, Tziritis (CR9) 2017; 599
Singh, Kumar, Ali, Al-Ansari, Vishwakarma, Kushwaha, Panda, Sagar, Mirzania, Elbeltagi, Kuriqi, Heddam (CR50) 2022; 14
Spea (CR51) 2023; 221
Z Hosseini (9681_CR18) 2016; 9
9681_CR52
JN Brzorad (9681_CR11) 2004; 75
9681_CR10
M Jeihouni (9681_CR21) 2015; 32
W Yin (9681_CR57) 2021; 602
M Saroughi (9681_CR47) 2023; 47
SS Band (9681_CR6) 2021; 15
M Malekzadeh (9681_CR33) 2019; 33
RM Adnan (9681_CR2) 2023; 38
AD Maccarone (9681_CR30) 2007; 78
A Motwakel (9681_CR38) 2023; 15
AK Singh (9681_CR50) 2022; 14
R Barzegar (9681_CR9) 2017; 599
HK Moghaddam (9681_CR36) 2019; 9
KS Mohammed (9681_CR37) 2023; 13
9681_CR5
OH Kombo (9681_CR26) 2020; 7
T Chai (9681_CR12) 2014; 7
DM Kent (9681_CR23) 1986; 9
M Velis (9681_CR54) 2017; 12
R Bahmani (9681_CR4) 2021; 595
9681_CR25
A Siade (9681_CR49) 2019; 577
DA Wiggins (9681_CR55) 1991; 14
9681_CR29
H Tao (9681_CR53) 2022; 489
DR Legates (9681_CR27) 1999; 35
Z Chen (9681_CR13) 2022; 7
T Li (9681_CR28) 2022; 10
KSMH Ibrahim (9681_CR19) 2022; 61
M Shahbazi (9681_CR48) 2023; 13
T Roshni (9681_CR43) 2022; 70
AD Maccarone (9681_CR31) 2008; 31
M Zare (9681_CR58) 2021; 33
SR Spea (9681_CR51) 2023; 221
T Zeng (9681_CR59) 2022; 12
R Barzegar (9681_CR8) 2017; 7
N Natarajan (9681_CR40) 2020; 32
A Fathy (9681_CR16) 2023; 17
QB Pham (9681_CR41) 2022; 34
E Mirzania (9681_CR35) 2023; 16
DK Roy (9681_CR44) 2021; 13
G Saravanan (9681_CR46) 2023; 12
J Zhou (9681_CR60) 2023; 17
A Dimalexis (9681_CR15) 1997; 20
A Goel (9681_CR17) 2023; 31
Z Kayhomayoon (9681_CR22) 2022; 14
9681_CR42
A Ahmadi (9681_CR3) 2022; 14
I Naruei (9681_CR39) 2022; 38
S Samani (9681_CR45) 2022; 36
TL Master (9681_CR34) 2005; 28
J Khan (9681_CR24) 2023; 13
L Yang (9681_CR56) 2020; 415
R Barzegar (9681_CR7) 2015; 74
SKR Chidepudi (9681_CR14) 2023; 865
R Jafari (9681_CR20) 2019; 68
AD Maccarone (9681_CR32) 2012; 35
T Abiye (9681_CR1) 2018; 7
References_xml – volume: 13
  start-page: 3130
  issue: 21
  year: 2021
  ident: CR44
  article-title: Groundwater level prediction using a multiple objective genetic algorithm-grey relational analysis based weighted ensemble of ANFIS models
  publication-title: Water
– volume: 33
  start-page: 1609
  issue: 4
  year: 2019
  end-page: 1628
  ident: CR33
  article-title: A novel approach for prediction of monthly ground water level using a hybrid wavelet and non-tuned self-adaptive machine learning model
  publication-title: Water Resour Manag
– volume: 7
  start-page: 1
  year: 2018
  end-page: 7
  ident: CR1
  article-title: Understanding the groundwater-level fluctuations for better management of groundwater resource: a case in the Johannesburg region
  publication-title: Groundw Sustain Dev
– volume: 15
  start-page: 1147
  issue: 1
  year: 2021
  end-page: 1158
  ident: CR6
  article-title: Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression
  publication-title: Eng Appl Comput Fluid Mech
– volume: 38
  start-page: 3025
  issue: 4
  year: 2022
  end-page: 3056
  ident: CR39
  article-title: Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems
  publication-title: Eng Comput
– volume: 38
  start-page: 2158951
  issue: 1
  year: 2023
  ident: CR2
  article-title: Modelling groundwater level fluctuations by ELM merged advanced metaheuristic algorithms using hydroclimatic data
  publication-title: Geocarto Int
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  end-page: 19
  ident: CR59
  article-title: Groundwater level prediction based on a combined intelligence method for the Sifangbei landslide in the Three Gorges Reservoir Area
  publication-title: Sci Rep
– volume: 7
  start-page: 3997
  year: 2017
  end-page: 4011
  ident: CR8
  article-title: Hydrogeochemical features of groundwater resources in Tabriz plain, northwest of Iran
  publication-title: Appl Water Sci
– volume: 13
  start-page: 2743
  issue: 4
  year: 2023
  ident: CR24
  article-title: A comprehensive review of conventional, machine leaning, and deep learning models for groundwater level (GWL) forecasting
  publication-title: Appl Sci
– ident: CR29
– volume: 14
  start-page: 8209
  issue: 13
  year: 2022
  ident: CR50
  article-title: An integrated statistical-machine learning approach for runoff prediction
  publication-title: Sustainability
– ident: CR25
– volume: 489
  start-page: 271
  year: 2022
  end-page: 308
  ident: CR53
  article-title: Groundwater level prediction using machine learning models: a comprehensive review
  publication-title: Neurocomputing
– ident: CR42
– volume: 7
  start-page: 1247
  issue: 3
  year: 2014
  end-page: 1250
  ident: CR12
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature
  publication-title: Geosci Model Dev
– volume: 36
  start-page: 3627
  issue: 10
  year: 2022
  end-page: 3647
  ident: CR45
  article-title: Groundwater level simulation using soft computing methods with emphasis on major meteorological components
  publication-title: Water Resour Manag
– volume: 78
  start-page: 411
  issue: 4
  year: 2007
  end-page: 419
  ident: CR30
  article-title: Foraging behavior and energetics of Great Egrets and Snowy Egrets at interior rivers and weirs
  publication-title: J Field Ornithol
– volume: 28
  start-page: 220
  issue: 2
  year: 2005
  end-page: 224
  ident: CR34
  article-title: Patch selection by snowy egrets
  publication-title: Waterbirds
– volume: 75
  start-page: 266
  issue: 3
  year: 2004
  end-page: 280
  ident: CR11
  article-title: Foraging energetics of great egrets and snowy egrets
  publication-title: J Field Ornithol
– volume: 13
  start-page: 88
  issue: 4
  year: 2023
  ident: CR48
  article-title: De-noising groundwater level modeling using data decomposition techniques in combination with artificial intelligence (case study )
  publication-title: Appl Water Sci
– volume: 599
  start-page: 20
  year: 2017
  end-page: 31
  ident: CR9
  article-title: Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models
  publication-title: Sci Total Environ
– volume: 61
  start-page: 279
  issue: 1
  year: 2022
  end-page: 303
  ident: CR19
  article-title: A review of the hybrid artificial intelligence and optimization modelling of hydrological streamflow forecasting
  publication-title: Alex Eng J
– volume: 221
  start-page: 109400
  year: 2023
  ident: CR51
  article-title: Social network search algorithm for combined heat and power economic dispatch
  publication-title: Electr Power Syst Res
– ident: CR5
– volume: 47
  start-page: 3147
  year: 2023
  end-page: 3164
  ident: CR47
  article-title: A novel hybrid algorithms for groundwater level prediction
  publication-title: Iran J Sci Technol Trans Civ Eng
– volume: 13
  start-page: 54
  issue: 2
  year: 2023
  ident: CR37
  article-title: Prediction of groundwater level fluctuations using artificial intelligence-based models and GMS
  publication-title: Appl Water Sci
– volume: 12
  start-page: 24
  issue: 1
  year: 2023
  ident: CR46
  article-title: Improved wild horse optimization with levy flight algorithm for effective task scheduling in cloud computing
  publication-title: J Cloud Comput
– volume: 865
  start-page: 161035
  year: 2023
  ident: CR14
  article-title: A wavelet-assisted deep learning approach for simulating groundwater levels affected by low-frequency variability
  publication-title: Sci Total Environ
– volume: 17
  start-page: 856
  issue: 4
  year: 2023
  end-page: 872
  ident: CR16
  article-title: Recent approach of wild horse optimizer for identifying the optimal parameters of high efficiency triple-junction solar system
  publication-title: IET Renew Power Gener
– volume: 70
  start-page: 1885
  issue: 4
  year: 2022
  end-page: 1898
  ident: CR43
  article-title: Hybrid support vector regression models with algorithm of innovative gunner for the simulation of groundwater level
  publication-title: Acta Geophys
– volume: 10
  start-page: 201
  issue: 6
  year: 2022
  ident: CR28
  article-title: Application of sine cosine egret swarm optimization algorithm in gas turbine cooling system
  publication-title: Systems
– volume: 14
  start-page: 176
  year: 1991
  end-page: 179
  ident: CR55
  article-title: Foraging success and aggression in solitary and group-feeding Great Egrets ( )
  publication-title: Colon Waterbirds
– volume: 31
  start-page: 275
  issue: 3
  year: 2023
  end-page: 285
  ident: CR17
  article-title: The role of artificial neural network and machine learning in utilizing spatial information
  publication-title: Spat Inf Res
– volume: 20
  start-page: 261
  issue: 2
  year: 1997
  end-page: 272
  ident: CR15
  article-title: Foraging ecology of the grey heron ( ), great egret ( ) and little egret ( ) in response to habitat, at 2 Greek wetlands
  publication-title: Colon Waterbirds
– ident: CR10
– volume: 35
  start-page: 394
  issue: 3
  year: 2012
  end-page: 401
  ident: CR32
  article-title: A telemetry-based study of Snowy Egret ( ) nest-activity patterns, food-provisioning rates and foraging energetics
  publication-title: Waterbirds
– volume: 16
  start-page: 1
  issue: 5
  year: 2023
  end-page: 14
  ident: CR35
  article-title: A novel hybrid AIG-SVR model for estimating daily reference evapotranspiration
  publication-title: Arab J Geosci
– volume: 14
  start-page: 751
  issue: 5
  year: 2022
  ident: CR22
  article-title: A combination of metaheuristic optimization algorithms and machine learning methods improves the prediction of groundwater level
  publication-title: Water
– volume: 9
  start-page: 1
  issue: 6
  year: 2016
  end-page: 16
  ident: CR18
  article-title: Optimal design of BP algorithm by ACOR model for groundwater-level forecasting: a case study on Shabestar plain, Iran
  publication-title: Arab J Geosci
– volume: 35
  start-page: 233
  issue: 1
  year: 1999
  end-page: 241
  ident: CR27
  article-title: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resour Res
– volume: 74
  start-page: 297
  issue: 1
  year: 2015
  end-page: 313
  ident: CR7
  article-title: Assessment of heavy metals concentrations with emphasis on arsenic in the Tabriz plain aquifers
  publication-title: Iran Environ Earth Sci
– volume: 15
  start-page: 1524
  issue: 2
  year: 2023
  ident: CR38
  article-title: Wild horse optimization with deep learning-driven short-term load forecasting scheme for smart grids
  publication-title: Sustainability
– volume: 415
  start-page: 295
  year: 2020
  end-page: 316
  ident: CR56
  article-title: On hyperparameter optimization of machine learning algorithms: theory and practice
  publication-title: Neurocomputing
– volume: 14
  start-page: 949
  issue: 6
  year: 2022
  ident: CR3
  article-title: Groundwater level modeling with machine learning: a systematic review and meta-analysis
  publication-title: Water
– volume: 31
  start-page: 541
  issue: 4
  year: 2008
  end-page: 549
  ident: CR31
  article-title: Characteristics and energetics of Great Egret and Snowy Egret foraging flights
  publication-title: Waterbirds
– volume: 602
  start-page: 126735
  year: 2021
  ident: CR57
  article-title: Comparison of physical and data-driven models to forecast groundwater level changes with the inclusion of GRACE—a case study over the state of Victoria
  publication-title: Aust J Hydrol
– volume: 9
  start-page: 100237
  year: 2019
  ident: CR36
  article-title: Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels
  publication-title: Groundw Sustain Dev
– volume: 17
  start-page: 2174189
  issue: 1
  year: 2023
  ident: CR60
  article-title: Atmosphere air temperature forecasting using the honey badger optimization algorithm: on the warmest and coldest areas of the world
  publication-title: Eng Appl Comput Fluid Mech
– volume: 595
  start-page: 125659
  year: 2021
  ident: CR4
  article-title: Groundwater level modeling with hybrid artificial intelligence techniques
  publication-title: J Hydrol
– volume: 34
  start-page: 10751
  issue: 13
  year: 2022
  end-page: 10773
  ident: CR41
  article-title: Groundwater level prediction using machine learning algorithms in a drought-prone area
  publication-title: Neural Comput Appl
– volume: 12
  start-page: 1007
  issue: 6
  year: 2017
  end-page: 1017
  ident: CR54
  article-title: Groundwater and human development: synergies and trade-offs within the context of the sustainable development goals
  publication-title: Sustain Sci
– ident: CR52
– volume: 7
  start-page: 59
  issue: 3
  year: 2020
  ident: CR26
  article-title: Long-term groundwater level prediction model based on hybrid KNN-RF technique
  publication-title: Hydrology
– volume: 7
  start-page: 144
  issue: 4
  year: 2022
  ident: CR13
  article-title: Egret swarm optimization algorithm: An evolutionary computation approach for model free optimization
  publication-title: Biomimetics
– volume: 33
  start-page: 8067
  issue: 13
  year: 2021
  end-page: 8088
  ident: CR58
  article-title: Hybrid signal processing/machine learning and PSO optimization model for conjunctive management of surface–groundwater resources
  publication-title: Neural Comput Appl
– volume: 68
  start-page: 573
  issue: 7
  year: 2019
  end-page: 584
  ident: CR20
  article-title: Prediction of groundwater quality parameter in the Tabriz plain, Iran using soft computing methods
  publication-title: J Water Supply Res Technol AQUA
– volume: 9
  start-page: 25
  issue: 1
  year: 1986
  end-page: 30
  ident: CR23
  article-title: Behavior, habitat use, and food of three egrets in a marine habitat
  publication-title: Colon Waterbirds
– volume: 32
  start-page: 191
  issue: 2
  year: 2015
  end-page: 208
  ident: CR21
  article-title: Spatial analysis of groundwater electrical conductivity using ordinary kriging and artificial intelligence methods (Case Study: Tabriz Plain, Iran)
  publication-title: G eofizika
– volume: 32
  start-page: 7691
  issue: 12
  year: 2020
  end-page: 7708
  ident: CR40
  article-title: Groundwater level forecasting using soft computing techniques
  publication-title: Neural Comput Appl
– volume: 577
  start-page: 123999
  year: 2019
  ident: CR49
  article-title: Using heuristic multi-objective optimization for quantifying predictive uncertainty associated with groundwater flow and reactive transport models
  publication-title: J Hydrol
– volume: 489
  start-page: 271
  year: 2022
  ident: 9681_CR53
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.03.014
– ident: 9681_CR52
  doi: 10.1007/978-3-642-27172-4_86
– volume: 33
  start-page: 8067
  issue: 13
  year: 2021
  ident: 9681_CR58
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05553-8
– volume: 7
  start-page: 1247
  issue: 3
  year: 2014
  ident: 9681_CR12
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-7-1247-2014
– volume: 14
  start-page: 751
  issue: 5
  year: 2022
  ident: 9681_CR22
  publication-title: Water
  doi: 10.3390/w14050751
– volume: 602
  start-page: 126735
  year: 2021
  ident: 9681_CR57
  publication-title: Aust J Hydrol
  doi: 10.1016/j.jhydrol.2021.126735
– ident: 9681_CR29
  doi: 10.1007/978-3-319-44234-1_1
– volume: 595
  start-page: 125659
  year: 2021
  ident: 9681_CR4
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125659
– volume: 9
  start-page: 100237
  year: 2019
  ident: 9681_CR36
  publication-title: Groundw Sustain Dev
  doi: 10.1016/j.gsd.2019.100237
– volume: 68
  start-page: 573
  issue: 7
  year: 2019
  ident: 9681_CR20
  publication-title: J Water Supply Res Technol AQUA
  doi: 10.2166/aqua.2019.062
– volume: 14
  start-page: 176
  year: 1991
  ident: 9681_CR55
  publication-title: Colon Waterbirds
  doi: 10.2307/1521508
– volume: 7
  start-page: 3997
  year: 2017
  ident: 9681_CR8
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-017-0550-4
– volume: 75
  start-page: 266
  issue: 3
  year: 2004
  ident: 9681_CR11
  publication-title: J Field Ornithol
  doi: 10.1648/0273-8570-75.3.266
– volume: 47
  start-page: 3147
  year: 2023
  ident: 9681_CR47
  publication-title: Iran J Sci Technol Trans Civ Eng
  doi: 10.1007/s40996-023-01068-z
– ident: 9681_CR10
  doi: 10.5194/egusphere-egu23-12629
– volume: 15
  start-page: 1524
  issue: 2
  year: 2023
  ident: 9681_CR38
  publication-title: Sustainability
  doi: 10.3390/su15021524
– ident: 9681_CR5
  doi: 10.1063/1.5031983
– volume: 577
  start-page: 123999
  year: 2019
  ident: 9681_CR49
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.123999
– volume: 35
  start-page: 233
  issue: 1
  year: 1999
  ident: 9681_CR27
  publication-title: Water Resour Res
  doi: 10.1029/1998WR900018
– volume: 38
  start-page: 2158951
  issue: 1
  year: 2023
  ident: 9681_CR2
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2022.2158951
– volume: 32
  start-page: 7691
  issue: 12
  year: 2020
  ident: 9681_CR40
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04234-5
– volume: 221
  start-page: 109400
  year: 2023
  ident: 9681_CR51
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2023.109400
– volume: 31
  start-page: 541
  issue: 4
  year: 2008
  ident: 9681_CR31
  publication-title: Waterbirds
– volume: 7
  start-page: 144
  issue: 4
  year: 2022
  ident: 9681_CR13
  publication-title: Biomimetics
  doi: 10.3390/biomimetics7040144
– volume: 14
  start-page: 8209
  issue: 13
  year: 2022
  ident: 9681_CR50
  publication-title: Sustainability
  doi: 10.3390/su14138209
– volume: 12
  start-page: 1007
  issue: 6
  year: 2017
  ident: 9681_CR54
  publication-title: Sustain Sci
  doi: 10.1007/s11625-017-0490-9
– volume: 74
  start-page: 297
  issue: 1
  year: 2015
  ident: 9681_CR7
  publication-title: Iran Environ Earth Sci
  doi: 10.1007/s12665-015-4123-2
– volume: 78
  start-page: 411
  issue: 4
  year: 2007
  ident: 9681_CR30
  publication-title: J Field Ornithol
  doi: 10.1111/j.1557-9263.2007.00133.x
– volume: 38
  start-page: 3025
  issue: 4
  year: 2022
  ident: 9681_CR39
  publication-title: Eng Comput
  doi: 10.1007/s00366-021-01438-z
– ident: 9681_CR42
  doi: 10.1016/B978-0-444-63289-0.00005-3
– volume: 17
  start-page: 2174189
  issue: 1
  year: 2023
  ident: 9681_CR60
  publication-title: Eng Appl Comput Fluid Mech
– volume: 865
  start-page: 161035
  year: 2023
  ident: 9681_CR14
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.161035
– volume: 415
  start-page: 295
  year: 2020
  ident: 9681_CR56
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– volume: 13
  start-page: 88
  issue: 4
  year: 2023
  ident: 9681_CR48
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-023-01885-7
– ident: 9681_CR25
– volume: 13
  start-page: 2743
  issue: 4
  year: 2023
  ident: 9681_CR24
  publication-title: Appl Sci
  doi: 10.3390/app13042743
– volume: 35
  start-page: 394
  issue: 3
  year: 2012
  ident: 9681_CR32
  publication-title: Waterbirds
  doi: 10.1675/063.035.0304
– volume: 36
  start-page: 3627
  issue: 10
  year: 2022
  ident: 9681_CR45
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-022-03217-x
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 9681_CR59
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-99269-x
– volume: 12
  start-page: 24
  issue: 1
  year: 2023
  ident: 9681_CR46
  publication-title: J Cloud Comput
  doi: 10.1186/s13677-023-00401-1
– volume: 9
  start-page: 1
  issue: 6
  year: 2016
  ident: 9681_CR18
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-016-2454-2
– volume: 32
  start-page: 191
  issue: 2
  year: 2015
  ident: 9681_CR21
  publication-title: G eofizika
– volume: 13
  start-page: 3130
  issue: 21
  year: 2021
  ident: 9681_CR44
  publication-title: Water
  doi: 10.3390/w13213130
– volume: 15
  start-page: 1147
  issue: 1
  year: 2021
  ident: 9681_CR6
  publication-title: Eng Appl Comput Fluid Mech
– volume: 13
  start-page: 54
  issue: 2
  year: 2023
  ident: 9681_CR37
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-022-01861-7
– volume: 7
  start-page: 59
  issue: 3
  year: 2020
  ident: 9681_CR26
  publication-title: Hydrology
  doi: 10.3390/hydrology7030059
– volume: 10
  start-page: 201
  issue: 6
  year: 2022
  ident: 9681_CR28
  publication-title: Systems
  doi: 10.3390/systems10060201
– volume: 17
  start-page: 856
  issue: 4
  year: 2023
  ident: 9681_CR16
  publication-title: IET Renew Power Gener
  doi: 10.1049/rpg2.12640
– volume: 9
  start-page: 25
  issue: 1
  year: 1986
  ident: 9681_CR23
  publication-title: Colon Waterbirds
  doi: 10.2307/1521140
– volume: 20
  start-page: 261
  issue: 2
  year: 1997
  ident: 9681_CR15
  publication-title: Colon Waterbirds
  doi: 10.2307/1521692
– volume: 61
  start-page: 279
  issue: 1
  year: 2022
  ident: 9681_CR19
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2021.04.100
– volume: 31
  start-page: 275
  issue: 3
  year: 2023
  ident: 9681_CR17
  publication-title: Spat Inf Res
  doi: 10.1007/s41324-022-00494-x
– volume: 28
  start-page: 220
  issue: 2
  year: 2005
  ident: 9681_CR34
  publication-title: Waterbirds
  doi: 10.1675/1524-4695(2005)028[0220:PSBSE]2.0.CO;2
– volume: 34
  start-page: 10751
  issue: 13
  year: 2022
  ident: 9681_CR41
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07009-7
– volume: 599
  start-page: 20
  year: 2017
  ident: 9681_CR9
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.04.189
– volume: 33
  start-page: 1609
  issue: 4
  year: 2019
  ident: 9681_CR33
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-2193-8
– volume: 16
  start-page: 1
  issue: 5
  year: 2023
  ident: 9681_CR35
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-023-11387-0
– volume: 7
  start-page: 1
  year: 2018
  ident: 9681_CR1
  publication-title: Groundw Sustain Dev
  doi: 10.1016/j.gsd.2018.02.004
– volume: 70
  start-page: 1885
  issue: 4
  year: 2022
  ident: 9681_CR43
  publication-title: Acta Geophys
  doi: 10.1007/s11600-022-00826-3
– volume: 14
  start-page: 949
  issue: 6
  year: 2022
  ident: 9681_CR3
  publication-title: Water
  doi: 10.3390/w14060949
SSID ssj0004685
Score 2.3731859
Snippet Predicting the groundwater level (GWL) is essential in water resource management and irrigation planning in arid and semi-arid areas. In this study, an...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12609
SubjectTerms Algorithms
Aquifers
Aridity
Artificial Intelligence
Artificial neural networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Effectiveness
Evaporation
Groundwater levels
Image Processing and Computer Vision
Indicators
Irrigation
Lead time
Original Article
Probability and Statistics in Computer Science
Root-mean-square errors
Semi arid areas
Water resources management
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXLyIz4ii2YM3KWG7pbBHYkDUaDxAgqdmXxUiKQRKDPx6Z0sLStTEa7vbtDuznW92Zr4BuPYU95WoCtxIEh0UNMmOMFo6OuTUlVTUXGkP9J-e_U7Pe-jX-mlR2CzLds9Cksmfel3sZk8w0fV1PQdhd4M6bBfyCd9WDvLNu9fH1pd6yKQVJ3ouNqvHY2mxzM9P-W6QNihzKzCa2Jt2AXrZm67STN4r81hW1HKLxPG_n3IA-ykAJc2VxhzCjomOoJA1dyDpXj-G4cvUxnCs3Mg4JKit8WC0ILYKJNIfwo4d2YQjYjPn34ggiM_JYGELwMhwzfMZk4y0HC8SBJukK3DIkkxGYhiVyT2ayhPotVvd246T9mVwlMs85jQQFmhqjEJoUed1gw6t5MpQbXxNa6rhK98IXg3rDc2p5cdjRtYUZ8ZnIfqbITuFXDSOzBkQrpnkliMuxMWQmglhFada1dSXXPB6EWgmnEClpOW2d8YoWNMtJ2sZ4PQgWcuAFeFmPWeyouz4c3Qpk3mQbt9ZwGx8EpGf5xehnIlwc_v3p53_b_gF7LmJFtj03xLk4uncXCLIieVVqtOfi2LxHg
  priority: 102
  providerName: Springer Nature
Title Prediction of monthly groundwater level using a new hybrid intelligent approach in the Tabriz plain, Iran
URI https://link.springer.com/article/10.1007/s00521-024-09681-3
https://www.proquest.com/docview/3076825146
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: ADMLS
  dateStart: 19930301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: 8FG
  dateStart: 20180401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu3DhjRiPKQduULE0XdccEBqw8Z4QMAlOVV6FSVM3YAjBr8cu7QZIcKqUl1Q7ie3Y_gywFRgZGlVTeJA0Gigokj3lrPZsIrmvuar7mh70LzvhSTc4u6vfTUGnyIWhsMriTswuajsw9Ea-K8hlhMI4CPeHTx5VjSLvalFCQ-WlFexeBjE2DWWfkLFKUD5oda6uv2VKZkU60aaheJ9A5Gk0WTIdvZBiqx94qNZH3BM_RdVE__zlMs0kUXseZnMVkjW_eL4AUy5dhLmiPAPLT-sS9K6eyQtDlGeDhOEPjB7774zyOFL7pmhsn0KGGMW-PzDFUMNmj--UwsV6Y6TOEStgx7GRobrIbhUO-WDDvuqlO-wUhd0ydNut28MTL6-s4BlfBMKLULBb7pxB5aAhGw5NUi2N49aFltdNFJrQKVlLGpGVnBDuhNN1I4ULRYIWYyJWoJQOUrcKTFqhJaG8JUg5bYVSxPpazfJQSyUbFeAFEWOTw45T9Yt-PAZMzggf4_Q4I3wsKrA9njP8At34d_RGwZs4P4Av8WS7VGCn4Nek--_V1v5fbR1m_GyLUMDuBpRGz69uE9WSka7CdNQ-rkK5eXR5cUPf4_vzVjXfgdjb9ZufcAbiuw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxtBDLYoHNoLFNqKAC0-lFNZNbOz2WQOCAEFJQUiVAWJ23ZeC5GiTYAgFH5cf1vtZTaBSuXGdV4H2zO2x_ZngK-JVanVdU0XyZCDQio50t6ZyOVKxEboRmz4Q_-0m7bPk58XjYs5-FPVwnBaZfUmlg-1G1r-I_8uOWREyjhJd0fXEXeN4uhq1UJDh9YKbqeEGAuFHcd-ck8u3O1O5wfxeyuOjw57B-0odBmIbCwTGbVIyTnhvSVF2VRNT-6ZUdYL51MnGraV2tRrVc-bLacEo71JbxpWSZ_KnLynXNK5b2AhkYki529h_7B79utJZWbZFJR8KM4vSmQo2ymL9_hHlkbjJCI3oiUi-Vw1zuzdf0K0peY7eg-LwWTFvUcZW4Y5X6zAUtUOAsPr8AH6Zzcc9WFO4zBHItj4ajBBrhsp3L3mtQNOUULOtb9EjWTR49WES8awP0UGHWMFc06DSOYp9jQtecDRQPeLbeyQcv0I569C408wXwwLvwqonDSKUeVyopxxUmsWtXrdidQorZo1EBURMxtgzrnbxiCbAjSXhM9oe1YSPpM1-DbdM3oE-Xhx9UbFmyxc-NtsJp412K74NZv-_2lrL5-2CW_bvdOT7KTTPV6Hd3EpLpwsvAHz45s7_5lMorH5EuQO4fdri_pfygoZ0w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oJsaLbyOKugdv0sB2S2GPRCXgg3CAhFuzrwpJUwjWGPz1zpQW0KiJ13Z2D7OzmW92Zr4h5NrTwteyKuEiKQhQwCU70hrlmFAwVzFZcxU-6D93_fbAexjWhmtd_Gm1e56SXPQ0IEtTnFSmJqwsG9_wNRPCYNdzAII3mMM3yZaHRAlg0QO3udYZmQ7lhBgG63s8nrXN_LzHV9e0wpvfUqSp52ntk90MMtLm4owPyIaND8lePo6BZrfziIx7M8y6oKbpJKRgX8komlPs24jNu0TZCEuEKNa6v1BJAVHT0Rxbtuh4ycyZ0JxmHD5SgIe0L0Hkg04jOY7LtAPO7ZgMWvf927aTTVJwtMs97jTAkRtmrQYwUBd1CyGoEtoyY33Darrha99KUQ3rDSMYMtpxq2pacOvzECLEkJ-QQjyJ7SmhwnAlkNUtBM0pw6XEo65WDfOVkKJeJCxXYqAzmnGcdhEFS4LkVPEBLA9SxQe8SG6Wa6YLko0_pUv52QTZhXsNOGYUAat5fpGU8_Na_f59t7P_iV-R7d5dK3jqdB_PyY6bWg_W7pZIIZm92QtAKIm6TI3wE5t020g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+monthly+groundwater+level+using+a+new+hybrid+intelligent+approach+in+the+Tabriz+plain%2C+Iran&rft.jtitle=Neural+computing+%26+applications&rft.au=Mirzania%2C+Ehsan&rft.au=Achite%2C+Mohammed&rft.au=Elshaboury%2C+Nehal&rft.au=Katipo%C4%9Flu%2C+Okan+Mert&rft.date=2024-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=20&rft.spage=12609&rft.epage=12624&rft_id=info:doi/10.1007%2Fs00521-024-09681-3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon