Diagnosis of Autism Spectrum Disorder: A Review of Three Focused Interventions

Autism is a neurological developmental disorder that impacts a person’s physical, social, and emotional behavior. This disorder develops over time and is characterized by social deficits and repetitive behavior. Although there is no cure for this disorder, an early diagnosis and intervention can do...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 4; no. 2; p. 139
Main Authors Sujana, D. Swainson, Augustine, D. Peter
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2661-8907
2662-995X
2661-8907
DOI10.1007/s42979-022-01584-1

Cover

Abstract Autism is a neurological developmental disorder that impacts a person’s physical, social, and emotional behavior. This disorder develops over time and is characterized by social deficits and repetitive behavior. Although there is no cure for this disorder, an early diagnosis and intervention can do significant wonders and can help the subject to become active functioning members of the family and society. The aim of this study is to minimize the diagnostic period by finding an optimal diagnosis procedure from the existing diagnosis tools. The diagnosis of autism can be done in three ways: 1. clinical evaluation; 2. screening tools; 3. brain images. In this review paper, we have thoroughly gone through all three types of diagnostic procedures and found that there was no single diagnostic tool to confirm the disorder. We also found that the diagnosis period was too long. As the result of this review, we found an ASD diagnosis triad which helps to choose the right diagnosis procedure based on the subjects age which reduces the diagnostic period and helps to aid early diagnosis by eliminating the chaos in choosing the diagnostic tools.
AbstractList Autism is a neurological developmental disorder that impacts a person’s physical, social, and emotional behavior. This disorder develops over time and is characterized by social deficits and repetitive behavior. Although there is no cure for this disorder, an early diagnosis and intervention can do significant wonders and can help the subject to become active functioning members of the family and society. The aim of this study is to minimize the diagnostic period by finding an optimal diagnosis procedure from the existing diagnosis tools. The diagnosis of autism can be done in three ways: 1. clinical evaluation; 2. screening tools; 3. brain images. In this review paper, we have thoroughly gone through all three types of diagnostic procedures and found that there was no single diagnostic tool to confirm the disorder. We also found that the diagnosis period was too long. As the result of this review, we found an ASD diagnosis triad which helps to choose the right diagnosis procedure based on the subjects age which reduces the diagnostic period and helps to aid early diagnosis by eliminating the chaos in choosing the diagnostic tools.
ArticleNumber 139
Author Augustine, D. Peter
Sujana, D. Swainson
Author_xml – sequence: 1
  givenname: D. Swainson
  orcidid: 0000-0002-5655-3136
  surname: Sujana
  fullname: Sujana, D. Swainson
  email: d.sujana@res.christuniversity.in
  organization: Christ University
– sequence: 2
  givenname: D. Peter
  orcidid: 0000-0002-8350-5201
  surname: Augustine
  fullname: Augustine, D. Peter
  organization: Department of Computer Science, Christ University
BookMark eNp9kE9PwjAYhxuDiYh8AU9NPE_brus2bwRESYgmiuemLW-xBFZsN4zf3uFMNB44ve_h97x_nnPUq3wFCF1Sck0JyW8iZ2VeJoSxhNCs4Ak9QX0mBE2KkuS9P_0ZGsa4JoSwjHAusj56nDi1qnx0EXuLR03t4ha_7MDUodniiYs-LCHc4hF-hr2Dj0Nq8RYA8NSbJsISz6oawh6q2vkqXqBTqzYRhj91gF6nd4vxQzJ_up-NR_PEsJTTxFggBSsKy1ORg7WaiUyDVlSnYklUqo3NVGY1scwYm-ulKjWlheAMlLBcpwN01c3dBf_eQKzl2jehaldKVjLKci6KrE2xLmWCjzGAlbvgtip8SkrkQZ3s1MlWnfxWJ2kLFf8g42p1-K4Oym2Oo2mHxnZPtYLwe9UR6gsFWYV5
CitedBy_id crossref_primary_10_1108_JET_06_2023_0019
crossref_primary_10_1038_s41598_023_35910_1
Cites_doi 10.1016/j.pnpbp.2018.11.002
10.1016/j.ensci.2019.100188
10.1016/j.jpeds.2016.07.052
10.1186/s43045-022-00220-1
10.1080/17538157.2017.1399132
10.1007/s10278-018-0093-8
10.1002/aur.2643
10.1186/s13229-021-00480-4
10.1542/peds.2013-1813
10.1007/s10803-020-04839-z
10.4103/jnrp.jnrp_329_16
10.1038/nrneurol.2013.276
10.23950/jcmk/11041
10.1007/s10278-019-00196-1
10.1146/annurev-neuro-071013-014111
10.3389/fpsyt.2019.00392
10.3390/brainsci10030180
10.1007/s10803-016-2876-4
10.1016/j.nicl.2017.08.017
10.1002/aur.2014
10.1016/j.spen.2020.100831
10.1016/j.compbiomed.2022.105854
10.1186/s13229-022-00489-3
10.1001/jamapsychiatry.2019.1411
10.1038/pr.2018.23
10.1016/j.annepidem.2011.12.006
10.3988/jcn.2018.14.2.129
10.1016/j.jneumeth.2020.108799
10.1002/aur.2033
10.1097/dbp.0000000000000194
10.1037/neu0000494
10.1007/s11065-015-9278-9
10.1002/aur.2212
10.1186/s13229-022-00506-5
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s42979-022-01584-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Public Health
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_022_01584_1
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
CCPQU
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2341-cfe08288f4367effb265beba1b36d0a3bcf5a5fb0f2ccf7bda9b118642ea6f4b3
IEDL.DBID BENPR
ISSN 2661-8907
2662-995X
IngestDate Sun Jul 13 05:25:17 EDT 2025
Thu Apr 24 23:11:49 EDT 2025
Wed Oct 01 03:59:11 EDT 2025
Fri Feb 21 02:45:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ASD
MRIs
Developmental delay
Screening tools
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2341-cfe08288f4367effb265beba1b36d0a3bcf5a5fb0f2ccf7bda9b118642ea6f4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5655-3136
0000-0002-8350-5201
PQID 2921274685
PQPubID 6623307
ParticipantIDs proquest_journals_2921274685
crossref_primary_10_1007_s42979_022_01584_1
crossref_citationtrail_10_1007_s42979_022_01584_1
springer_journals_10_1007_s42979_022_01584_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References KimSYOhMBongGSongDYYoonNHKimJHYooHJDiagnostic validity of autism diagnostic observation schedule second edition (K-ADOS-2) in the Korean populationMol Autism202210.1186/s13229-022-00506-5
SchjølbergSShicFVolkmarFRNordahl-HansenAStenbergNTorskeTLarsenKRileyKSukhodolskyDGLeckmanJFChawarskaKØienRAWhat are we optimizing for in autism screening? Examination of algorithmic changes in the M-CHATAutism Res202115229630410.1002/aur.2643
LebersfeldJBSwansonMClesiCDSystematic review and meta-analysis of the clinical utility of the ADOS-2 and the ADI-R in diagnosing autism spectrum disorders in childrenJ Autism Dev Disord2021514101411410.1007/s10803-020-04839-z
MargolisAEPagliaccioDThomasLBankerSMarshRSalience network connectivity and social processing in children with nonverbal learning disability or autism spectrum disorderNeuropsychology201933113514310.1037/neu0000494
LiYZhuYNguchuBAWangYWangHQiuBWangXDynamic functional connectivity reveals abnormal variability and hyper-connected pattern in autism spectrum disorderAutism Res201913223024310.1002/aur.2212
HillmanEMCoupling mechanism and significance of the BOLD signal: a status reportAnnu Rev Neurosci20143716118110.1146/annurev-neuro-071013-014111PMID:25032494; PMCID:PMC4147398
EckerCMurphyDNeuroimaging in autism—from basic science to translational researchNat Rev Neurol2014102829110.1038/nrneurol.2013.276
LiuGShiLQiuJLuWTwo neuroanatomical subtypes of males with autism spectrum disorder revealed using semi-supervised machine learningMol Autism202210.1186/s13229-022-00489-3
AghdamMASharifiAPedramMMDiagnosis of autism spectrum disorders in young children based on resting-state functional magnetic resonance imaging data using convolutional neural networksJ Digit Imaging201932689991810.1007/s10278-019-00196-1
WeitlaufASVehornACStoneWLFeinDWarrenZEUsing the M-CHAT-R/F to identify developmental concerns in a high-risk 18-month-old sibling sampleJ Dev Behav Pediatr201536749750210.1097/dbp.0000000000000194
JansenAGMousSEWhiteTPosthumaDPoldermanTJCWhat twin studies tell us about the heritability of brain development, morphology, and function: a reviewNeuropsychol Rev2015251274610.1007/s11065-015-9278-9
JohnOMeta-analysis of diagnostic accuracy of M-CHAT by categorical rank of clinical diagnosisThesis2020Georgia State University
RobinsDLCasagrandeKBartonMChenCMADumont-MathieuTFeinDValidation of the modified checklist for autism in toddlers, revised with follow-up (M-CHAT-R/F)Pediatrics20131331374510.1542/peds.2013-1813
Ruby Grace D, Immaculate. International Journal of Emerging Technology and Innovative Engineering, 2015; 1(3).
VoorhiesWDajaniDRVijSGShankarSTuranTOUddinLQAberrant functional connectivity of inhibitory control networks in children with autism spectrum disorderAutism Res201811111468147810.1002/aur.2014
SrisinghasongkramPPruksananondaCChonchaiyaWTwo-step screening of the modified checklist for autism in toddlers in Thai children with language delay and typically developing childrenJ Autism Dev Disord201646103317332910.1007/s10803-016-2876-4
McCartyPFryeREEarly detection and diagnosis of autism spectrum disorder: why is it so difficult?Semin Pediatr Neurol20203510083110.1016/j.spen.2020.100831
BilgenIGuvercinGRekikIMachine learning methods for brain network classification: application to autism diagnosis using cortical morphological networksJ Neurosci Methods202034310879910.1016/j.jneumeth.2020.108799
PetrocchiSLevanteALeccisoFSystematic review of level 1 and level 2 screening tools for autism spectrum disorders in toddlersBrain Sci202010318010.3390/brainsci10030180
ParnerETBaron-CohenSLauritsenMBJørgensenMSchieveLAYeargin-AllsoppMObelCParental age and autism spectrum disordersAnn Epidemiol201222314315010.1016/j.annepidem.2011.12.006
NukeshtayevaKLubchenkoMOmarkulovBDeLellisNValidation non-English version of modified checklist for autism in toddlers-revised with follow-upJ Clin Med Kazakhstan202118441110.23950/jcmk/11041
TaeWSHamBJPyunSBKangSHKimBJCurrent clinical applications of diffusion-tensor imaging in neurological disordersJ Clin Neurol201814212910.3988/jcn.2018.14.2.129
KimSHJosephRMFrazierJAO’SheaTMChawarskaKAllredENLevitonAKubanKKExtremely Low Gestational Age Newborn (ELGAN) Study InvestigatorsPredictive validity of the modified checklist for autism in toddlers (M-CHAT) born very pretermJ Pediatr2016178101107.e210.1016/j.jpeds.2016.07.052
SturnerRHowardBBergmannPAttarSStewart-ArtzLBetKAllisonCBaron-CohenSAutism screening at 18 months of age: a comparison of the Q-CHAT-10 and M-CHAT screenersMol Autism202210.1186/s13229-021-00480-4
HeinsfeldASFrancoARCraddockRCBuchweitzAMeneguzziFIdentification of autism spectrum disorder using deep learning and the ABIDE datasetNeuroImage Clin201817162310.1016/j.nicl.2017.08.017
Khadem-RezaZKZareHAutomatic detection of autism spectrum disorder (ASD) in children using structural magnetic resonance imaging with machine vision systemMiddle East Curr Psychiatry2022295410.1186/s43045-022-00220-1
Bai D, Yip BHK, Windham GC, et al. Association of Genetic and Environmental Factors With Autism in a 5-Country Cohort. JAMA Psychiatry. 2019;76(10):1035–43. https://doi.org/10.1001/jamapsychiatry.2019.1411
Immaculate RGD. A comparison on performance evaluation of various image fusion techniques. Int J Emerg Technol Innovative Eng. 2015;1(3). ISSN: 2394-6598
SangareMToureHBToureAKarembeADoloHCoulibalyYIKouyateMTraoreKDiakitéSACoulibalySTogoraAGuintoCOAwandareGADoumbiaSDiakiteMGeschwindDHValidation of two parent-reported autism spectrum disorders screening tools M-CHAT-R and SCQ in Bamako, MaliENeurological Sci20191510018810.1016/j.ensci.2019.100188
Hisle-GormanESusiAStokesTGormanGErdie-LalenaCNylundCMPrenatal, perinatal, and neonatal risk factors of autism spectrum disorderPediatr Res201884219019810.1038/pr.2018.23
Centres for Disease Control and Prevention. Autism Spectrum Disorder (ASD). Data and Statistics. 2022. https://www.cdc.gov/ncbddd/autism/data.html (Accessed on 31st Mar 2022)
DekhilOAliMEl-NakiebYShalabyASolimanASwitalaAMahmoudAGhazalMHajjdiabHCasanovaMFElmaghrabyAKeyntonREl-BazABarnesGA personalized autism diagnosis CAD system using a fusion of structural MRI and resting-state functional MRI dataFront Psych201910.3389/fpsyt.2019.00392
GottsSJRamotMJasminKMartinAAltered resting-state dynamics in autism spectrum disorder: Causal to the social impairment?Prog Neuropsychopharmacol Biol Psychiatry201990283610.1016/j.pnpbp.2018.11.002
Akhavan AghdamMSharifiAPedramMMCombination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief networkJ Digit Imaging201831689590310.1007/s10278-018-0093-8
MarlowMServiliCTomlinsonMA review of screening tools for the identification of autism spectrum disorders and developmental delay in infants and young children: recommendations for use in low- and middle-income countriesAutism Res201912217619910.1002/aur.2033
Centres for Disease Control and Prevention. Autism Spectrum Disorder (ASD). Screening and diagnosis. 2022. https://www.cdc.gov/ncbddd/autism/hcp-screening.html (Accessed on 6th Apr 2022)
ThabtahFMachine learning in autistic spectrum disorder behavioral research: a review and ways forwardInform Health Soc Care201844327829710.1080/17538157.2017.1399132
Centres for Disease Control and Prevention. Autism Spectrum Disorder (ASD). Screening and diagnosis. 2022. https://www.cdc.gov/ncbddd/autism/screening.html (Accessed on 31st Mar 2022)
ZhangFWeiYLiuJWangYXiWPanYIdentification of Autism spectrum disorder based on a novel feature selection method and variational autoencoderComput Biol Med202214810585410.1016/j.compbiomed.2022.105854
RainaSKChanderVBhardwajAKKumarDSharmaSKashyapVSinghMBhardwajAPrevalence of Autism Spectrum Disorder among Rural, Urban, and Tribal Children (1–10 Years of Age)J Neurosci Rural Pract2017080336837410.4103/jnrp.jnrp_329_16
WS Tae (1584_CR23) 2018; 14
SJ Gotts (1584_CR26) 2019; 90
AG Jansen (1584_CR20) 2015; 25
1584_CR01
1584_CR21
F Thabtah (1584_CR30) 2018; 44
M Marlow (1584_CR39) 2019; 12
S Petrocchi (1584_CR14) 2020; 10
EM Hillman (1584_CR22) 2014; 37
ET Parner (1584_CR2) 2012; 22
M Akhavan Aghdam (1584_CR32) 2018; 31
C Ecker (1584_CR38) 2014; 10
AS Weitlauf (1584_CR13) 2015; 36
G Liu (1584_CR29) 2022
AS Heinsfeld (1584_CR34) 2018; 17
1584_CR8
W Voorhies (1584_CR28) 2018; 11
1584_CR3
1584_CR4
O John (1584_CR6) 2020
F Zhang (1584_CR24) 2022; 148
O Dekhil (1584_CR35) 2019
M Sangare (1584_CR10) 2019; 15
I Bilgen (1584_CR31) 2020; 343
SY Kim (1584_CR17) 2022
Y Li (1584_CR27) 2019; 13
MA Aghdam (1584_CR33) 2019; 32
E Hisle-Gorman (1584_CR1) 2018; 84
R Sturner (1584_CR12) 2022
ZK Khadem-Reza (1584_CR36) 2022; 29
JB Lebersfeld (1584_CR18) 2021; 51
K Nukeshtayeva (1584_CR16) 2021; 18
P Srisinghasongkram (1584_CR9) 2016; 46
AE Margolis (1584_CR25) 2019; 33
SH Kim (1584_CR5) 2016; 178
S Schjølberg (1584_CR7) 2021; 15
SK Raina (1584_CR37) 2017; 08
DL Robins (1584_CR11) 2013; 133
1584_CR19
P McCarty (1584_CR15) 2020; 35
References_xml – reference: PetrocchiSLevanteALeccisoFSystematic review of level 1 and level 2 screening tools for autism spectrum disorders in toddlersBrain Sci202010318010.3390/brainsci10030180
– reference: RainaSKChanderVBhardwajAKKumarDSharmaSKashyapVSinghMBhardwajAPrevalence of Autism Spectrum Disorder among Rural, Urban, and Tribal Children (1–10 Years of Age)J Neurosci Rural Pract2017080336837410.4103/jnrp.jnrp_329_16
– reference: SturnerRHowardBBergmannPAttarSStewart-ArtzLBetKAllisonCBaron-CohenSAutism screening at 18 months of age: a comparison of the Q-CHAT-10 and M-CHAT screenersMol Autism202210.1186/s13229-021-00480-4
– reference: MarlowMServiliCTomlinsonMA review of screening tools for the identification of autism spectrum disorders and developmental delay in infants and young children: recommendations for use in low- and middle-income countriesAutism Res201912217619910.1002/aur.2033
– reference: VoorhiesWDajaniDRVijSGShankarSTuranTOUddinLQAberrant functional connectivity of inhibitory control networks in children with autism spectrum disorderAutism Res201811111468147810.1002/aur.2014
– reference: DekhilOAliMEl-NakiebYShalabyASolimanASwitalaAMahmoudAGhazalMHajjdiabHCasanovaMFElmaghrabyAKeyntonREl-BazABarnesGA personalized autism diagnosis CAD system using a fusion of structural MRI and resting-state functional MRI dataFront Psych201910.3389/fpsyt.2019.00392
– reference: RobinsDLCasagrandeKBartonMChenCMADumont-MathieuTFeinDValidation of the modified checklist for autism in toddlers, revised with follow-up (M-CHAT-R/F)Pediatrics20131331374510.1542/peds.2013-1813
– reference: Centres for Disease Control and Prevention. Autism Spectrum Disorder (ASD). Screening and diagnosis. 2022. https://www.cdc.gov/ncbddd/autism/hcp-screening.html (Accessed on 6th Apr 2022)
– reference: EckerCMurphyDNeuroimaging in autism—from basic science to translational researchNat Rev Neurol2014102829110.1038/nrneurol.2013.276
– reference: Akhavan AghdamMSharifiAPedramMMCombination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief networkJ Digit Imaging201831689590310.1007/s10278-018-0093-8
– reference: Bai D, Yip BHK, Windham GC, et al. Association of Genetic and Environmental Factors With Autism in a 5-Country Cohort. JAMA Psychiatry. 2019;76(10):1035–43. https://doi.org/10.1001/jamapsychiatry.2019.1411
– reference: ParnerETBaron-CohenSLauritsenMBJørgensenMSchieveLAYeargin-AllsoppMObelCParental age and autism spectrum disordersAnn Epidemiol201222314315010.1016/j.annepidem.2011.12.006
– reference: Centres for Disease Control and Prevention. Autism Spectrum Disorder (ASD). Data and Statistics. 2022. https://www.cdc.gov/ncbddd/autism/data.html (Accessed on 31st Mar 2022)
– reference: WeitlaufASVehornACStoneWLFeinDWarrenZEUsing the M-CHAT-R/F to identify developmental concerns in a high-risk 18-month-old sibling sampleJ Dev Behav Pediatr201536749750210.1097/dbp.0000000000000194
– reference: McCartyPFryeREEarly detection and diagnosis of autism spectrum disorder: why is it so difficult?Semin Pediatr Neurol20203510083110.1016/j.spen.2020.100831
– reference: Ruby Grace D, Immaculate. International Journal of Emerging Technology and Innovative Engineering, 2015; 1(3).
– reference: LebersfeldJBSwansonMClesiCDSystematic review and meta-analysis of the clinical utility of the ADOS-2 and the ADI-R in diagnosing autism spectrum disorders in childrenJ Autism Dev Disord2021514101411410.1007/s10803-020-04839-z
– reference: Centres for Disease Control and Prevention. Autism Spectrum Disorder (ASD). Screening and diagnosis. 2022. https://www.cdc.gov/ncbddd/autism/screening.html (Accessed on 31st Mar 2022)
– reference: SangareMToureHBToureAKarembeADoloHCoulibalyYIKouyateMTraoreKDiakitéSACoulibalySTogoraAGuintoCOAwandareGADoumbiaSDiakiteMGeschwindDHValidation of two parent-reported autism spectrum disorders screening tools M-CHAT-R and SCQ in Bamako, MaliENeurological Sci20191510018810.1016/j.ensci.2019.100188
– reference: LiYZhuYNguchuBAWangYWangHQiuBWangXDynamic functional connectivity reveals abnormal variability and hyper-connected pattern in autism spectrum disorderAutism Res201913223024310.1002/aur.2212
– reference: GottsSJRamotMJasminKMartinAAltered resting-state dynamics in autism spectrum disorder: Causal to the social impairment?Prog Neuropsychopharmacol Biol Psychiatry201990283610.1016/j.pnpbp.2018.11.002
– reference: SrisinghasongkramPPruksananondaCChonchaiyaWTwo-step screening of the modified checklist for autism in toddlers in Thai children with language delay and typically developing childrenJ Autism Dev Disord201646103317332910.1007/s10803-016-2876-4
– reference: HillmanEMCoupling mechanism and significance of the BOLD signal: a status reportAnnu Rev Neurosci20143716118110.1146/annurev-neuro-071013-014111PMID:25032494; PMCID:PMC4147398
– reference: SchjølbergSShicFVolkmarFRNordahl-HansenAStenbergNTorskeTLarsenKRileyKSukhodolskyDGLeckmanJFChawarskaKØienRAWhat are we optimizing for in autism screening? Examination of algorithmic changes in the M-CHATAutism Res202115229630410.1002/aur.2643
– reference: KimSYOhMBongGSongDYYoonNHKimJHYooHJDiagnostic validity of autism diagnostic observation schedule second edition (K-ADOS-2) in the Korean populationMol Autism202210.1186/s13229-022-00506-5
– reference: Hisle-GormanESusiAStokesTGormanGErdie-LalenaCNylundCMPrenatal, perinatal, and neonatal risk factors of autism spectrum disorderPediatr Res201884219019810.1038/pr.2018.23
– reference: KimSHJosephRMFrazierJAO’SheaTMChawarskaKAllredENLevitonAKubanKKExtremely Low Gestational Age Newborn (ELGAN) Study InvestigatorsPredictive validity of the modified checklist for autism in toddlers (M-CHAT) born very pretermJ Pediatr2016178101107.e210.1016/j.jpeds.2016.07.052
– reference: TaeWSHamBJPyunSBKangSHKimBJCurrent clinical applications of diffusion-tensor imaging in neurological disordersJ Clin Neurol201814212910.3988/jcn.2018.14.2.129
– reference: ThabtahFMachine learning in autistic spectrum disorder behavioral research: a review and ways forwardInform Health Soc Care201844327829710.1080/17538157.2017.1399132
– reference: LiuGShiLQiuJLuWTwo neuroanatomical subtypes of males with autism spectrum disorder revealed using semi-supervised machine learningMol Autism202210.1186/s13229-022-00489-3
– reference: BilgenIGuvercinGRekikIMachine learning methods for brain network classification: application to autism diagnosis using cortical morphological networksJ Neurosci Methods202034310879910.1016/j.jneumeth.2020.108799
– reference: Immaculate RGD. A comparison on performance evaluation of various image fusion techniques. Int J Emerg Technol Innovative Eng. 2015;1(3). ISSN: 2394-6598
– reference: NukeshtayevaKLubchenkoMOmarkulovBDeLellisNValidation non-English version of modified checklist for autism in toddlers-revised with follow-upJ Clin Med Kazakhstan202118441110.23950/jcmk/11041
– reference: ZhangFWeiYLiuJWangYXiWPanYIdentification of Autism spectrum disorder based on a novel feature selection method and variational autoencoderComput Biol Med202214810585410.1016/j.compbiomed.2022.105854
– reference: JansenAGMousSEWhiteTPosthumaDPoldermanTJCWhat twin studies tell us about the heritability of brain development, morphology, and function: a reviewNeuropsychol Rev2015251274610.1007/s11065-015-9278-9
– reference: HeinsfeldASFrancoARCraddockRCBuchweitzAMeneguzziFIdentification of autism spectrum disorder using deep learning and the ABIDE datasetNeuroImage Clin201817162310.1016/j.nicl.2017.08.017
– reference: MargolisAEPagliaccioDThomasLBankerSMarshRSalience network connectivity and social processing in children with nonverbal learning disability or autism spectrum disorderNeuropsychology201933113514310.1037/neu0000494
– reference: AghdamMASharifiAPedramMMDiagnosis of autism spectrum disorders in young children based on resting-state functional magnetic resonance imaging data using convolutional neural networksJ Digit Imaging201932689991810.1007/s10278-019-00196-1
– reference: JohnOMeta-analysis of diagnostic accuracy of M-CHAT by categorical rank of clinical diagnosisThesis2020Georgia State University
– reference: Khadem-RezaZKZareHAutomatic detection of autism spectrum disorder (ASD) in children using structural magnetic resonance imaging with machine vision systemMiddle East Curr Psychiatry2022295410.1186/s43045-022-00220-1
– volume: 90
  start-page: 28
  year: 2019
  ident: 1584_CR26
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
  doi: 10.1016/j.pnpbp.2018.11.002
– ident: 1584_CR21
– volume-title: Thesis
  year: 2020
  ident: 1584_CR6
– volume: 15
  start-page: 100188
  year: 2019
  ident: 1584_CR10
  publication-title: ENeurological Sci
  doi: 10.1016/j.ensci.2019.100188
– volume: 178
  start-page: 101
  year: 2016
  ident: 1584_CR5
  publication-title: J Pediatr
  doi: 10.1016/j.jpeds.2016.07.052
– volume: 29
  start-page: 54
  year: 2022
  ident: 1584_CR36
  publication-title: Middle East Curr Psychiatry
  doi: 10.1186/s43045-022-00220-1
– volume: 44
  start-page: 278
  issue: 3
  year: 2018
  ident: 1584_CR30
  publication-title: Inform Health Soc Care
  doi: 10.1080/17538157.2017.1399132
– volume: 31
  start-page: 895
  issue: 6
  year: 2018
  ident: 1584_CR32
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-018-0093-8
– volume: 15
  start-page: 296
  issue: 2
  year: 2021
  ident: 1584_CR7
  publication-title: Autism Res
  doi: 10.1002/aur.2643
– year: 2022
  ident: 1584_CR12
  publication-title: Mol Autism
  doi: 10.1186/s13229-021-00480-4
– volume: 133
  start-page: 37
  issue: 1
  year: 2013
  ident: 1584_CR11
  publication-title: Pediatrics
  doi: 10.1542/peds.2013-1813
– volume: 51
  start-page: 4101
  year: 2021
  ident: 1584_CR18
  publication-title: J Autism Dev Disord
  doi: 10.1007/s10803-020-04839-z
– volume: 08
  start-page: 368
  issue: 03
  year: 2017
  ident: 1584_CR37
  publication-title: J Neurosci Rural Pract
  doi: 10.4103/jnrp.jnrp_329_16
– ident: 1584_CR3
– volume: 10
  start-page: 82
  issue: 2
  year: 2014
  ident: 1584_CR38
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2013.276
– volume: 18
  start-page: 4
  issue: 4
  year: 2021
  ident: 1584_CR16
  publication-title: J Clin Med Kazakhstan
  doi: 10.23950/jcmk/11041
– volume: 32
  start-page: 899
  issue: 6
  year: 2019
  ident: 1584_CR33
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-019-00196-1
– volume: 37
  start-page: 161
  year: 2014
  ident: 1584_CR22
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev-neuro-071013-014111
– year: 2019
  ident: 1584_CR35
  publication-title: Front Psych
  doi: 10.3389/fpsyt.2019.00392
– volume: 10
  start-page: 180
  issue: 3
  year: 2020
  ident: 1584_CR14
  publication-title: Brain Sci
  doi: 10.3390/brainsci10030180
– volume: 46
  start-page: 3317
  issue: 10
  year: 2016
  ident: 1584_CR9
  publication-title: J Autism Dev Disord
  doi: 10.1007/s10803-016-2876-4
– volume: 17
  start-page: 16
  year: 2018
  ident: 1584_CR34
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2017.08.017
– volume: 11
  start-page: 1468
  issue: 11
  year: 2018
  ident: 1584_CR28
  publication-title: Autism Res
  doi: 10.1002/aur.2014
– volume: 35
  start-page: 100831
  year: 2020
  ident: 1584_CR15
  publication-title: Semin Pediatr Neurol
  doi: 10.1016/j.spen.2020.100831
– volume: 148
  start-page: 105854
  year: 2022
  ident: 1584_CR24
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105854
– year: 2022
  ident: 1584_CR29
  publication-title: Mol Autism
  doi: 10.1186/s13229-022-00489-3
– ident: 1584_CR01
  doi: 10.1001/jamapsychiatry.2019.1411
– volume: 84
  start-page: 190
  issue: 2
  year: 2018
  ident: 1584_CR1
  publication-title: Pediatr Res
  doi: 10.1038/pr.2018.23
– volume: 22
  start-page: 143
  issue: 3
  year: 2012
  ident: 1584_CR2
  publication-title: Ann Epidemiol
  doi: 10.1016/j.annepidem.2011.12.006
– volume: 14
  start-page: 129
  issue: 2
  year: 2018
  ident: 1584_CR23
  publication-title: J Clin Neurol
  doi: 10.3988/jcn.2018.14.2.129
– volume: 343
  start-page: 108799
  year: 2020
  ident: 1584_CR31
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2020.108799
– volume: 12
  start-page: 176
  issue: 2
  year: 2019
  ident: 1584_CR39
  publication-title: Autism Res
  doi: 10.1002/aur.2033
– volume: 36
  start-page: 497
  issue: 7
  year: 2015
  ident: 1584_CR13
  publication-title: J Dev Behav Pediatr
  doi: 10.1097/dbp.0000000000000194
– volume: 33
  start-page: 135
  issue: 1
  year: 2019
  ident: 1584_CR25
  publication-title: Neuropsychology
  doi: 10.1037/neu0000494
– volume: 25
  start-page: 27
  issue: 1
  year: 2015
  ident: 1584_CR20
  publication-title: Neuropsychol Rev
  doi: 10.1007/s11065-015-9278-9
– volume: 13
  start-page: 230
  issue: 2
  year: 2019
  ident: 1584_CR27
  publication-title: Autism Res
  doi: 10.1002/aur.2212
– ident: 1584_CR4
– year: 2022
  ident: 1584_CR17
  publication-title: Mol Autism
  doi: 10.1186/s13229-022-00506-5
– ident: 1584_CR19
– ident: 1584_CR8
SSID ssj0002504465
Score 2.2288451
SecondaryResourceType review_article
Snippet Autism is a neurological developmental disorder that impacts a person’s physical, social, and emotional behavior. This disorder develops over time and is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 139
SubjectTerms Advances in Computational Intelligence
Age
Algorithms
Autism
Birth weight
Brain research
Child development
Children & youth
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Diagnosis
Early intervention
Information Systems and Communication Service
Machine learning
Magnetic resonance imaging
Mental disorders
Paradigms and Applications
Pattern Recognition and Graphics
Pediatrics
Professionals
Psychologists
Public health
Review Article
Software Engineering/Programming and Operating Systems
Vision
Title Diagnosis of Autism Spectrum Disorder: A Review of Three Focused Interventions
URI https://link.springer.com/article/10.1007/s42979-022-01584-1
https://www.proquest.com/docview/2921274685
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: AFBBN
  dateStart: 20190625
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2661-8907
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB76uAgiPrFaSw7eNNjdTbK7gkjV1ipYRFrobdlkExDsQ7f9_2b20apgz5udw0ySmcnMfB_AuWdTAJNwTm1szShzmLZHysUSu25r6QsmFCaKLwPRH7HnMR9XYFDOwmBbZXknZhd1MlP4Rn7lhohFzkTAb-efFFmjsLpaUmjEBbVCcpNBjFWh7iIyVg3qd93B69vq1QUBu1jGL2kdk0vDkI-LSZpsns5ezn5IscHdesmAUee3t1qHoH-qppkz6u3CThFFkk5u9j2o6Ok-bOdPcCSfLDqAwUPeRveekpkhHbvD0glBvvnF13JCStjNa9IheYEAVw2taTXpzdQy1Ql5-tEQmR7CqNcd3vdpQZ9AlWt9E1VGIz5dYJgnfG2MdAWXWsaO9ETSjj2pDI-5kW3jKmV8mcShtOmGTUh0LAyT3hHUprOpPgbCfS1CG6hJhJv3pCs500YJrhmKCXgDnFJNkSqwxZHi4iNaoSJnqo2saqNMtZHTgIvVP_McWWPj6map_ag4ZWm03hMNuCwtsv78v7STzdJOYQtZ5fNWsybUrFn0mY09FrIF1aD32Cq21Tct-9QI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB58HBREfGJ95qAnDXazSbYriNRHaX0UkQq9rZtsAoJt1VXEP-dvc7KPVgW9ed7sHCaTzExm5vsAtn1MAWwiBMXYmlPucYNHirkSu6kaFUgutUsUr9qyecvPu6I7Bh_lLIxrqyzvxOyiTgbavZHvs9BhkXNZE0ePT9SxRrnqakmhERfUCslhBjFWDHZcmPc3TOHSw9Yp7vcOY42zzkmTFiwDVDO8wqm2xsG41Sz3ZWCsVUwKZVTsKV8m1dhX2opYWFW1TGsbqCQOFUblGLebWFqufJQ7DpPc5yEmf5PHZ-3rm-ErjwMI4xmfJTpCRsNQdIvJnWx-D51BEFLXUI9eucap9907jkLeH1XazPk15mC2iFpJPTezeRgz_QWYyZ_8SD7JtAjt07xt7z4lA0vqaNFpjzh--5fn1x4pYT4PSJ3kBQm3qoOmZEhjoF9Tk5DWlwbMdAlu_0WRyzDRH_TNChARGBliYKgcvL2vmBLcWC2F4U5MTVTAK9UU6QLL3FFqPERDFOZMtRGqNspUG3kV2B3-85gjefy5er3UflSc6jQa2WAF9sodGX3-Xdrq39K2YKrZubqMLlvtizWYdoz2eZvbOkzgFpkNjHte1GZhXATu_tuePwH_kxKr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+Autism+Spectrum+Disorder%3A+A+Review+of+Three+Focused+Interventions&rft.jtitle=SN+computer+science&rft.au=Sujana%2C+D.+Swainson&rft.au=Augustine%2C+D.+Peter&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=4&rft.issue=2&rft.spage=139&rft_id=info:doi/10.1007%2Fs42979-022-01584-1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon