Geometric inequality for axisymmetric black holes with angular momentum

In an effort to understand the Penrose inequality for black holes with angular momentum, an axisymmetric, vacuum, asymptotically Euclidean initial data set subject to certain quasi-stationary conditions is considered for a case study. A new geometric definition of angular velocity of a rotating blac...

Full description

Saved in:
Bibliographic Details
Published inClassical and quantum gravity Vol. 42; no. 6; pp. 65022 - 65040
Main Authors Feng, Xuefeng, Yan, Ruodi, Gao, Sijie, Lau, Yun-Kau, Yau, Shing-Tung
Format Journal Article
LanguageEnglish
Published IOP Publishing 21.03.2025
Subjects
Online AccessGet full text
ISSN0264-9381
1361-6382
DOI10.1088/1361-6382/adb82a

Cover

Abstract In an effort to understand the Penrose inequality for black holes with angular momentum, an axisymmetric, vacuum, asymptotically Euclidean initial data set subject to certain quasi-stationary conditions is considered for a case study. A new geometric definition of angular velocity of a rotating black hole is defined in terms of the momentum constraint, without any reference to a stationary Killing vector field. The momentum constraint is then shown to be equivalent to the dynamics of a two-dimensional steady compressible fluid flow governed by a quasi-conformal mapping. In terms of spinors, a generalised first law for rotating black holes (possibly with multi-connected horizon located along the symmetry axis) is then proven and may be regarded as a Penrose-type inequality for black holes with angular momentum.
AbstractList In an effort to understand the Penrose inequality for black holes with angular momentum, an axisymmetric, vacuum, asymptotically Euclidean initial data set subject to certain quasi-stationary conditions is considered for a case study. A new geometric definition of angular velocity of a rotating black hole is defined in terms of the momentum constraint, without any reference to a stationary Killing vector field. The momentum constraint is then shown to be equivalent to the dynamics of a two-dimensional steady compressible fluid flow governed by a quasi-conformal mapping. In terms of spinors, a generalised first law for rotating black holes (possibly with multi-connected horizon located along the symmetry axis) is then proven and may be regarded as a Penrose-type inequality for black holes with angular momentum.
Author Yan, Ruodi
Gao, Sijie
Feng, Xuefeng
Lau, Yun-Kau
Yau, Shing-Tung
Author_xml – sequence: 1
  givenname: Xuefeng
  orcidid: 0000-0002-3195-6924
  surname: Feng
  fullname: Feng, Xuefeng
  organization: Shanghai Institute for Mathematics and Interdisciplinary Sciences (SIMIS) , Shanghai 200433, People’s Republic of China
– sequence: 2
  givenname: Ruodi
  orcidid: 0000-0002-7129-9826
  surname: Yan
  fullname: Yan, Ruodi
  organization: Beijing Normal University Department of Physics, Beijing 100875, People’s Republic of China
– sequence: 3
  givenname: Sijie
  orcidid: 0000-0002-8179-8514
  surname: Gao
  fullname: Gao, Sijie
  organization: Beijing Normal University Department of Physics, Beijing 100875, People’s Republic of China
– sequence: 4
  givenname: Yun-Kau
  orcidid: 0000-0002-9097-7346
  surname: Lau
  fullname: Lau, Yun-Kau
  organization: Chinese Academy of Sciences Institute of Applied Mathematics, Morningside Center of Mathematics, LSSC, Academy of Mathematics and System Science, 55, Zhongguancun Donglu, Beijing 100190, People’s Republic of China
– sequence: 5
  givenname: Shing-Tung
  surname: Yau
  fullname: Yau, Shing-Tung
  organization: Tsinghua University Yau Mathematical Sciences Center, Beijing 100084, People’s Republic of China
BookMark eNp1kM1OwzAQhC1UJNLCnaMfgFCvnR_niCooSJW4wNlapzZ1SeJiJ4K-PY1SceO00u5-o5mZk1nnO0PILbB7YFIuQRSQFkLyJW615HhBkr_VjCSMF1laCQlXZB7jnjEACTwh67XxremDq6nrzNeAjeuP1PpA8cfFY3u-6QbrT7rzjYn02_U7it3H0GCg7Ynu-qG9JpcWm2huznNB3p8e31bP6eZ1_bJ62KQ1F6JPt5BbQG6rmoMwTGNlIGOVzkutpcxFVgJKlMJsM1kVJTJdIJRlZY3WudQoFoRNunXwMQZj1SG4FsNRAVNjEWpMrcbUairihNxNiPMHtfdD6E4G_3__BZjKYok
CODEN CQGRDG
Cites_doi 10.1103/PhysRevLett.25.1596
10.1088/1361-6382/aaa0a6
10.4310/jdg/1090349447
10.1088/0264-9381/29/7/073001
10.1007/BF01444701
10.1007/s002200050159
10.1088/0264-9381/26/19/193001
10.1007/s10714-019-2600-8
10.4310/jdg/1207834657
10.4310/jdg/1090349428
10.1088/0264-9381/23/23/016
10.1007/s002200050700
10.1086/150635
10.1007/BF01208277
10.1007/BF01880262
10.1088/0264-9381/4/2/011
10.1088/0264-9381/2/2/012
ContentType Journal Article
Copyright 2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/1361-6382/adb82a
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EISSN 1361-6382
ExternalDocumentID 10_1088_1361_6382_adb82a
cqgadb82a
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: Grant No. 2021YFC2202501
– fundername: National Natural Science Foundation of China
  grantid: 11775022 and 11873044
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -DZ
-~X
1JI
29B
4.4
5B3
5GY
5PX
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
ZMT
AAYXX
ADEQX
AEINN
CITATION
ID FETCH-LOGICAL-c233t-d15f1a2f9c213e0ba9e1409b57bb8853471a8a83ed48967a0b6a1779febb58ba3
IEDL.DBID IOP
ISSN 0264-9381
IngestDate Wed Oct 01 06:50:39 EDT 2025
Tue Mar 11 23:40:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c233t-d15f1a2f9c213e0ba9e1409b57bb8853471a8a83ed48967a0b6a1779febb58ba3
Notes CQG-112309.R1
ORCID 0000-0002-9097-7346
0000-0002-7129-9826
0000-0002-8179-8514
0000-0002-3195-6924
PageCount 19
ParticipantIDs iop_journals_10_1088_1361_6382_adb82a
crossref_primary_10_1088_1361_6382_adb82a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-21
PublicationDateYYYYMMDD 2025-03-21
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-21
  day: 21
PublicationDecade 2020
PublicationTitle Classical and quantum gravity
PublicationTitleAbbrev CQG
PublicationTitleAlternate Class. Quantum Grav
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References James (cqgadb82abib11) 1970; 162
Bray (cqgadb82abib9) 2004
Anglada (cqgadb82abib10) 2018; 35
Bray (cqgadb82abib3) 2001; 59
Mars (cqgadb82abib8) 2009; 26
Dain (cqgadb82abib7) 2012; 29
Shaw (cqgadb82abib13) 1985; 2
Penrose (cqgadb82abib1) 1982; vol 102
Christodoulou (cqgadb82abib4) 1970; 25
Witten (cqgadb82abib12) 1981; 80
Penrose (cqgadb82abib21) 1984; 2
Lau (cqgadb82abib23) 2020
Penrose (cqgadb82abib20) 1984
Khuri (cqgadb82abib15) 2019; 51
Atiyah (cqgadb82abib18) 1975; vol 77
Sen (cqgadb82abib17) 1982; 21
Zhang (cqgadb82abib14) 1999; 206
RPAC Newman (cqgadb82abib16) 1987; 4
Dain (cqgadb82abib5) 2006; 23
Dain (cqgadb82abib6) 2008; 79
Herzlich (cqgadb82abib19) 1997; 188
Huisken (cqgadb82abib2) 2001; 59
Bär (cqgadb82abib22) 1992; 293
References_xml – volume: 25
  start-page: 1596
  year: 1970
  ident: cqgadb82abib4
  article-title: Reversible and irreversible transformations in black-hole physics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.25.1596
– volume: 35
  year: 2018
  ident: cqgadb82abib10
  article-title: Penrose-like inequality with angular momentum for minimal surfaces
  publication-title: Class. Quantum Grav.
  doi: 10.1088/1361-6382/aaa0a6
– volume: 59
  start-page: 353
  year: 2001
  ident: cqgadb82abib2
  article-title: The inverse mean curvature flow and the riemannian penrose inequality
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1090349447
– volume: 29
  year: 2012
  ident: cqgadb82abib7
  article-title: Geometric inequalities for axially symmetric black holes
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/29/7/073001
– volume: 293
  start-page: 39
  year: 1992
  ident: cqgadb82abib22
  article-title: Lower eigenvalue estimates for dirac operators
  publication-title: Math. Ann.
  doi: 10.1007/BF01444701
– volume: 188
  start-page: 121
  year: 1997
  ident: cqgadb82abib19
  article-title: A penrose-like inequality for the mass of riemannian asymptotically flat manifolds
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200050159
– volume: vol 77
  start-page: pp 43
  year: 1975
  ident: cqgadb82abib18
  article-title: Spectral asymmetry and riemannian geometry. I
– volume: 26
  year: 2009
  ident: cqgadb82abib8
  article-title: Present status of the penrose inequality
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/26/19/193001
– start-page: pp 39
  year: 2004
  ident: cqgadb82abib9
  article-title: The penrose inequality
– volume: 51
  start-page: 1
  year: 2019
  ident: cqgadb82abib15
  article-title: A penrose-type inequality with angular momentum and charge for axisymmetric initial data
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/s10714-019-2600-8
– volume: 79
  start-page: 33
  year: 2008
  ident: cqgadb82abib6
  article-title: Proof of the angular momentum-mass inequality for axisymmetric black holes
  publication-title: J. Differ. Geome.
  doi: 10.4310/jdg/1207834657
– volume: 59
  start-page: 177
  year: 2001
  ident: cqgadb82abib3
  article-title: Proof of the riemannian penrose inequality using the positive mass theorem
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1090349428
– volume: 23
  start-page: 6857
  year: 2006
  ident: cqgadb82abib5
  article-title: A variational principle for stationary, axisymmetric solutions of einstein’s equations
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/23/23/016
– year: 2020
  ident: cqgadb82abib23
  article-title: A spinor approach to penrose inequality
– volume: vol 102
  start-page: 631
  year: 1982
  ident: cqgadb82abib1
  article-title: Some unsolved problems in classical general relativity
– year: 1984
  ident: cqgadb82abib20
– volume: 206
  start-page: 137
  year: 1999
  ident: cqgadb82abib14
  article-title: Angular momentum and positive mass theorem
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200050700
– volume: 162
  start-page: 71
  year: 1970
  ident: cqgadb82abib11
  article-title: A variational principle for rotating stars in general relativity
  publication-title: Astrophys. J.
  doi: 10.1086/150635
– volume: 80
  start-page: 381
  year: 1981
  ident: cqgadb82abib12
  article-title: A new proof of the positive energy theorem
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01208277
– volume: 2
  year: 1984
  ident: cqgadb82abib21
– volume: 21
  start-page: 1
  year: 1982
  ident: cqgadb82abib17
  article-title: Quantum theory of spin-3/2 field in Einstein spaces
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/BF01880262
– volume: 4
  start-page: 277
  year: 1987
  ident: cqgadb82abib16
  article-title: Topology and stability of marginal 2-surfaces
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/4/2/011
– volume: 2
  start-page: 189
  year: 1985
  ident: cqgadb82abib13
  article-title: Witten identities for rotations, spinor boundary-value problems and new gauge conditions for asymptotic symmetries
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/2/2/012
SSID ssj0011812
Score 2.4590137
Snippet In an effort to understand the Penrose inequality for black holes with angular momentum, an axisymmetric, vacuum, asymptotically Euclidean initial data set...
SourceID crossref
iop
SourceType Index Database
Publisher
StartPage 65022
SubjectTerms geometric inequality
momentum constraint
rotating black holes
Title Geometric inequality for axisymmetric black holes with angular momentum
URI https://iopscience.iop.org/article/10.1088/1361-6382/adb82a
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1361-6382
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011812
  issn: 0264-9381
  databaseCode: IOP
  dateStart: 19840101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zIuiDl6k4b-RBH3zIljS9JPgk4jaEqQ8O9iCUpElBZBdsB85f70nbDRUF8a3QQxs-Tvt9OTkXhM5okFgvMj5h1hTRKk6UZpJElqaUmhBYyRUK9-_C3sC_HQbDGrpc1sJMptWvvwWXZaPgEsIqIU60GQ8ZAbfx2spo4YE4WuUChLGr3rt_WB4hOOoqAyw-kcBL1RnlT0_4wkkr8N5PFNPZQk-LxZWZJS-tWa5byfu3vo3_XP022qykJ74qTXdQzY4baKO_7NuaNdBakRCaZLuo27WTkZu2lWDQoWXp5RyDwsXq7Tmbj6p72sX_sJuxm2EX0sUu_AmbZTxynR3y2WgPDTo3j9c9Ug1dIInHeU4MC1KmvFQmHuOWaiWt64mlg0hrAdwOZKaEEtwaX8gwUlSHikWRTK3WgdCK76P6eDK2BwiHQqUijagysGmhVEmTskRIC5pAglcETXSxgD2elr014uJMXIjYwRQ7mOISpiY6B0Tj6gPLfrU7_KPdEVr33CRfyonHjlE9f53ZE5AXuT4t3OgDz_TIdQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60oujBR1Wszz3owcO2u0mT7B5FbeujtQcLvcXd7AZE-sCkYP317iZpUVEQvAUy5PExyTc7O_MNwCnxIu0Eqo6pVlm2ysVCUo4DTWJClG9YyTYKtzt-q1e_7Xv9Ys5p1gszGhe__qo5zIWCcwiLgjhWo65PsXEbpyaUZI6ojVW8CEuZTont4HvozrcRLH3lSZY65oabin3Kn67yhZcWzb0_0UxjA55mD5hXl7xUJ6msRu_ftBv_8QabsF6EoOgiN9-CBT0sw1p7rt-alGE5KwyNkm1oNvVoYKduRcjEo3kL5hSZSBeJt-dkOijOSZsHRHbWboJsahfZNKhZNKOBVXhIJ4Md6DWuHy9buBi-gCPHdVOsqBdT4cQ8cqiriRRcW20s6QVSMsPxhtQEE8zVqs64HwgifUGDgMdaSo9J4e5CaTga6j1APhMxiwMilFm8ECK4imnEuDaxATfe4VXgfAZ9OM41NsJsb5yx0EIVWqjCHKoKnBlUw-JDS3612_-j3QmsdK8a4f1N5-4AVh073Je42KGHUEpfJ_rIRBypPM686gP4BM3W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+inequality+for+axisymmetric+black+holes+with+angular+momentum&rft.jtitle=Classical+and+quantum+gravity&rft.au=Feng%2C+Xuefeng&rft.au=Yan%2C+Ruodi&rft.au=Gao%2C+Sijie&rft.au=Lau%2C+Yun-Kau&rft.date=2025-03-21&rft.issn=0264-9381&rft.eissn=1361-6382&rft.volume=42&rft.issue=6&rft.spage=65022&rft_id=info:doi/10.1088%2F1361-6382%2Fadb82a&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6382_adb82a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-9381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-9381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-9381&client=summon