M-pSC: a manifold p-spectral clustering algorithm
Since p -spectral clustering has good performance in many practical problems, it has attracted great attention. The Cheeger cut criterion is used in p -spectral clustering to do graph partition. However, due to the improper affinity measure and outliers, the original p -spectral clustering algorithm...
Saved in:
| Published in | International journal of machine learning and cybernetics Vol. 12; no. 2; pp. 541 - 553 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2021
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1868-8071 1868-808X |
| DOI | 10.1007/s13042-020-01187-3 |
Cover
| Abstract | Since
p
-spectral clustering has good performance in many practical problems, it has attracted great attention. The Cheeger cut criterion is used in
p
-spectral clustering to do graph partition. However, due to the improper affinity measure and outliers, the original
p
-spectral clustering algorithm is not effective in dealing with manifold data. To solve this problem, we propose a manifold
p
-spectral clustering (M-pSC) using path-based affinity measure. First, we design a path-based affinity function to describe the complex structures of manifold data. This affinity function obeys the clustering assumption that the data pairs within the manifold structure share high affinities, and the data pairs between different manifold structures share low affinities. This will help us construct a good affinity matrix, which carry more category information of the points. Then we propose a M-pSC algorithm using the path-based affinity function. In the Cheeger cut criterion, the
p
-Laplacian matrix are constructed based on the manifold affinity function, and the final clustering results are obtained by using the eigenvectors of graph
p
-Laplacian. At last, the proposed algorithm is tested on several public data sets and the experiments show that our algorithm is adaptive to different manifold data. Compared with other popular clustering algorithms, our algorithm has good clustering quality and robustness. |
|---|---|
| AbstractList | Since p-spectral clustering has good performance in many practical problems, it has attracted great attention. The Cheeger cut criterion is used in p-spectral clustering to do graph partition. However, due to the improper affinity measure and outliers, the original p-spectral clustering algorithm is not effective in dealing with manifold data. To solve this problem, we propose a manifold p-spectral clustering (M-pSC) using path-based affinity measure. First, we design a path-based affinity function to describe the complex structures of manifold data. This affinity function obeys the clustering assumption that the data pairs within the manifold structure share high affinities, and the data pairs between different manifold structures share low affinities. This will help us construct a good affinity matrix, which carry more category information of the points. Then we propose a M-pSC algorithm using the path-based affinity function. In the Cheeger cut criterion, the p-Laplacian matrix are constructed based on the manifold affinity function, and the final clustering results are obtained by using the eigenvectors of graph p-Laplacian. At last, the proposed algorithm is tested on several public data sets and the experiments show that our algorithm is adaptive to different manifold data. Compared with other popular clustering algorithms, our algorithm has good clustering quality and robustness. Since p -spectral clustering has good performance in many practical problems, it has attracted great attention. The Cheeger cut criterion is used in p -spectral clustering to do graph partition. However, due to the improper affinity measure and outliers, the original p -spectral clustering algorithm is not effective in dealing with manifold data. To solve this problem, we propose a manifold p -spectral clustering (M-pSC) using path-based affinity measure. First, we design a path-based affinity function to describe the complex structures of manifold data. This affinity function obeys the clustering assumption that the data pairs within the manifold structure share high affinities, and the data pairs between different manifold structures share low affinities. This will help us construct a good affinity matrix, which carry more category information of the points. Then we propose a M-pSC algorithm using the path-based affinity function. In the Cheeger cut criterion, the p -Laplacian matrix are constructed based on the manifold affinity function, and the final clustering results are obtained by using the eigenvectors of graph p -Laplacian. At last, the proposed algorithm is tested on several public data sets and the experiments show that our algorithm is adaptive to different manifold data. Compared with other popular clustering algorithms, our algorithm has good clustering quality and robustness. |
| Author | Ding, Ling Ding, Shifei Wang, Yanru Jia, Hongjie Wang, Lijuan |
| Author_xml | – sequence: 1 givenname: Ling surname: Ding fullname: Ding, Ling organization: School of Computer Science and Technology, China University of Mining and Technology – sequence: 2 givenname: Shifei orcidid: 0000-0002-1391-2717 surname: Ding fullname: Ding, Shifei email: dingsf@cumt.edu.cn organization: School of Computer Science and Technology, China University of Mining and Technology, Mine Digitization Engineering Research Center of Ministry of Education of the People’s Republic of China – sequence: 3 givenname: Yanru surname: Wang fullname: Wang, Yanru organization: School of Computer Science and Technology, China University of Mining and Technology – sequence: 4 givenname: Lijuan surname: Wang fullname: Wang, Lijuan organization: School of Computer Science and Technology, China University of Mining and Technology – sequence: 5 givenname: Hongjie surname: Jia fullname: Jia, Hongjie email: jiahj@ujs.edu.cn organization: School of Computer Science and Technology, China University of Mining and Technology, School of Computer Science and Communication Engineering, Jiangsu University |
| BookMark | eNp9kD1PwzAQQC1UJErpH2CKxGzw2YntsKEKClIRAyCxWU5sl1RpHOx04N_jEgQSQ2-5G-7dxztFk853FqFzIJdAiLiKwEhOMaEEEwApMDtCU5BcYknk2-S3FnCC5jFuSApOGCN0iuAR98-L60xnW901zrcm63HsbT0E3WZ1u4uDDU23znS79qEZ3rdn6NjpNtr5T56h17vbl8U9Xj0tHxY3K1xTljNcuLRCUpK7UpcmZ46zWjPjClPySlAHleW8qsDqouTGitwwoMBF5XJjAAo2Qxfj3D74j52Ng9r4XejSSkVLSqigJcjURceuOvgYg3WqD81Wh08FRO3tqNGOSnbUtx3FEiT_QXUz6KHxXfq6aQ-jbERjv9diw99VB6gvQt15Ag |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2021_115813 crossref_primary_10_1007_s00500_022_06741_5 |
| Cites_doi | 10.1016/j.ins.2016.09.032 10.1016/j.patcog.2014.10.023 10.1016/j.patrec.2010.09.014 10.1016/j.ijmst.2019.12.003 10.1016/j.inffus.2013.05.001 10.1016/j.ijmst.2019.06.009 10.1093/biomet/asx008 10.1007/s00521-013-1439-2 10.1142/S0218488517500283 10.1109/TNNLS.2018.2817538 10.1016/j.cam.2012.07.019 10.1109/TNN.2011.2147798 10.1016/j.trit.2016.12.005 10.1016/j.trit.2016.08.004 10.1016/j.knosys.2016.02.001 10.1103/PhysRevE.93.063107 10.1016/j.ins.2018.03.031 10.1016/j.asoc.2009.08.017 10.1109/TIP.2018.2862629 10.1007/s12559-015-9331-2 10.1016/j.neucom.2014.02.030 10.1109/TCYB.2018.2833843 10.1162/NECO_a_00973 10.1016/j.ymssp.2016.12.002 10.1007/s13042-017-0648-x 10.1007/978-3-030-00828-4_3 10.1007/3-540-57182-5_65 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.1007/s13042-020-01187-3 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1868-808X |
| EndPage | 553 |
| ExternalDocumentID | 10_1007_s13042_020_01187_3 |
| GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS AUKKA AXYYD AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 H13 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PT4 PTHSS QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7X Z83 Z88 ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c2343-5f6038204f9a9d43f63ca3df5d96b72f1be66bb1ea596de74d312167bf4dd1153 |
| IEDL.DBID | BENPR |
| ISSN | 1868-8071 |
| IngestDate | Sun Jul 13 02:54:10 EDT 2025 Wed Oct 01 04:29:31 EDT 2025 Thu Apr 24 22:58:10 EDT 2025 Fri Feb 21 02:48:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Affinity measure Laplacian matrix Clustering Manifold distance |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2343-5f6038204f9a9d43f63ca3df5d96b72f1be66bb1ea596de74d312167bf4dd1153 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1391-2717 |
| PQID | 2920272918 |
| PQPubID | 2043904 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2920272918 crossref_primary_10_1007_s13042_020_01187_3 crossref_citationtrail_10_1007_s13042_020_01187_3 springer_journals_10_1007_s13042_020_01187_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210200 2021-02-00 20210201 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 2 year: 2021 text: 20210200 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | International journal of machine learning and cybernetics |
| PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Binkiewicz, Vogelstein, Rohe (CR14) 2017; 104 Trillos, Slepčev, Von Brecht (CR23) 2016; 17 Wang, Jiang, Wu (CR20) 2011; 22 Tasdemir, Yalcin, Yildirim (CR18) 2015; 48 Cheng, Nie, Sun (CR7) 2017; 29 Zhang, Wei, Bai (CR11) 2018; 27 Frederix, Van Barel (CR13) 2013; 237 CR17 CR16 Jia, Ding, Xu (CR4) 2014; 24 Langone, Reynders, Mehrkanoon (CR21) 2017; 90 Hadjighasem, Karrasch, Teramoto (CR31) 2016; 93 Du, Qu, Liu (CR3) 2015; 21 CR12 Wang, Wei, Bai (CR27) 2020; 49 Goyal, Kumar, Zaveri (CR19) 2017; 25 Zhang, Cao (CR5) 2014; 139 Wang, Zhang, Liu (CR26) 2017; 2 Kang, Zhang, Tang (CR29) 2016; 1 Liu, Wang, Yu (CR1) 2018; 450 Liu, Ma, Zhou (CR25) 2019; 49 Dyke, Klemetti, Wickline (CR30) 2020; 30 Shi, Li, Zhao (CR32) 2019; 48 Ariascastro, Lerman, Zhang (CR15) 2017; 18 CR9 Li, Nie, Chang (CR8) 2018; 29 Jia, Ding, Du (CR10) 2015; 7 CR24 Zhang, Li, Yu (CR35) 2011; 32 Jeong, Kim, Kim (CR33) 2018; 11 Zhi, Qian, Davidson (CR22) 2017; 2017 Pu, Apel, Liu (CR28) 2019; 29 Du, Ding, Xu (CR6) 2018; 9 Zhang, Lu (CR2) 2010; 10 Jia, Ding, Du (CR34) 2016; 374 Du, Ding, Jia (CR36) 2016; 99 J Jeong (1187_CR33) 2018; 11 N Binkiewicz (1187_CR14) 2017; 104 R Kang (1187_CR29) 2016; 1 H Jia (1187_CR10) 2015; 7 X Zhang (1187_CR35) 2011; 32 M Du (1187_CR36) 2016; 99 Y Pu (1187_CR28) 2019; 29 M Du (1187_CR6) 2018; 9 D Cheng (1187_CR7) 2017; 29 W Liu (1187_CR25) 2019; 49 H Jia (1187_CR4) 2014; 24 1187_CR24 S Goyal (1187_CR19) 2017; 25 A Hadjighasem (1187_CR31) 2016; 93 D Wang (1187_CR27) 2020; 49 W Zhi (1187_CR22) 2017; 2017 X Shi (1187_CR32) 2019; 48 R Langone (1187_CR21) 2017; 90 H Zhang (1187_CR2) 2010; 10 B Wang (1187_CR26) 2017; 2 T Du (1187_CR3) 2015; 21 1187_CR9 H Zhang (1187_CR5) 2014; 139 K Frederix (1187_CR13) 2013; 237 E Ariascastro (1187_CR15) 2017; 18 Z Li (1187_CR8) 2018; 29 L Zhang (1187_CR11) 2018; 27 NG Trillos (1187_CR23) 2016; 17 K Tasdemir (1187_CR18) 2015; 48 1187_CR16 1187_CR17 MV Dyke (1187_CR30) 2020; 30 R Liu (1187_CR1) 2018; 450 1187_CR12 H Jia (1187_CR34) 2016; 374 Y Wang (1187_CR20) 2011; 22 |
| References_xml | – volume: 374 start-page: 135 year: 2016 end-page: 150 ident: CR34 article-title: Approximate normalized cuts without Eigen-decomposition publication-title: Inf Sci doi: 10.1016/j.ins.2016.09.032 – volume: 48 start-page: 1465 issue: 4 year: 2015 end-page: 1477 ident: CR18 article-title: Approximate spectral clustering with utilized similarity information using geodesic based hybrid distance measures publication-title: Pattern Recognit doi: 10.1016/j.patcog.2014.10.023 – volume: 49 start-page: 103 issue: 232 year: 2020 end-page: 109 ident: CR27 article-title: Fractal characteristics of fracture structure and fractal seepage model of coal publication-title: J China Univ Min Technol – ident: CR16 – volume: 48 start-page: 668 issue: 228 year: 2019 end-page: 675 ident: CR32 article-title: Remote sensing image segmentation combining hierarchical Gaussian mixture model with M-H algorithm publication-title: J China Univ Min Technol – volume: 32 start-page: 352 issue: 2 year: 2011 end-page: 358 ident: CR35 article-title: Local density adaptive similarity measurement for spectral clustering publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2010.09.014 – ident: CR12 – volume: 30 start-page: 131 issue: 1 year: 2020 end-page: 139 ident: CR30 article-title: Geologic data collection and assessment techniques in coal mining for ground control publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2019.12.003 – volume: 21 start-page: 18 year: 2015 end-page: 29 ident: CR3 article-title: An energy efficiency semi-static routing algorithm for WSNs based on HAC clustering method publication-title: Inf Fusion doi: 10.1016/j.inffus.2013.05.001 – volume: 29 start-page: 565 issue: 4 year: 2019 end-page: 570 ident: CR28 article-title: Machine learning methods for rockburst prediction-state-of-the-art review publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2019.06.009 – volume: 2017 start-page: 1201 year: 2017 end-page: 1206 ident: CR22 article-title: Scalable constrained spectral clustering via the randomized projected power method publication-title: IEEE Int Conf Data Min – volume: 104 start-page: 361 issue: 2 year: 2017 end-page: 377 ident: CR14 article-title: Covariate-assisted spectral clustering publication-title: Biometrika doi: 10.1093/biomet/asx008 – volume: 24 start-page: 1477 issue: 7–8 year: 2014 end-page: 1486 ident: CR4 article-title: The latest research progress on spectral clustering publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1439-2 – volume: 25 start-page: 649 issue: 04 year: 2017 end-page: 673 ident: CR19 article-title: Fuzzy similarity measure based spectral clustering framework for noisy image segmentation publication-title: Int J Uncertain Fuzziness Knowl Based Syst doi: 10.1142/S0218488517500283 – volume: 29 start-page: 6073 issue: 12 year: 2018 end-page: 6082 ident: CR8 article-title: Rank-constrained spectral clustering with flexible embedding publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2817538 – volume: 237 start-page: 145 issue: 1 year: 2013 end-page: 161 ident: CR13 article-title: Sparse spectral clustering method based on the incomplete Cholesky decomposition publication-title: J Comput Appl Math doi: 10.1016/j.cam.2012.07.019 – volume: 22 start-page: 1149 issue: 7 year: 2011 end-page: 1161 ident: CR20 article-title: Spectral clustering on multiple manifolds publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2147798 – volume: 18 start-page: 253 issue: 9 year: 2017 end-page: 309 ident: CR15 article-title: Spectral clustering based on local PCA publication-title: J Mach Learn Res – volume: 2 start-page: 26 issue: 1 year: 2017 end-page: 30 ident: CR26 article-title: Density peaks clustering based integrate framework for multi-document summarization publication-title: CAAI Trans Intell Technol doi: 10.1016/j.trit.2016.12.005 – volume: 1 start-page: 179 issue: 2 year: 2016 end-page: 188 ident: CR29 article-title: Adaptive region boosting method with biased entropy for path planning in changing environment publication-title: CAAI Trans Intell Technol doi: 10.1016/j.trit.2016.08.004 – volume: 11 start-page: 161 issue: 3 year: 2018 end-page: 164 ident: CR33 article-title: Reconsideration of F1 score as a performance measure in mass spectrometry-based metabolomics publication-title: J Chosun Nat Sci – volume: 99 start-page: 135 year: 2016 end-page: 145 ident: CR36 article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2016.02.001 – volume: 93 start-page: 063107 issue: 6 year: 2016 ident: CR31 article-title: Spectral-clustering approach to Lagrangian vortex detection publication-title: Phys Rev E doi: 10.1103/PhysRevE.93.063107 – ident: CR17 – volume: 450 start-page: 200 year: 2018 end-page: 226 ident: CR1 article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks publication-title: Inf Sci doi: 10.1016/j.ins.2018.03.031 – volume: 10 start-page: 490 issue: 2 year: 2010 end-page: 495 ident: CR2 article-title: SCTWC: an online semi-supervised clustering approach to topical web crawlers publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.08.017 – ident: CR9 – volume: 27 start-page: 5969 issue: 12 year: 2018 end-page: 5982 ident: CR11 article-title: Exploiting clustering manifold structure for hyperspectral imagery super-resolution publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2862629 – volume: 7 start-page: 622 issue: 5 year: 2015 end-page: 632 ident: CR10 article-title: Self-tuning p-spectral clustering based on shared nearest neighbors publication-title: Cogn Comput doi: 10.1007/s12559-015-9331-2 – volume: 139 start-page: 289 year: 2014 end-page: 297 ident: CR5 article-title: A spectral clustering based ensemble pruning approach publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.02.030 – volume: 49 start-page: 2927 issue: 8 year: 2019 end-page: 2940 ident: CR25 article-title: p-Laplacian regularization for scene recognition publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2018.2833843 – volume: 29 start-page: 1902 issue: 7 year: 2017 end-page: 1918 ident: CR7 article-title: A weight-adaptive Laplacian embedding for graph-based clustering publication-title: Neural Comput doi: 10.1162/NECO_a_00973 – ident: CR24 – volume: 90 start-page: 64 year: 2017 end-page: 78 ident: CR21 article-title: Automated structural health monitoring based on adaptive kernel spectral clustering publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.12.002 – volume: 17 start-page: 6268 issue: 1 year: 2016 end-page: 6313 ident: CR23 article-title: Consistency of cheeger and ratio graph cuts publication-title: J Mach Learn Res – volume: 9 start-page: 1335 issue: 8 year: 2018 end-page: 1349 ident: CR6 article-title: Density peaks clustering using geodesic distances publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-017-0648-x – volume: 2 start-page: 26 issue: 1 year: 2017 ident: 1187_CR26 publication-title: CAAI Trans Intell Technol doi: 10.1016/j.trit.2016.12.005 – volume: 21 start-page: 18 year: 2015 ident: 1187_CR3 publication-title: Inf Fusion doi: 10.1016/j.inffus.2013.05.001 – ident: 1187_CR12 doi: 10.1007/978-3-030-00828-4_3 – volume: 27 start-page: 5969 issue: 12 year: 2018 ident: 1187_CR11 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2862629 – volume: 90 start-page: 64 year: 2017 ident: 1187_CR21 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.12.002 – volume: 30 start-page: 131 issue: 1 year: 2020 ident: 1187_CR30 publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2019.12.003 – volume: 48 start-page: 1465 issue: 4 year: 2015 ident: 1187_CR18 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2014.10.023 – volume: 1 start-page: 179 issue: 2 year: 2016 ident: 1187_CR29 publication-title: CAAI Trans Intell Technol doi: 10.1016/j.trit.2016.08.004 – volume: 7 start-page: 622 issue: 5 year: 2015 ident: 1187_CR10 publication-title: Cogn Comput doi: 10.1007/s12559-015-9331-2 – volume: 29 start-page: 1902 issue: 7 year: 2017 ident: 1187_CR7 publication-title: Neural Comput doi: 10.1162/NECO_a_00973 – volume: 17 start-page: 6268 issue: 1 year: 2016 ident: 1187_CR23 publication-title: J Mach Learn Res – volume: 139 start-page: 289 year: 2014 ident: 1187_CR5 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.02.030 – volume: 25 start-page: 649 issue: 04 year: 2017 ident: 1187_CR19 publication-title: Int J Uncertain Fuzziness Knowl Based Syst doi: 10.1142/S0218488517500283 – volume: 49 start-page: 103 issue: 232 year: 2020 ident: 1187_CR27 publication-title: J China Univ Min Technol – volume: 374 start-page: 135 year: 2016 ident: 1187_CR34 publication-title: Inf Sci doi: 10.1016/j.ins.2016.09.032 – volume: 22 start-page: 1149 issue: 7 year: 2011 ident: 1187_CR20 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2011.2147798 – volume: 18 start-page: 253 issue: 9 year: 2017 ident: 1187_CR15 publication-title: J Mach Learn Res – ident: 1187_CR16 – volume: 29 start-page: 6073 issue: 12 year: 2018 ident: 1187_CR8 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2817538 – volume: 2017 start-page: 1201 year: 2017 ident: 1187_CR22 publication-title: IEEE Int Conf Data Min – volume: 450 start-page: 200 year: 2018 ident: 1187_CR1 publication-title: Inf Sci doi: 10.1016/j.ins.2018.03.031 – volume: 24 start-page: 1477 issue: 7–8 year: 2014 ident: 1187_CR4 publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1439-2 – volume: 93 start-page: 063107 issue: 6 year: 2016 ident: 1187_CR31 publication-title: Phys Rev E doi: 10.1103/PhysRevE.93.063107 – volume: 104 start-page: 361 issue: 2 year: 2017 ident: 1187_CR14 publication-title: Biometrika doi: 10.1093/biomet/asx008 – volume: 32 start-page: 352 issue: 2 year: 2011 ident: 1187_CR35 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2010.09.014 – volume: 11 start-page: 161 issue: 3 year: 2018 ident: 1187_CR33 publication-title: J Chosun Nat Sci – volume: 10 start-page: 490 issue: 2 year: 2010 ident: 1187_CR2 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.08.017 – volume: 49 start-page: 2927 issue: 8 year: 2019 ident: 1187_CR25 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2018.2833843 – volume: 99 start-page: 135 year: 2016 ident: 1187_CR36 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2016.02.001 – volume: 9 start-page: 1335 issue: 8 year: 2018 ident: 1187_CR6 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-017-0648-x – volume: 237 start-page: 145 issue: 1 year: 2013 ident: 1187_CR13 publication-title: J Comput Appl Math doi: 10.1016/j.cam.2012.07.019 – volume: 29 start-page: 565 issue: 4 year: 2019 ident: 1187_CR28 publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2019.06.009 – ident: 1187_CR9 – ident: 1187_CR17 – volume: 48 start-page: 668 issue: 228 year: 2019 ident: 1187_CR32 publication-title: J China Univ Min Technol – ident: 1187_CR24 doi: 10.1007/3-540-57182-5_65 |
| SSID | ssj0000603302 ssib031263576 ssib033405570 |
| Score | 2.2138746 |
| Snippet | Since
p
-spectral clustering has good performance in many practical problems, it has attracted great attention. The Cheeger cut criterion is used in
p... Since p-spectral clustering has good performance in many practical problems, it has attracted great attention. The Cheeger cut criterion is used in p-spectral... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 541 |
| SubjectTerms | Adaptive algorithms Affinity Algorithms Artificial Intelligence Cluster analysis Clustering Complex Systems Computational Intelligence Control Criteria Data analysis Datasets Decomposition Eigenvectors Engineering Euclidean space Manifolds Mechatronics Original Article Outliers (statistics) Partitions (mathematics) Pattern Recognition Robotics Similarity measures Systems Biology |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vuiDuKk4nZIHHxQNNE2atr6N4RjCfNHB3kqaDxXqNvbx_5tk7aqigq9N0tLLpfe73t3vAC4lj4xF9cYqb-7CjEGAhUwM1jTnqfWJYu2r0oaPfDBiD-NoXBaFLaps9yok6b_UdbGb87yxc3d8j2xMt2EncnReVotHYbfSIkocv0ptZCllnmdq8-cl4PbaOhkx4Ylj4yVlNc3Pj_lqsWoY-i1y6g1S_wD2SySJuuutb8KWnrRg7xO_YAua5cldoKuSXvr6EMgQz556d0ggR31hpoVCM-wLLu04ksXKUSfY5UgUL9P52_L1_QhG_fvn3gCXjROwDCmjODL2Fa1pZyYVqWLUcCoFVSZSKc_j0JBcc57nRIso5UrHTFmhER67pD1lISI9hsZkOtEngIgKRCx5EorEYi2lEiVNLKVhoYxSolkbSCWcTJas4q65RZHVfMhOoJkVaOYFmtE23GzWzNacGn_O7lQyz8rztchcj63Q-gUkacNttQ_18O93O_3f9DPYDV0Si0_T7kBjOV_pc4tClvmFV7oPgS_K_g priority: 102 providerName: Springer Nature |
| Title | M-pSC: a manifold p-spectral clustering algorithm |
| URI | https://link.springer.com/article/10.1007/s13042-020-01187-3 https://www.proquest.com/docview/2920272918 |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1868-808X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: AFBBN dateStart: 20101201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1868-808X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: BENPR dateStart: 20101201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1868-808X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: AGYKE dateStart: 20100101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1868-808X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: U2A dateStart: 20101201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7odvEi_sTpHD14UDS4NG3aCiKbbIriEHWgp5Lmhx7mNnX-_-ZlqUVBT4WmTenHS96X5L3vAexJHhvL6o013gKPGdttImRqiGYFz-yaKNEuK-1mwC-H0dVj_LgAgzIXBsMqyznRTdRqInGP_BirKoWWCdL0bPpGsGoUnq6WJTSEL62gTp3E2CLUQ1TGqkG92xvc3pUWxihqr1QOmLHIaVB978q0ub03D1RMeYpKvdRn2szz7XDxT3DF5cp0E_bTm1UU9depqnNW_RVY9iwz6MzNYhUW9HgNVv04_gj2vdj0wTrQGzK9Pz8JRIBCGGYyUsGUuPRL2x7I0ScKKdhvBGL0bOGYvbxuwLDfezi_JL6MApEhixiJjf0p6-gjk4lMRcxwJgVTJlYZL5LQ0EJzXhRUizjjSieRsjBRnmAIn7KEkW1CbTwZ6y0IqGqLRPI0FKllXkqlSppEShOFMs6ojhpASzhy6TXGsdTFKK_UkRHC3EKYOwhz1oDD73emc4WNf59ulijnfrR95JVtNOCoRL5q_ru37f9724GlEENYXJB2E2qz90-9aznIrGjBYtq_aEG90-92B3i9eLrutby52dZh2PkClJrVCg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9gCXivIQoS8fQAKBxfqx3l2kqiqlVUqbCEEr9bZ4_SiHkKQkVcWf62_r2PEmAoneel6vLX0765mxZ74P4JVRuceo3qPxNuGaMcuoNqWnTjSqwpyocLErrddX3TP55Tw_X4KbthcmlFW2e2LcqO3IhDPyD0FViWMkyMrd8SUNqlHhdrWV0NBJWsHuRIqx1Nhx7P5cYwo32Tn6jN_7NeeHB6f7XZpUBqjhQgqae5UJ9IPSV7qyUngljBbW57ZSTcE9a5xSTcOczitlXSGtYJypIlS4WYynBM77AFakkBUmfyufDvpfv7UWjSMD39vc4QshI-fV_BQow7XFrDCyVGVgBmaps2fW3xcOG2jI8KIsOBV_e89FSPzPLW50joePYTVFtWRvZoZrsOSGT2At7RsT8iaRW799CqxHx9_3PxJNAvGGHw0sGdPY7onPiRlcBeIGXIPowQXCP_356xmc3Qugz2F5OBq6F0CYzXRhVMl1iZGetaU1vjDGS27yijnZAdbCUZvEaR6kNQb1go05QFgjhHWEsBYdeDd_Zzxj9Lhz9EaLcp3-7km9sMUOvG-RXzz-_2wv755tGx52T3sn9clR_3gdHvFQPhMLxDdgefr7ym1i_DNttpKREfhx33Z9C93LDNg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oBNEHcVNxOrUPPigabJo0bX0b0zEvG4IO9lbaXFSY29jl_5tk7TpFBV-bpKVfTzjnNOf7DsApZ77SUb3SxpuaY0bXRQkPFZIkZZHOiQJpWWntDmt16X3P7y2x-G21e34kOec0GJWmwfRqJNRVQXwzWTgyqY_tl43IKqxRI5SgLbrr1XOLIthorRQOlxBqNacWf2Fcpq_NCxNDFhplXpwxa35-zFfvVYSk305RrXNqbsNWFlU69bkZlGFFDiqwuaQ1WIFytosnzlkmNX2-A7iNRs-NaydxjAyGGvaFM0KWfKnHHd6fGRkFvdxJ-q_D8fv07WMXus3bl0YLZU0UEPcIJchX-hW1m6cqSiJBiWKEJ0QoX0QsDTyFU8lYmmKZ-BETMqBCg4ZZYAr4hA4XyR6UBsOB3AcHCzcJOAu9JNRxlxCh4CrgXFGP-xGWtAo4ByfmmcK4aXTRjwttZANorAGNLaAxqcLFYs1orq_x5-xajnmc7bVJbPpteTpHwGEVLvPvUAz_freD_00_gfWnm2b8eNd5OIQNz9S22OrtGpSm45k80sHJND229vcJuFfSJg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=M-pSC%3A+a+manifold+p-spectral+clustering+algorithm&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Ding%2C+Ling&rft.au=Ding%2C+Shifei&rft.au=Wang%2C+Yanru&rft.au=Wang%2C+Lijuan&rft.date=2021-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=12&rft.issue=2&rft.spage=541&rft.epage=553&rft_id=info:doi/10.1007%2Fs13042-020-01187-3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |