M-pSC: a manifold p-spectral clustering algorithm

Since p -spectral clustering has good performance in many practical problems, it has attracted great attention. The Cheeger cut criterion is used in p -spectral clustering to do graph partition. However, due to the improper affinity measure and outliers, the original p -spectral clustering algorithm...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of machine learning and cybernetics Vol. 12; no. 2; pp. 541 - 553
Main Authors Ding, Ling, Ding, Shifei, Wang, Yanru, Wang, Lijuan, Jia, Hongjie
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1868-8071
1868-808X
DOI10.1007/s13042-020-01187-3

Cover

Abstract Since p -spectral clustering has good performance in many practical problems, it has attracted great attention. The Cheeger cut criterion is used in p -spectral clustering to do graph partition. However, due to the improper affinity measure and outliers, the original p -spectral clustering algorithm is not effective in dealing with manifold data. To solve this problem, we propose a manifold p -spectral clustering (M-pSC) using path-based affinity measure. First, we design a path-based affinity function to describe the complex structures of manifold data. This affinity function obeys the clustering assumption that the data pairs within the manifold structure share high affinities, and the data pairs between different manifold structures share low affinities. This will help us construct a good affinity matrix, which carry more category information of the points. Then we propose a M-pSC algorithm using the path-based affinity function. In the Cheeger cut criterion, the p -Laplacian matrix are constructed based on the manifold affinity function, and the final clustering results are obtained by using the eigenvectors of graph p -Laplacian. At last, the proposed algorithm is tested on several public data sets and the experiments show that our algorithm is adaptive to different manifold data. Compared with other popular clustering algorithms, our algorithm has good clustering quality and robustness.
AbstractList Since p-spectral clustering has good performance in many practical problems, it has attracted great attention. The Cheeger cut criterion is used in p-spectral clustering to do graph partition. However, due to the improper affinity measure and outliers, the original p-spectral clustering algorithm is not effective in dealing with manifold data. To solve this problem, we propose a manifold p-spectral clustering (M-pSC) using path-based affinity measure. First, we design a path-based affinity function to describe the complex structures of manifold data. This affinity function obeys the clustering assumption that the data pairs within the manifold structure share high affinities, and the data pairs between different manifold structures share low affinities. This will help us construct a good affinity matrix, which carry more category information of the points. Then we propose a M-pSC algorithm using the path-based affinity function. In the Cheeger cut criterion, the p-Laplacian matrix are constructed based on the manifold affinity function, and the final clustering results are obtained by using the eigenvectors of graph p-Laplacian. At last, the proposed algorithm is tested on several public data sets and the experiments show that our algorithm is adaptive to different manifold data. Compared with other popular clustering algorithms, our algorithm has good clustering quality and robustness.
Since p -spectral clustering has good performance in many practical problems, it has attracted great attention. The Cheeger cut criterion is used in p -spectral clustering to do graph partition. However, due to the improper affinity measure and outliers, the original p -spectral clustering algorithm is not effective in dealing with manifold data. To solve this problem, we propose a manifold p -spectral clustering (M-pSC) using path-based affinity measure. First, we design a path-based affinity function to describe the complex structures of manifold data. This affinity function obeys the clustering assumption that the data pairs within the manifold structure share high affinities, and the data pairs between different manifold structures share low affinities. This will help us construct a good affinity matrix, which carry more category information of the points. Then we propose a M-pSC algorithm using the path-based affinity function. In the Cheeger cut criterion, the p -Laplacian matrix are constructed based on the manifold affinity function, and the final clustering results are obtained by using the eigenvectors of graph p -Laplacian. At last, the proposed algorithm is tested on several public data sets and the experiments show that our algorithm is adaptive to different manifold data. Compared with other popular clustering algorithms, our algorithm has good clustering quality and robustness.
Author Ding, Ling
Ding, Shifei
Wang, Yanru
Jia, Hongjie
Wang, Lijuan
Author_xml – sequence: 1
  givenname: Ling
  surname: Ding
  fullname: Ding, Ling
  organization: School of Computer Science and Technology, China University of Mining and Technology
– sequence: 2
  givenname: Shifei
  orcidid: 0000-0002-1391-2717
  surname: Ding
  fullname: Ding, Shifei
  email: dingsf@cumt.edu.cn
  organization: School of Computer Science and Technology, China University of Mining and Technology, Mine Digitization Engineering Research Center of Ministry of Education of the People’s Republic of China
– sequence: 3
  givenname: Yanru
  surname: Wang
  fullname: Wang, Yanru
  organization: School of Computer Science and Technology, China University of Mining and Technology
– sequence: 4
  givenname: Lijuan
  surname: Wang
  fullname: Wang, Lijuan
  organization: School of Computer Science and Technology, China University of Mining and Technology
– sequence: 5
  givenname: Hongjie
  surname: Jia
  fullname: Jia, Hongjie
  email: jiahj@ujs.edu.cn
  organization: School of Computer Science and Technology, China University of Mining and Technology, School of Computer Science and Communication Engineering, Jiangsu University
BookMark eNp9kD1PwzAQQC1UJErpH2CKxGzw2YntsKEKClIRAyCxWU5sl1RpHOx04N_jEgQSQ2-5G-7dxztFk853FqFzIJdAiLiKwEhOMaEEEwApMDtCU5BcYknk2-S3FnCC5jFuSApOGCN0iuAR98-L60xnW901zrcm63HsbT0E3WZ1u4uDDU23znS79qEZ3rdn6NjpNtr5T56h17vbl8U9Xj0tHxY3K1xTljNcuLRCUpK7UpcmZ46zWjPjClPySlAHleW8qsDqouTGitwwoMBF5XJjAAo2Qxfj3D74j52Ng9r4XejSSkVLSqigJcjURceuOvgYg3WqD81Wh08FRO3tqNGOSnbUtx3FEiT_QXUz6KHxXfq6aQ-jbERjv9diw99VB6gvQt15Ag
CitedBy_id crossref_primary_10_1016_j_eswa_2021_115813
crossref_primary_10_1007_s00500_022_06741_5
Cites_doi 10.1016/j.ins.2016.09.032
10.1016/j.patcog.2014.10.023
10.1016/j.patrec.2010.09.014
10.1016/j.ijmst.2019.12.003
10.1016/j.inffus.2013.05.001
10.1016/j.ijmst.2019.06.009
10.1093/biomet/asx008
10.1007/s00521-013-1439-2
10.1142/S0218488517500283
10.1109/TNNLS.2018.2817538
10.1016/j.cam.2012.07.019
10.1109/TNN.2011.2147798
10.1016/j.trit.2016.12.005
10.1016/j.trit.2016.08.004
10.1016/j.knosys.2016.02.001
10.1103/PhysRevE.93.063107
10.1016/j.ins.2018.03.031
10.1016/j.asoc.2009.08.017
10.1109/TIP.2018.2862629
10.1007/s12559-015-9331-2
10.1016/j.neucom.2014.02.030
10.1109/TCYB.2018.2833843
10.1162/NECO_a_00973
10.1016/j.ymssp.2016.12.002
10.1007/s13042-017-0648-x
10.1007/978-3-030-00828-4_3
10.1007/3-540-57182-5_65
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.1007/s13042-020-01187-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 553
ExternalDocumentID 10_1007_s13042_020_01187_3
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2343-5f6038204f9a9d43f63ca3df5d96b72f1be66bb1ea596de74d312167bf4dd1153
IEDL.DBID BENPR
ISSN 1868-8071
IngestDate Sun Jul 13 02:54:10 EDT 2025
Wed Oct 01 04:29:31 EDT 2025
Thu Apr 24 22:58:10 EDT 2025
Fri Feb 21 02:48:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Affinity measure
Laplacian matrix
Clustering
Manifold distance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2343-5f6038204f9a9d43f63ca3df5d96b72f1be66bb1ea596de74d312167bf4dd1153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1391-2717
PQID 2920272918
PQPubID 2043904
PageCount 13
ParticipantIDs proquest_journals_2920272918
crossref_primary_10_1007_s13042_020_01187_3
crossref_citationtrail_10_1007_s13042_020_01187_3
springer_journals_10_1007_s13042_020_01187_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210200
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Binkiewicz, Vogelstein, Rohe (CR14) 2017; 104
Trillos, Slepčev, Von Brecht (CR23) 2016; 17
Wang, Jiang, Wu (CR20) 2011; 22
Tasdemir, Yalcin, Yildirim (CR18) 2015; 48
Cheng, Nie, Sun (CR7) 2017; 29
Zhang, Wei, Bai (CR11) 2018; 27
Frederix, Van Barel (CR13) 2013; 237
CR17
CR16
Jia, Ding, Xu (CR4) 2014; 24
Langone, Reynders, Mehrkanoon (CR21) 2017; 90
Hadjighasem, Karrasch, Teramoto (CR31) 2016; 93
Du, Qu, Liu (CR3) 2015; 21
CR12
Wang, Wei, Bai (CR27) 2020; 49
Goyal, Kumar, Zaveri (CR19) 2017; 25
Zhang, Cao (CR5) 2014; 139
Wang, Zhang, Liu (CR26) 2017; 2
Kang, Zhang, Tang (CR29) 2016; 1
Liu, Wang, Yu (CR1) 2018; 450
Liu, Ma, Zhou (CR25) 2019; 49
Dyke, Klemetti, Wickline (CR30) 2020; 30
Shi, Li, Zhao (CR32) 2019; 48
Ariascastro, Lerman, Zhang (CR15) 2017; 18
CR9
Li, Nie, Chang (CR8) 2018; 29
Jia, Ding, Du (CR10) 2015; 7
CR24
Zhang, Li, Yu (CR35) 2011; 32
Jeong, Kim, Kim (CR33) 2018; 11
Zhi, Qian, Davidson (CR22) 2017; 2017
Pu, Apel, Liu (CR28) 2019; 29
Du, Ding, Xu (CR6) 2018; 9
Zhang, Lu (CR2) 2010; 10
Jia, Ding, Du (CR34) 2016; 374
Du, Ding, Jia (CR36) 2016; 99
J Jeong (1187_CR33) 2018; 11
N Binkiewicz (1187_CR14) 2017; 104
R Kang (1187_CR29) 2016; 1
H Jia (1187_CR10) 2015; 7
X Zhang (1187_CR35) 2011; 32
M Du (1187_CR36) 2016; 99
Y Pu (1187_CR28) 2019; 29
M Du (1187_CR6) 2018; 9
D Cheng (1187_CR7) 2017; 29
W Liu (1187_CR25) 2019; 49
H Jia (1187_CR4) 2014; 24
1187_CR24
S Goyal (1187_CR19) 2017; 25
A Hadjighasem (1187_CR31) 2016; 93
D Wang (1187_CR27) 2020; 49
W Zhi (1187_CR22) 2017; 2017
X Shi (1187_CR32) 2019; 48
R Langone (1187_CR21) 2017; 90
H Zhang (1187_CR2) 2010; 10
B Wang (1187_CR26) 2017; 2
T Du (1187_CR3) 2015; 21
1187_CR9
H Zhang (1187_CR5) 2014; 139
K Frederix (1187_CR13) 2013; 237
E Ariascastro (1187_CR15) 2017; 18
Z Li (1187_CR8) 2018; 29
L Zhang (1187_CR11) 2018; 27
NG Trillos (1187_CR23) 2016; 17
K Tasdemir (1187_CR18) 2015; 48
1187_CR16
1187_CR17
MV Dyke (1187_CR30) 2020; 30
R Liu (1187_CR1) 2018; 450
1187_CR12
H Jia (1187_CR34) 2016; 374
Y Wang (1187_CR20) 2011; 22
References_xml – volume: 374
  start-page: 135
  year: 2016
  end-page: 150
  ident: CR34
  article-title: Approximate normalized cuts without Eigen-decomposition
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.09.032
– volume: 48
  start-page: 1465
  issue: 4
  year: 2015
  end-page: 1477
  ident: CR18
  article-title: Approximate spectral clustering with utilized similarity information using geodesic based hybrid distance measures
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2014.10.023
– volume: 49
  start-page: 103
  issue: 232
  year: 2020
  end-page: 109
  ident: CR27
  article-title: Fractal characteristics of fracture structure and fractal seepage model of coal
  publication-title: J China Univ Min Technol
– ident: CR16
– volume: 48
  start-page: 668
  issue: 228
  year: 2019
  end-page: 675
  ident: CR32
  article-title: Remote sensing image segmentation combining hierarchical Gaussian mixture model with M-H algorithm
  publication-title: J China Univ Min Technol
– volume: 32
  start-page: 352
  issue: 2
  year: 2011
  end-page: 358
  ident: CR35
  article-title: Local density adaptive similarity measurement for spectral clustering
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2010.09.014
– ident: CR12
– volume: 30
  start-page: 131
  issue: 1
  year: 2020
  end-page: 139
  ident: CR30
  article-title: Geologic data collection and assessment techniques in coal mining for ground control
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2019.12.003
– volume: 21
  start-page: 18
  year: 2015
  end-page: 29
  ident: CR3
  article-title: An energy efficiency semi-static routing algorithm for WSNs based on HAC clustering method
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2013.05.001
– volume: 29
  start-page: 565
  issue: 4
  year: 2019
  end-page: 570
  ident: CR28
  article-title: Machine learning methods for rockburst prediction-state-of-the-art review
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2019.06.009
– volume: 2017
  start-page: 1201
  year: 2017
  end-page: 1206
  ident: CR22
  article-title: Scalable constrained spectral clustering via the randomized projected power method
  publication-title: IEEE Int Conf Data Min
– volume: 104
  start-page: 361
  issue: 2
  year: 2017
  end-page: 377
  ident: CR14
  article-title: Covariate-assisted spectral clustering
  publication-title: Biometrika
  doi: 10.1093/biomet/asx008
– volume: 24
  start-page: 1477
  issue: 7–8
  year: 2014
  end-page: 1486
  ident: CR4
  article-title: The latest research progress on spectral clustering
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1439-2
– volume: 25
  start-page: 649
  issue: 04
  year: 2017
  end-page: 673
  ident: CR19
  article-title: Fuzzy similarity measure based spectral clustering framework for noisy image segmentation
  publication-title: Int J Uncertain Fuzziness Knowl Based Syst
  doi: 10.1142/S0218488517500283
– volume: 29
  start-page: 6073
  issue: 12
  year: 2018
  end-page: 6082
  ident: CR8
  article-title: Rank-constrained spectral clustering with flexible embedding
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2817538
– volume: 237
  start-page: 145
  issue: 1
  year: 2013
  end-page: 161
  ident: CR13
  article-title: Sparse spectral clustering method based on the incomplete Cholesky decomposition
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2012.07.019
– volume: 22
  start-page: 1149
  issue: 7
  year: 2011
  end-page: 1161
  ident: CR20
  article-title: Spectral clustering on multiple manifolds
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2147798
– volume: 18
  start-page: 253
  issue: 9
  year: 2017
  end-page: 309
  ident: CR15
  article-title: Spectral clustering based on local PCA
  publication-title: J Mach Learn Res
– volume: 2
  start-page: 26
  issue: 1
  year: 2017
  end-page: 30
  ident: CR26
  article-title: Density peaks clustering based integrate framework for multi-document summarization
  publication-title: CAAI Trans Intell Technol
  doi: 10.1016/j.trit.2016.12.005
– volume: 1
  start-page: 179
  issue: 2
  year: 2016
  end-page: 188
  ident: CR29
  article-title: Adaptive region boosting method with biased entropy for path planning in changing environment
  publication-title: CAAI Trans Intell Technol
  doi: 10.1016/j.trit.2016.08.004
– volume: 11
  start-page: 161
  issue: 3
  year: 2018
  end-page: 164
  ident: CR33
  article-title: Reconsideration of F1 score as a performance measure in mass spectrometry-based metabolomics
  publication-title: J Chosun Nat Sci
– volume: 99
  start-page: 135
  year: 2016
  end-page: 145
  ident: CR36
  article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2016.02.001
– volume: 93
  start-page: 063107
  issue: 6
  year: 2016
  ident: CR31
  article-title: Spectral-clustering approach to Lagrangian vortex detection
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.93.063107
– ident: CR17
– volume: 450
  start-page: 200
  year: 2018
  end-page: 226
  ident: CR1
  article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.03.031
– volume: 10
  start-page: 490
  issue: 2
  year: 2010
  end-page: 495
  ident: CR2
  article-title: SCTWC: an online semi-supervised clustering approach to topical web crawlers
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.08.017
– ident: CR9
– volume: 27
  start-page: 5969
  issue: 12
  year: 2018
  end-page: 5982
  ident: CR11
  article-title: Exploiting clustering manifold structure for hyperspectral imagery super-resolution
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2862629
– volume: 7
  start-page: 622
  issue: 5
  year: 2015
  end-page: 632
  ident: CR10
  article-title: Self-tuning p-spectral clustering based on shared nearest neighbors
  publication-title: Cogn Comput
  doi: 10.1007/s12559-015-9331-2
– volume: 139
  start-page: 289
  year: 2014
  end-page: 297
  ident: CR5
  article-title: A spectral clustering based ensemble pruning approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.02.030
– volume: 49
  start-page: 2927
  issue: 8
  year: 2019
  end-page: 2940
  ident: CR25
  article-title: p-Laplacian regularization for scene recognition
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2018.2833843
– volume: 29
  start-page: 1902
  issue: 7
  year: 2017
  end-page: 1918
  ident: CR7
  article-title: A weight-adaptive Laplacian embedding for graph-based clustering
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00973
– ident: CR24
– volume: 90
  start-page: 64
  year: 2017
  end-page: 78
  ident: CR21
  article-title: Automated structural health monitoring based on adaptive kernel spectral clustering
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.12.002
– volume: 17
  start-page: 6268
  issue: 1
  year: 2016
  end-page: 6313
  ident: CR23
  article-title: Consistency of cheeger and ratio graph cuts
  publication-title: J Mach Learn Res
– volume: 9
  start-page: 1335
  issue: 8
  year: 2018
  end-page: 1349
  ident: CR6
  article-title: Density peaks clustering using geodesic distances
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-017-0648-x
– volume: 2
  start-page: 26
  issue: 1
  year: 2017
  ident: 1187_CR26
  publication-title: CAAI Trans Intell Technol
  doi: 10.1016/j.trit.2016.12.005
– volume: 21
  start-page: 18
  year: 2015
  ident: 1187_CR3
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2013.05.001
– ident: 1187_CR12
  doi: 10.1007/978-3-030-00828-4_3
– volume: 27
  start-page: 5969
  issue: 12
  year: 2018
  ident: 1187_CR11
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2862629
– volume: 90
  start-page: 64
  year: 2017
  ident: 1187_CR21
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.12.002
– volume: 30
  start-page: 131
  issue: 1
  year: 2020
  ident: 1187_CR30
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2019.12.003
– volume: 48
  start-page: 1465
  issue: 4
  year: 2015
  ident: 1187_CR18
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2014.10.023
– volume: 1
  start-page: 179
  issue: 2
  year: 2016
  ident: 1187_CR29
  publication-title: CAAI Trans Intell Technol
  doi: 10.1016/j.trit.2016.08.004
– volume: 7
  start-page: 622
  issue: 5
  year: 2015
  ident: 1187_CR10
  publication-title: Cogn Comput
  doi: 10.1007/s12559-015-9331-2
– volume: 29
  start-page: 1902
  issue: 7
  year: 2017
  ident: 1187_CR7
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00973
– volume: 17
  start-page: 6268
  issue: 1
  year: 2016
  ident: 1187_CR23
  publication-title: J Mach Learn Res
– volume: 139
  start-page: 289
  year: 2014
  ident: 1187_CR5
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.02.030
– volume: 25
  start-page: 649
  issue: 04
  year: 2017
  ident: 1187_CR19
  publication-title: Int J Uncertain Fuzziness Knowl Based Syst
  doi: 10.1142/S0218488517500283
– volume: 49
  start-page: 103
  issue: 232
  year: 2020
  ident: 1187_CR27
  publication-title: J China Univ Min Technol
– volume: 374
  start-page: 135
  year: 2016
  ident: 1187_CR34
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.09.032
– volume: 22
  start-page: 1149
  issue: 7
  year: 2011
  ident: 1187_CR20
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2147798
– volume: 18
  start-page: 253
  issue: 9
  year: 2017
  ident: 1187_CR15
  publication-title: J Mach Learn Res
– ident: 1187_CR16
– volume: 29
  start-page: 6073
  issue: 12
  year: 2018
  ident: 1187_CR8
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2817538
– volume: 2017
  start-page: 1201
  year: 2017
  ident: 1187_CR22
  publication-title: IEEE Int Conf Data Min
– volume: 450
  start-page: 200
  year: 2018
  ident: 1187_CR1
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.03.031
– volume: 24
  start-page: 1477
  issue: 7–8
  year: 2014
  ident: 1187_CR4
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1439-2
– volume: 93
  start-page: 063107
  issue: 6
  year: 2016
  ident: 1187_CR31
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.93.063107
– volume: 104
  start-page: 361
  issue: 2
  year: 2017
  ident: 1187_CR14
  publication-title: Biometrika
  doi: 10.1093/biomet/asx008
– volume: 32
  start-page: 352
  issue: 2
  year: 2011
  ident: 1187_CR35
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2010.09.014
– volume: 11
  start-page: 161
  issue: 3
  year: 2018
  ident: 1187_CR33
  publication-title: J Chosun Nat Sci
– volume: 10
  start-page: 490
  issue: 2
  year: 2010
  ident: 1187_CR2
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.08.017
– volume: 49
  start-page: 2927
  issue: 8
  year: 2019
  ident: 1187_CR25
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2018.2833843
– volume: 99
  start-page: 135
  year: 2016
  ident: 1187_CR36
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2016.02.001
– volume: 9
  start-page: 1335
  issue: 8
  year: 2018
  ident: 1187_CR6
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-017-0648-x
– volume: 237
  start-page: 145
  issue: 1
  year: 2013
  ident: 1187_CR13
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2012.07.019
– volume: 29
  start-page: 565
  issue: 4
  year: 2019
  ident: 1187_CR28
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2019.06.009
– ident: 1187_CR9
– ident: 1187_CR17
– volume: 48
  start-page: 668
  issue: 228
  year: 2019
  ident: 1187_CR32
  publication-title: J China Univ Min Technol
– ident: 1187_CR24
  doi: 10.1007/3-540-57182-5_65
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.2138746
Snippet Since p -spectral clustering has good performance in many practical problems, it has attracted great attention. The Cheeger cut criterion is used in p...
Since p-spectral clustering has good performance in many practical problems, it has attracted great attention. The Cheeger cut criterion is used in p-spectral...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 541
SubjectTerms Adaptive algorithms
Affinity
Algorithms
Artificial Intelligence
Cluster analysis
Clustering
Complex Systems
Computational Intelligence
Control
Criteria
Data analysis
Datasets
Decomposition
Eigenvectors
Engineering
Euclidean space
Manifolds
Mechatronics
Original Article
Outliers (statistics)
Partitions (mathematics)
Pattern Recognition
Robotics
Similarity measures
Systems Biology
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vuiDuKk4nZIHHxQNNE2atr6N4RjCfNHB3kqaDxXqNvbx_5tk7aqigq9N0tLLpfe73t3vAC4lj4xF9cYqb-7CjEGAhUwM1jTnqfWJYu2r0oaPfDBiD-NoXBaFLaps9yok6b_UdbGb87yxc3d8j2xMt2EncnReVotHYbfSIkocv0ptZCllnmdq8-cl4PbaOhkx4Ylj4yVlNc3Pj_lqsWoY-i1y6g1S_wD2SySJuuutb8KWnrRg7xO_YAua5cldoKuSXvr6EMgQz556d0ggR31hpoVCM-wLLu04ksXKUSfY5UgUL9P52_L1_QhG_fvn3gCXjROwDCmjODL2Fa1pZyYVqWLUcCoFVSZSKc_j0JBcc57nRIso5UrHTFmhER67pD1lISI9hsZkOtEngIgKRCx5EorEYi2lEiVNLKVhoYxSolkbSCWcTJas4q65RZHVfMhOoJkVaOYFmtE23GzWzNacGn_O7lQyz8rztchcj63Q-gUkacNttQ_18O93O_3f9DPYDV0Si0_T7kBjOV_pc4tClvmFV7oPgS_K_g
  priority: 102
  providerName: Springer Nature
Title M-pSC: a manifold p-spectral clustering algorithm
URI https://link.springer.com/article/10.1007/s13042-020-01187-3
https://www.proquest.com/docview/2920272918
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: AFBBN
  dateStart: 20101201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1868-808X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: BENPR
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: AGYKE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: U2A
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7odvEi_sTpHD14UDS4NG3aCiKbbIriEHWgp5Lmhx7mNnX-_-ZlqUVBT4WmTenHS96X5L3vAexJHhvL6o013gKPGdttImRqiGYFz-yaKNEuK-1mwC-H0dVj_LgAgzIXBsMqyznRTdRqInGP_BirKoWWCdL0bPpGsGoUnq6WJTSEL62gTp3E2CLUQ1TGqkG92xvc3pUWxihqr1QOmLHIaVB978q0ub03D1RMeYpKvdRn2szz7XDxT3DF5cp0E_bTm1UU9depqnNW_RVY9iwz6MzNYhUW9HgNVv04_gj2vdj0wTrQGzK9Pz8JRIBCGGYyUsGUuPRL2x7I0ScKKdhvBGL0bOGYvbxuwLDfezi_JL6MApEhixiJjf0p6-gjk4lMRcxwJgVTJlYZL5LQ0EJzXhRUizjjSieRsjBRnmAIn7KEkW1CbTwZ6y0IqGqLRPI0FKllXkqlSppEShOFMs6ojhpASzhy6TXGsdTFKK_UkRHC3EKYOwhz1oDD73emc4WNf59ulijnfrR95JVtNOCoRL5q_ru37f9724GlEENYXJB2E2qz90-9aznIrGjBYtq_aEG90-92B3i9eLrutby52dZh2PkClJrVCg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gCXivIQoS8fQAKBxfqx3l2kqiqlVUqbCEEr9bZ4_SiHkKQkVcWf62_r2PEmAoneel6vLX0765mxZ74P4JVRuceo3qPxNuGaMcuoNqWnTjSqwpyocLErrddX3TP55Tw_X4KbthcmlFW2e2LcqO3IhDPyD0FViWMkyMrd8SUNqlHhdrWV0NBJWsHuRIqx1Nhx7P5cYwo32Tn6jN_7NeeHB6f7XZpUBqjhQgqae5UJ9IPSV7qyUngljBbW57ZSTcE9a5xSTcOczitlXSGtYJypIlS4WYynBM77AFakkBUmfyufDvpfv7UWjSMD39vc4QshI-fV_BQow7XFrDCyVGVgBmaps2fW3xcOG2jI8KIsOBV_e89FSPzPLW50joePYTVFtWRvZoZrsOSGT2At7RsT8iaRW799CqxHx9_3PxJNAvGGHw0sGdPY7onPiRlcBeIGXIPowQXCP_356xmc3Qugz2F5OBq6F0CYzXRhVMl1iZGetaU1vjDGS27yijnZAdbCUZvEaR6kNQb1go05QFgjhHWEsBYdeDd_Zzxj9Lhz9EaLcp3-7km9sMUOvG-RXzz-_2wv755tGx52T3sn9clR_3gdHvFQPhMLxDdgefr7ym1i_DNttpKREfhx33Z9C93LDNg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBNEHcVNxOrUPPigabJo0bX0b0zEvG4IO9lbaXFSY29jl_5tk7TpFBV-bpKVfTzjnNOf7DsApZ77SUb3SxpuaY0bXRQkPFZIkZZHOiQJpWWntDmt16X3P7y2x-G21e34kOec0GJWmwfRqJNRVQXwzWTgyqY_tl43IKqxRI5SgLbrr1XOLIthorRQOlxBqNacWf2Fcpq_NCxNDFhplXpwxa35-zFfvVYSk305RrXNqbsNWFlU69bkZlGFFDiqwuaQ1WIFytosnzlkmNX2-A7iNRs-NaydxjAyGGvaFM0KWfKnHHd6fGRkFvdxJ-q_D8fv07WMXus3bl0YLZU0UEPcIJchX-hW1m6cqSiJBiWKEJ0QoX0QsDTyFU8lYmmKZ-BETMqBCg4ZZYAr4hA4XyR6UBsOB3AcHCzcJOAu9JNRxlxCh4CrgXFGP-xGWtAo4ByfmmcK4aXTRjwttZANorAGNLaAxqcLFYs1orq_x5-xajnmc7bVJbPpteTpHwGEVLvPvUAz_freD_00_gfWnm2b8eNd5OIQNz9S22OrtGpSm45k80sHJND229vcJuFfSJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=M-pSC%3A+a+manifold+p-spectral+clustering+algorithm&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Ding%2C+Ling&rft.au=Ding%2C+Shifei&rft.au=Wang%2C+Yanru&rft.au=Wang%2C+Lijuan&rft.date=2021-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=12&rft.issue=2&rft.spage=541&rft.epage=553&rft_id=info:doi/10.1007%2Fs13042-020-01187-3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon