Ultrasound-Based Ovarian Cysts Detection with Improved Machine-Learning Techniques and Stage Classification Using Enhanced Classifiers
Infertility is a global issue. Total fertility rate declined from over 5 live births per woman in 1950–1955 to 2.5 births per woman in 2010–2015. Female infertility is 37% globally and 12.5% in India. Female infertility can be reduced by identifying and treating the underlying cause early. Ovulatory...
Saved in:
| Published in | SN computer science Vol. 4; no. 5; p. 571 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Nature Singapore
01.09.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2661-8907 2662-995X 2661-8907 |
| DOI | 10.1007/s42979-023-01973-0 |
Cover
| Abstract | Infertility is a global issue. Total fertility rate declined from over 5 live births per woman in 1950–1955 to 2.5 births per woman in 2010–2015. Female infertility is 37% globally and 12.5% in India. Female infertility can be reduced by identifying and treating the underlying cause early. Ovulatory diseases contribute 25% globally to female infertility. Various female pelvic imaging methods can diagnose ovulatory problems. Diagnostic ultrasound is chosen because it is radiation- and contrast-free and cost-effective. The intensity-based grouping and textural data were used for the detection of follicles and cysts in the ovary, which is based on machine learning (ML). Ovarian diagnosis was given a major boost thanks to the application of machine-learning algorithms, which permitted a success rate of 97% and significantly improved the overall quality of the process. Standard machine-learning strategies have been looked into for the purpose of ovarian classification. In order to determine which method of classification produces the most accurate findings, we constructed three distinct models utilising artificial neural networks, discriminant classifiers, and support vector machines. When the results of the various created classifiers were compared, it was discovered that SVM had the highest accuracy (98.5%). This ingenious tool, which may be classified as a decision support system, will assist the attending physician in reaching the appropriate determination and preventing an error in his or her interpretation. |
|---|---|
| AbstractList | Infertility is a global issue. Total fertility rate declined from over 5 live births per woman in 1950–1955 to 2.5 births per woman in 2010–2015. Female infertility is 37% globally and 12.5% in India. Female infertility can be reduced by identifying and treating the underlying cause early. Ovulatory diseases contribute 25% globally to female infertility. Various female pelvic imaging methods can diagnose ovulatory problems. Diagnostic ultrasound is chosen because it is radiation- and contrast-free and cost-effective. The intensity-based grouping and textural data were used for the detection of follicles and cysts in the ovary, which is based on machine learning (ML). Ovarian diagnosis was given a major boost thanks to the application of machine-learning algorithms, which permitted a success rate of 97% and significantly improved the overall quality of the process. Standard machine-learning strategies have been looked into for the purpose of ovarian classification. In order to determine which method of classification produces the most accurate findings, we constructed three distinct models utilising artificial neural networks, discriminant classifiers, and support vector machines. When the results of the various created classifiers were compared, it was discovered that SVM had the highest accuracy (98.5%). This ingenious tool, which may be classified as a decision support system, will assist the attending physician in reaching the appropriate determination and preventing an error in his or her interpretation. |
| ArticleNumber | 571 |
| Author | Singh, Ajay Kumar Sachi, Savya Athithan, Senthil |
| Author_xml | – sequence: 1 givenname: Senthil surname: Athithan fullname: Athithan, Senthil organization: Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation – sequence: 2 givenname: Savya orcidid: 0000-0002-7920-5628 surname: Sachi fullname: Sachi, Savya email: savyasachilnmcbm@gmail.com organization: Department of Information Technology, Lalit Narayan Mishra College of Business Management – sequence: 3 givenname: Ajay Kumar orcidid: 0000-0002-6705-4607 surname: Singh fullname: Singh, Ajay Kumar organization: UIE-Chandigarh University |
| BookMark | eNp9kMtOAzEMRSMEElD6A6wisR5wMu8llKdUxAK6jjwZp01VMpBMQf0Bvpu0BYFYsIkj-d5r-xyyXdc5YuxYwKkAKM9CJuuyTkCmCYi6jO8OO5BFIZKqhnL313-fDUOYA4DMIcuK_IB9TBa9x9AtXZtcYKCWP7yht-j4aBX6wC-pJ93bzvF328_43fOL796i6h71zDpKxoTeWTflT6Rnzr4uKXB0LX_scUp8tMAQrLEaNxGTsFZeuRk6HTO-u-TDEdszuAg0_KoDNrm-ehrdJuOHm7vR-TjRMs0gQUpRFjlSA0aYRtc6z9pCC5lRVVdkUiCTN6bMDFai0iar2oZKrEVpGoC8SQfsZJsbz1jv2qt5t_QujlSylkKWaREBDpjcqrTvQvBk1Iu3z-hXSoBaI1db5CoiVxvkCqKp-mPStt_cHQHbxf_WdGsNcY6bkv_Z6h_XJ751mq0 |
| CitedBy_id | crossref_primary_10_1007_s42979_024_03404_0 crossref_primary_10_1038_s41598_024_69427_y crossref_primary_10_3390_diagnostics13193131 crossref_primary_10_1177_09287329241302736 crossref_primary_10_1007_s00261_024_04633_w |
| Cites_doi | 10.1016/j.chaos.2020.110210 10.1109/ACCESS.2021.3056592 10.1093/humrep/dew123 10.4103/0974-1208.82368 10.1148/rg.2017160130 10.15537/smj.2015.7.11690 10.1109/ACCESS.2020.2991067 10.3233/BME-130922 10.1016/j.ultrasmedbio.2015.11.021 10.5206/uwomj.v86i2.2060 10.3390/diagnostics10020067 10.1002/jmri.26556 10.1016/j.ajog.2015.02.015 10.1109/TMI.2012.2206398 10.1002/uog.18945 10.1016/j.camwa.2012.03.033 10.5937/fmet1903418P 10.1016/j.jacr.2017.12.028 10.1016/j.cose.2020.101968 10.1016/j.sigpro.2009.07.008 10.1109/ACCESS.2021.3050852 10.1109/ICMETE.2016.85 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s42979-023-01973-0 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | 10_1007_s42979_023_01973_0 |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ CCPQU DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c2340-ae3a265aeb0f1fbc9c54d6c124e898ef30ef5bf74fa818cf48dbe7a917fb005b3 |
| IEDL.DBID | BENPR |
| ISSN | 2661-8907 2662-995X |
| IngestDate | Fri Jul 25 23:29:58 EDT 2025 Thu Apr 24 23:02:33 EDT 2025 Wed Oct 01 00:37:46 EDT 2025 Fri Feb 21 02:42:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Demographic and diagnostic features Medical diagnostics Image processing Ovarian detection Machine learning Texture features K-means clustering |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2340-ae3a265aeb0f1fbc9c54d6c124e898ef30ef5bf74fa818cf48dbe7a917fb005b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7920-5628 0000-0002-6705-4607 |
| PQID | 2921273697 |
| PQPubID | 6623307 |
| ParticipantIDs | proquest_journals_2921273697 crossref_primary_10_1007_s42979_023_01973_0 crossref_citationtrail_10_1007_s42979_023_01973_0 springer_journals_10_1007_s42979_023_01973_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationYear | 2023 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | Abduljabbar, Bukhari, Al Hachim, Alshour, Amer, Shaikhoon, Khojah (CR1) 2015; 36 Dilip (CR18) 2011; 4 Ashika (CR3) 2013; 2 Chien, Chuin (CR13) 2012; 64 Alazab, Khan, Krishnan, Pham, Reddy, Gadekallu (CR31) 2020; 8 Hae, Doo, Kwang (CR22) 2016; 6 Ashish, Manish, Yongyeon, Hongkook, Moongu (CR5) 2010; 90 Aggarwal, Agrawal (CR2) 2012; 3 Caixinha, Santos, Santos (CR11) 2016; 42 Coelho, Ludwin, Borrell, Benacerraf, Dewailly, Da Silva Costa, Condous, Alcazar, Jokubkiene, Guerriero, Van den Bosch, Martins (CR15) 2018; 51 Huang, Zhang, Li (CR23) 2018; 2018 Chitalia, Kontos (CR14) 2019; 49 Verma, Illes, Stoffova, Bakonyi (CR32) 2021; 9 Baswaraj, Govardhan, Premchand (CR6) 2012; 12 Punithavathy, Sumathi, Ramya (CR25) 2019; 47 Chandra, Copen, Stephen (CR12) 2013; 67 Dewi, Adiwijaya, Wisesty, Jondri (CR17) 2018; 971–012005 Datta, Palmer, Tanton, Gibson, Jones, Macdowall, Glasier, Sonnenberg, Field, Mercer, Johnson, Wellings (CR16) 2016; 31 Awal, Masud, Hossain, Bulbul, Mahmud, Bairagi (CR28) 2021; 9 Billah, Islam (CR8) 2016; 1 Benacerraf, Abuhamad, Bromley, Goldstein, Groszmann, Shipp, Timor (CR7) 2015; 212 Gorski, Quattrone, Van Nagell, Pavlik (CR27) 2020; 10 Gui, Chan (CR21) 2017; 86 Ashika (CR4) 2013; 4 CR9 CR26 Gao, Peng, Guo, Liu, Gao, Xu, Tang (CR19) 2014; 24 Gomez, Pereira, Infantosi (CR20) 2012; 31 Bradley, Panagiotis, Zeynettin, Timothy (CR10) 2017; 37 Maryellen (CR24) 2018; 15 Yeşilkanat (CR29) 2020; 140 Meidan, Sachidananda, Peng, Sagron, Elovici, Shabtai (CR30) 2020; 97 RD Chitalia (1973_CR14) 2019; 49 HS Abduljabbar (1973_CR1) 2015; 36 D Baswaraj (1973_CR6) 2012; 12 LG Maryellen (1973_CR24) 2018; 15 M Alazab (1973_CR31) 2020; 8 R Ashika (1973_CR3) 2013; 2 BR Benacerraf (1973_CR7) 2015; 212 A Chandra (1973_CR12) 2013; 67 Q Huang (1973_CR23) 2018; 2018 C Gui (1973_CR21) 2017; 86 K Punithavathy (1973_CR25) 2019; 47 Y Meidan (1973_CR30) 2020; 97 1973_CR26 1973_CR9 JL Hae (1973_CR22) 2016; 6 N Aggarwal (1973_CR2) 2012; 3 K Ashish (1973_CR5) 2010; 90 J Datta (1973_CR16) 2016; 31 NMA Coelho (1973_CR15) 2018; 51 JW Gorski (1973_CR27) 2020; 10 RM Dewi (1973_CR17) 2018; 971–012005 S Gao (1973_CR19) 2014; 24 C Verma (1973_CR32) 2021; 9 M Caixinha (1973_CR11) 2016; 42 MA Awal (1973_CR28) 2021; 9 W Gomez (1973_CR20) 2012; 31 CM Yeşilkanat (1973_CR29) 2020; 140 M Billah (1973_CR8) 2016; 1 SL Chien (1973_CR13) 2012; 64 G Dilip (1973_CR18) 2011; 4 JE Bradley (1973_CR10) 2017; 37 R Ashika (1973_CR4) 2013; 4 |
| References_xml | – volume: 140 start-page: 110210 year: 2020 ident: CR29 article-title: Spatio-temporal estimation of the daily cases of COVID-19 in worldwide using random forest machine learning algorithm publication-title: Chaos Solitons Fract doi: 10.1016/j.chaos.2020.110210 – volume: 9 start-page: 22824 year: 2021 end-page: 22843 ident: CR32 article-title: Comparative study of technology with student’s perceptions in indian and Hungarian universities for real-time: preliminary results publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3056592 – volume: 1 start-page: 1 issue: 1 year: 2016 end-page: 4 ident: CR8 article-title: An early diagnosis system for predicting lung cancer risk using adaptive neuro fuzzy inference system and Linear discriminant analysis publication-title: J MPE Mol Pathol Epidemiol – volume: 67 start-page: 1 year: 2013 end-page: 18 ident: CR12 article-title: Infertility and impaired fecundity in the United States, 1982–2010: data from the National Survey of Family Growth publication-title: Natl Health Stat Rep – volume: 31 start-page: 2108 issue: 9 year: 2016 end-page: 2118 ident: CR16 article-title: Prevalence of infertility and help seeking among 15000 women and men publication-title: Hum Reprod doi: 10.1093/humrep/dew123 – volume: 4 start-page: 2146 issue: 7 year: 2013 end-page: 2149 ident: CR4 article-title: Ovarian follicle detection for polycystic ovary syndrome using fuzzy c-means clustering publication-title: Int J Comput Trends Technol – volume: 4 start-page: 59 issue: 1 year: 2011 end-page: 60 ident: CR18 article-title: Thyroid and its indispensability in fertility publication-title: J Hum Reprod Sci doi: 10.4103/0974-1208.82368 – volume: 37 start-page: 505 issue: 2 year: 2017 end-page: 515 ident: CR10 article-title: Machine learning for medical imaging publication-title: Radiographics doi: 10.1148/rg.2017160130 – volume: 971–012005 start-page: 1 year: 2018 end-page: 8 ident: CR17 article-title: Classification of polycystic ovary based on ultrasound images using competitive neural network publication-title: J Phys Conf Ser – volume: 36 start-page: 834 issue: 7 year: 2015 end-page: 838 ident: CR1 article-title: Review of 244 cases of ovarian cysts publication-title: Saudi Med J doi: 10.15537/smj.2015.7.11690 – volume: 8 start-page: 85454 year: 2020 end-page: 85463 ident: CR31 article-title: A multidirectional LSTM model for predicting the stability of a smart grid publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991067 – volume: 12 start-page: 1 issue: 11 year: 2012 end-page: 12 ident: CR6 article-title: Active contours and image segmentation: the current state of the art publication-title: Glob J Comput Sci Technol – volume: 24 start-page: 1209 issue: 1 year: 2014 end-page: 1216 ident: CR19 article-title: Texture analysis and classification of ultrasound liver images publication-title: Bio-Med Mater Eng doi: 10.3233/BME-130922 – volume: 42 start-page: 989 issue: 4 year: 2016 end-page: 998 ident: CR11 article-title: Automatic cataract hardness classification ex vivo by ultrasound techniques publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2015.11.021 – volume: 86 start-page: 76 issue: 2 year: 2017 end-page: 78 ident: CR21 article-title: Machine learning in medicine publication-title: Univ Western Ontario Med J doi: 10.5206/uwomj.v86i2.2060 – volume: 10 start-page: 67 year: 2020 ident: CR27 article-title: Assessing the costs of screening for ovarian cancer in the United states: an evolving analysis publication-title: Diagnostics doi: 10.3390/diagnostics10020067 – volume: 49 start-page: 927 issue: 4 year: 2019 end-page: 938 ident: CR14 article-title: Role of texture analysis in breast MRI as a cancer biomarker: a review publication-title: J Magn Reson Imaging doi: 10.1002/jmri.26556 – volume: 6 start-page: 2810 issue: 6 year: 2016 end-page: 2817 ident: CR22 article-title: Effective computer-assisted automatic cervical vertebrae extraction with rehabilitative ultrasound imaging by using K-means clustering publication-title: Int Jo Electr Comput Eng – volume: 2 start-page: 185 issue: 8 year: 2013 end-page: 189 ident: CR3 article-title: Detection of cysts in ultrasonic images of ovary publication-title: Int J Sci Res – volume: 212 start-page: 450 issue: 4 year: 2015 end-page: 455 ident: CR7 article-title: Consider ultrasound first for imaging of the female pelvis publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2015.02.015 – volume: 31 start-page: 1889 issue: 10 year: 2012 end-page: 1899 ident: CR20 article-title: Analysis of co-occurrence texture statistics as a function of gray-level quantization for classifying breast ultrasound publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2012.2206398 – volume: 2018 start-page: 1 year: 2018 end-page: 10 ident: CR23 article-title: Machine learning in ultrasound computer-aided diagnostic systems: a survey publication-title: Biomed Res Int – ident: CR9 – volume: 51 start-page: 10 issue: 1 year: 2018 end-page: 20 ident: CR15 article-title: Counting ovarian antral follicles by ultrasound: a practical guide publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.18945 – volume: 3 start-page: 146 issue: 2 year: 2012 end-page: 153 ident: CR2 article-title: First and second order statistics features for classification of magnetic resonance brain images publication-title: J Signal Inf Process – volume: 64 start-page: 1153 issue: 5 year: 2012 end-page: 1162 ident: CR13 article-title: Support vector machine for breast MR image classification publication-title: Comput Math Appl doi: 10.1016/j.camwa.2012.03.033 – volume: 47 start-page: 418 issue: 3 year: 2019 end-page: 423 ident: CR25 article-title: Performance evaluation of machine learning techniques in lung cancer classification from PET/CT Images publication-title: FME Trans doi: 10.5937/fmet1903418P – volume: 15 start-page: 512 issue: 3 year: 2018 end-page: 520 ident: CR24 article-title: Machine learning in medical imaging publication-title: J Am Coll Radiol Part B doi: 10.1016/j.jacr.2017.12.028 – volume: 97 year: 2020 ident: CR30 article-title: A novel approach for detecting vulnerable IoT devices connected behind a home NAT publication-title: Comput Secur doi: 10.1016/j.cose.2020.101968 – volume: 90 start-page: 428 issue: 2 year: 2010 end-page: 439 ident: CR5 article-title: Despeckling of medical ultrasound images using Daubechies complex wavelet transform publication-title: Signal Process doi: 10.1016/j.sigpro.2009.07.008 – ident: CR26 – volume: 9 start-page: 10263 year: 2021 end-page: 10281 ident: CR28 article-title: A novel Bayesian optimization-based machine learning framework for COVID-19 detection from inpatient facility data publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3050852 – volume: 12 start-page: 1 issue: 11 year: 2012 ident: 1973_CR6 publication-title: Glob J Comput Sci Technol – volume: 42 start-page: 989 issue: 4 year: 2016 ident: 1973_CR11 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2015.11.021 – volume: 2018 start-page: 1 year: 2018 ident: 1973_CR23 publication-title: Biomed Res Int – volume: 971–012005 start-page: 1 year: 2018 ident: 1973_CR17 publication-title: J Phys Conf Ser – volume: 49 start-page: 927 issue: 4 year: 2019 ident: 1973_CR14 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.26556 – volume: 51 start-page: 10 issue: 1 year: 2018 ident: 1973_CR15 publication-title: Ultrasound Obstet Gynecol doi: 10.1002/uog.18945 – volume: 36 start-page: 834 issue: 7 year: 2015 ident: 1973_CR1 publication-title: Saudi Med J doi: 10.15537/smj.2015.7.11690 – volume: 15 start-page: 512 issue: 3 year: 2018 ident: 1973_CR24 publication-title: J Am Coll Radiol Part B doi: 10.1016/j.jacr.2017.12.028 – volume: 8 start-page: 85454 year: 2020 ident: 1973_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991067 – volume: 24 start-page: 1209 issue: 1 year: 2014 ident: 1973_CR19 publication-title: Bio-Med Mater Eng doi: 10.3233/BME-130922 – ident: 1973_CR9 doi: 10.1109/ICMETE.2016.85 – volume: 1 start-page: 1 issue: 1 year: 2016 ident: 1973_CR8 publication-title: J MPE Mol Pathol Epidemiol – volume: 4 start-page: 59 issue: 1 year: 2011 ident: 1973_CR18 publication-title: J Hum Reprod Sci doi: 10.4103/0974-1208.82368 – ident: 1973_CR26 – volume: 86 start-page: 76 issue: 2 year: 2017 ident: 1973_CR21 publication-title: Univ Western Ontario Med J doi: 10.5206/uwomj.v86i2.2060 – volume: 10 start-page: 67 year: 2020 ident: 1973_CR27 publication-title: Diagnostics doi: 10.3390/diagnostics10020067 – volume: 31 start-page: 2108 issue: 9 year: 2016 ident: 1973_CR16 publication-title: Hum Reprod doi: 10.1093/humrep/dew123 – volume: 212 start-page: 450 issue: 4 year: 2015 ident: 1973_CR7 publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2015.02.015 – volume: 67 start-page: 1 year: 2013 ident: 1973_CR12 publication-title: Natl Health Stat Rep – volume: 6 start-page: 2810 issue: 6 year: 2016 ident: 1973_CR22 publication-title: Int Jo Electr Comput Eng – volume: 90 start-page: 428 issue: 2 year: 2010 ident: 1973_CR5 publication-title: Signal Process doi: 10.1016/j.sigpro.2009.07.008 – volume: 9 start-page: 10263 year: 2021 ident: 1973_CR28 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3050852 – volume: 37 start-page: 505 issue: 2 year: 2017 ident: 1973_CR10 publication-title: Radiographics doi: 10.1148/rg.2017160130 – volume: 31 start-page: 1889 issue: 10 year: 2012 ident: 1973_CR20 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2012.2206398 – volume: 140 start-page: 110210 year: 2020 ident: 1973_CR29 publication-title: Chaos Solitons Fract doi: 10.1016/j.chaos.2020.110210 – volume: 4 start-page: 2146 issue: 7 year: 2013 ident: 1973_CR4 publication-title: Int J Comput Trends Technol – volume: 47 start-page: 418 issue: 3 year: 2019 ident: 1973_CR25 publication-title: FME Trans doi: 10.5937/fmet1903418P – volume: 9 start-page: 22824 year: 2021 ident: 1973_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3056592 – volume: 64 start-page: 1153 issue: 5 year: 2012 ident: 1973_CR13 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2012.03.033 – volume: 97 year: 2020 ident: 1973_CR30 publication-title: Comput Secur doi: 10.1016/j.cose.2020.101968 – volume: 2 start-page: 185 issue: 8 year: 2013 ident: 1973_CR3 publication-title: Int J Sci Res – volume: 3 start-page: 146 issue: 2 year: 2012 ident: 1973_CR2 publication-title: J Signal Inf Process |
| SSID | ssj0002504465 |
| Score | 2.2401278 |
| Snippet | Infertility is a global issue. Total fertility rate declined from over 5 live births per woman in 1950–1955 to 2.5 births per woman in 2010–2015. Female... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 571 |
| SubjectTerms | Abdomen Algorithms Amenorrhea Artificial neural networks Blood tests Breast cancer Classification Classifiers Computer Imaging Computer Science Computer Systems Organization and Communication Networks Congenital diseases Cysts Data Structures and Information Theory Decision support systems Eggs Female reproductive system Females Fertility Follicles Infertility Information Systems and Communication Service Machine Intelligence and Smart Systems Machine learning Mammography Original Research Ovarian cancer Ovulation Patients Pattern Recognition and Graphics Polycystic ovary syndrome Radiation Reproductive health Software Engineering/Programming and Operating Systems Support vector machines Tumors Ultrasonic imaging Uterus Vision Womens health |
| Title | Ultrasound-Based Ovarian Cysts Detection with Improved Machine-Learning Techniques and Stage Classification Using Enhanced Classifiers |
| URI | https://link.springer.com/article/10.1007/s42979-023-01973-0 https://www.proquest.com/docview/2921273697 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: AFBBN dateStart: 20190625 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2661-8907 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu7AgECDKo_LABhbBzssDQrS0VEgUhKjULbJjGwYUHglI_AF-N2c3aQUSLFnseMjZ_u4ud98HcJAijLPE5tQkStFQYrijFI-pVlIHWlueKtcofD2OR5PwahpNl2Dc9MK4ssrmTvQXtX7OXY78mAnHRc5jkZy9vFKnGuX-rjYSGrKWVtCnnmJsGdrMMWO1oN0bjG_v5lkXR9gVen1JBCZGhYimdSeN76fDyzkRFGEMI2yR4PMnWi1c0F9_TT0YDddgtfYiyfnM7OuwZIoN-Jo8VW-ydDpJtIfgpMnNB0bCsiD9z7IqyYWpfN1VQVzylczSCTjr2tdTGlpTrT6Q-4bXtSSy0AT90QdDvHqmqyvypiS-1IAMikdfQTAfRWdyEybDwX1_RGuZBZozHgZUGi5ZHEmjAntiVS7yKNRxjsBvUpEaywNjI2WT0EpE99yGqVYmkRjnWXeGFd-CVvFcmG0gXFp0yRDyNcadAY-UIzmQYSQMM8wK1YGT5nNmec1B7qQwnrI5e7I3QYYmyLwJsqADh_N3XmYMHP_O3muslNWnscwWe6cDR43lFsN_r7bz_2q7sML8ZnElZ3vQqt7ezT76KJXqwnI6vOxC-3zY64279Tb8Bs4q50I |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOJRLVdRW3ZaCD_TUWgTbefiAKh6LlsJuK7Qr7S21Y5seUKAkbcUf6M_itzH2OrtqJbhxycWJD56Jvxl75vsAtguEcZa7itpcayoUpjta84warUxijOOF9o3Cw1E2mIgv03S6BHddL4wvq-z2xLBRm6vKn5HvMOm5yHkm88_XP6lXjfK3q52EhorSCmYvUIzFxo5Te_sHU7hm7-QI7f2BseP--HBAo8oArRgXCVWWK5alyurE7TpdySoVJqsQ92whC-t4Yl2qXS6cQnCrnCiMtrnCNMd5F9Yc512GVcGFxORv9aA_-nY-P-XxBGEi6FkiEDIqZTqNnTuhfw_BIJcUYRMzepnj8190XIS8_93SBvA7fgHPY9RK9mdutg5Ltn4JfyeX7Y1qvC4TPUAwNOTrb8y8VU0Ob5u2IUe2DXVeNfGHvWR2fIFvDUP9pqWR2vWCjDse2Yao2hCMfy8sCWqdvo4puA4JpQ2kX_8IFQvzUQxeX8HkSRb8NazUV7V9A4QrhyEghhgG89yEp9qTKiiRSsssc1L3YLdbzrKKnOdeeuOynLM1BxOUaIIymKBMevBx_s31jPHj0bc3OiuV8e9vyoWv9uBTZ7nF8MOzvX18ti14NhgPz8qzk9HpO1hjwXF8udsGrLQ3v-x7jI9avRmdkMD3p_b7e8NDI8c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasound-Based+Ovarian+Cysts+Detection+with+Improved+Machine-Learning+Techniques+and+Stage+Classification+Using+Enhanced+Classifiers&rft.jtitle=SN+computer+science&rft.au=Athithan%2C+Senthil&rft.au=Sachi%2C+Savya&rft.au=Singh%2C+Ajay+Kumar&rft.date=2023-09-01&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=4&rft.issue=5&rft.spage=571&rft_id=info:doi/10.1007%2Fs42979-023-01973-0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |