Optimal tuning of support vector machines and k-NN algorithm by using Bayesian optimization for newborn cry signal diagnosis based on audio signal processing features

Recently, the number of machine learning models used to classify cry signals of healthy and unhealthy newborns has been significantly increasing. Various works have already reported encouraging classification results; however, fine-tuning of the hyper-parameters of machine leaning algorithms is stil...

Full description

Saved in:
Bibliographic Details
Published inChaos, solitons and fractals Vol. 167; p. 112972
Main Authors Lahmiri, Salim, Tadj, Chakib, Gargour, Christian, Bekiros, Stelios
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2023
Subjects
Online AccessGet full text
ISSN0960-0779
1873-2887
DOI10.1016/j.chaos.2022.112972

Cover

Abstract Recently, the number of machine learning models used to classify cry signals of healthy and unhealthy newborns has been significantly increasing. Various works have already reported encouraging classification results; however, fine-tuning of the hyper-parameters of machine leaning algorithms is still an open problem in the context of newborn cry signal classification. This paper proposes to use Bayesian optimization (BO) method to optimize the hyper-parameters of Support Vector Machine (SVM) with radial basis function (RBF) kernel and k-nearest neighbors (kNN) trained with different audio features separately or combined; namely, mel-frequency cepstral coefficients (MFCC), auditory-inspired amplitude modulation (AAM), and prosody. Particularly, the chi-square test is applied to each set of features to retain the ten most significant ones used to train optimal classifiers. The accuracy, sensitivity, and specificity of each experimental model are computed following the standard 10-fold cross-validation protocol. One of the contributions is an improvement over previous works on newborn cry signal classification used to distinguish between healthy and unhealthy ones over the same database, in terms of performance. The best model is the SVM trained with AAM ten most significant features achieved 83.62 % ± 0.022 accuracy, 59.18 % ± 0.0469 sensitivity, and 93.87 % ± 0.0190 specificity followed by kNN trained with ten most features from MFCC, AAM, and prosody to obtain 82.88 % ± 0.0144 accuracy, 55.34 % ± 0.0350 sensitivity, and 94.42 % ± 0.0075 specificity. These results outperformed existing works validated on the same database. In addition, optimally tuned SVM and kNN are fed with a restricted number of selected patterns so as the processing time for training and testing is significantly limited. This means that the RBF-SVM-BO classifier trained with AAM ten most significant features is more able to distinguish between healthy and unhealthy newborns. •Nonlinear SVM and kNN algorithm trained with different audio features to classify newborn cry audios.•Chi-square test is applied for selection of audio features.•Bayesian optimization is used to tune hyper-parameters of SVM and kNN.•The best model is the SVM trained with AAM ten most significant features•These results outperformed existing works validated on the same database.
AbstractList Recently, the number of machine learning models used to classify cry signals of healthy and unhealthy newborns has been significantly increasing. Various works have already reported encouraging classification results; however, fine-tuning of the hyper-parameters of machine leaning algorithms is still an open problem in the context of newborn cry signal classification. This paper proposes to use Bayesian optimization (BO) method to optimize the hyper-parameters of Support Vector Machine (SVM) with radial basis function (RBF) kernel and k-nearest neighbors (kNN) trained with different audio features separately or combined; namely, mel-frequency cepstral coefficients (MFCC), auditory-inspired amplitude modulation (AAM), and prosody. Particularly, the chi-square test is applied to each set of features to retain the ten most significant ones used to train optimal classifiers. The accuracy, sensitivity, and specificity of each experimental model are computed following the standard 10-fold cross-validation protocol. One of the contributions is an improvement over previous works on newborn cry signal classification used to distinguish between healthy and unhealthy ones over the same database, in terms of performance. The best model is the SVM trained with AAM ten most significant features achieved 83.62 % ± 0.022 accuracy, 59.18 % ± 0.0469 sensitivity, and 93.87 % ± 0.0190 specificity followed by kNN trained with ten most features from MFCC, AAM, and prosody to obtain 82.88 % ± 0.0144 accuracy, 55.34 % ± 0.0350 sensitivity, and 94.42 % ± 0.0075 specificity. These results outperformed existing works validated on the same database. In addition, optimally tuned SVM and kNN are fed with a restricted number of selected patterns so as the processing time for training and testing is significantly limited. This means that the RBF-SVM-BO classifier trained with AAM ten most significant features is more able to distinguish between healthy and unhealthy newborns. •Nonlinear SVM and kNN algorithm trained with different audio features to classify newborn cry audios.•Chi-square test is applied for selection of audio features.•Bayesian optimization is used to tune hyper-parameters of SVM and kNN.•The best model is the SVM trained with AAM ten most significant features•These results outperformed existing works validated on the same database.
ArticleNumber 112972
Author Tadj, Chakib
Lahmiri, Salim
Gargour, Christian
Bekiros, Stelios
Author_xml – sequence: 1
  givenname: Salim
  surname: Lahmiri
  fullname: Lahmiri, Salim
  email: salim.lahmiri@concordia.ca
  organization: Department of Supply Chain and Business Technology Management, John Molson School of Business, Concordia University, Montreal, Canada
– sequence: 2
  givenname: Chakib
  surname: Tadj
  fullname: Tadj, Chakib
  email: chakib.tadj@etsmtl.ca
  organization: Department of Electrical Engineering, École de Technologie Supérieure, Montreal, Canada
– sequence: 3
  givenname: Christian
  surname: Gargour
  fullname: Gargour, Christian
  email: christian.gargour@etsmtl.ca
  organization: Department of Electrical Engineering, École de Technologie Supérieure, Montreal, Canada
– sequence: 4
  givenname: Stelios
  surname: Bekiros
  fullname: Bekiros, Stelios
  email: stelios.bekiros@um.edu.mt, s.bekiros@lse.ac.uk
  organization: FEMA, University of Malta, MSD 2080 Msida, Malta
BookMark eNqFkEuOEzEQhi00SGQGTsDGF-hgu-l294IFjHhJo5kF7K1qP5IKid1yuQeFA3FOnAQ2LGBVJVV9f6m-a3YVU_SMvZRiLYXsX-3WdguJ1kootZZSjVo9YSs56LZRw6Cv2EqMvWiE1uMzdk20E0JI0asV-_kwFzzAnpclYtzwFDgt85xy4Y_elpT5AewWoycO0fFvzf09h_0mZSzbA5-OfKET9g6OnhAiT6c4_AEFU-Sh4tF_n1KO3OYjJ9zEesohbGIiJD4BecfrJiwO05_5nJP1dM4NHsqSPT1nTwPsyb_4XW_Ylw_vv95-au4ePn6-fXvXWNW2pRmstjq0nRxGLZTuOuVHa9va9lUAONtK3wenp9CBc3II0zDK170DbUF37Q1rL6k2J6Lsg5lzlZOPRgpzEm125izanESbi-hKjX9RFstZQMmA-_-wby6sr089os-GLPpovcNc9RuX8J_8L_7NoYg
CitedBy_id crossref_primary_10_1038_s41598_024_76639_9
crossref_primary_10_1016_j_jvoice_2023_06_014
crossref_primary_10_1007_s40866_025_00249_1
crossref_primary_10_1016_j_resourpol_2024_105008
crossref_primary_10_1080_17509653_2025_2453902
crossref_primary_10_1007_s12541_025_01230_9
crossref_primary_10_1007_s42824_024_00123_y
crossref_primary_10_1142_S2737599425500021
crossref_primary_10_1007_s40815_024_01704_4
crossref_primary_10_1016_j_precisioneng_2025_02_024
crossref_primary_10_1007_s10658_023_02791_z
crossref_primary_10_1142_S2737599424500130
Cites_doi 10.1016/j.jvoice.2014.04.007
10.1016/j.bspc.2021.103434
10.1016/j.bspc.2021.103424
10.1016/j.bspc.2022.103629
10.1016/j.bspc.2020.101889
10.1109/MIM.2021.9400952
10.1016/j.chaos.2021.111700
10.1016/j.bspc.2018.08.009
10.1016/j.bspc.2019.01.010
10.1016/j.chaos.2021.111610
10.1016/j.bspc.2008.11.006
10.1109/TIM.2018.2855518
10.1016/j.neuroimage.2014.01.021
10.1016/j.bspc.2020.101978
10.1016/j.eswa.2020.113971
10.1016/j.compbiomed.2022.105213
10.1016/j.compbiomed.2022.106178
10.1109/TIT.1967.1053964
10.1016/j.jvoice.2016.05.015
10.1016/j.compbiomed.2022.105635
10.1016/j.bspc.2018.08.021
10.1016/j.bspc.2022.103830
10.1016/j.chaos.2020.110639
10.3390/e24081166
10.1016/j.specom.2015.12.001
10.1016/j.eswa.2019.06.052
10.1142/S0218213006002734
10.1016/j.jvoice.2022.05.015
10.1016/j.bspc.2015.03.007
10.1016/j.bspc.2018.08.029
10.1016/j.jvoice.2015.08.007
10.1016/j.jbi.2015.08.017
10.1016/j.csl.2017.04.004
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2022.112972
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
ExternalDocumentID 10_1016_j_chaos_2022_112972
S0960077922011511
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c233t-8c7c7f351897027552e9cc30276096adc31e6fd7bf5add18fb89146da7ca753
IEDL.DBID .~1
ISSN 0960-0779
IngestDate Thu Apr 24 23:09:13 EDT 2025
Wed Oct 01 02:44:37 EDT 2025
Fri Feb 23 02:38:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Support vector machines
Mel-frequency cepstral coefficients
Prosody
Newborn cry
k-Nearest neighbors
Auditory-inspired amplitude modulation
Bayesian optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c233t-8c7c7f351897027552e9cc30276096adc31e6fd7bf5add18fb89146da7ca753
ParticipantIDs crossref_primary_10_1016_j_chaos_2022_112972
crossref_citationtrail_10_1016_j_chaos_2022_112972
elsevier_sciencedirect_doi_10_1016_j_chaos_2022_112972
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lahmiri, Tadj, Gargour (bb0065) 2021; 24
Lahmiri, Bekiros (bb0105) 2022; 154
Lahmiri, Tadj, Gargour, Bekiros (bb0070) 2022; 154
Salehian Matikolaie, Kheddache, Tadj (bb0075) 2022; 73
Hosny, Zhu, Gao, Fu (bb0135) 2022; 77
Abou-Abbas, Alaie, Tadj (bb0035) 2015; 19
Salehian Matikolaie, Tadj (bb0080) 2022
Kheddache, Tadj (bb0055) 2019; 50
Di̇ker (bb0160) 2022; 148
Abou-Abbas, Tadj, Gargour, Montazeri (bb0050) 2017; 31
Loey, El-Sappagh, Mirjalili (bb0170) 2022; 142
Joseph, Joseph, Prasad (bb0175) 2022
Poel, Ekkel (bb0025) 2006; 15
Satar, Cengizler, Hamitoglu, Ozdemir (bb0015) 2022
Alaie, Abou-Abbas, Tadj (bb0045) 2016; 77
Salehian Matikolaie, Tadj (bb0060) 2020; 59
Orlandi, Reyes Garcia, Bandini, Donzelli, Manfredi (bb0005) 2016; 30
Sahak, Mansor, Lee, Yassin, Zabidi (bb0030) 2010
Ali, Zhu, Zhou, Liu (bb0180) 2019; 137
Sarria-Paja, Falk (bb0195) 2017; 45
Lahmiri, Shmuel (bb0115) 2019; 49
Manfredi, Bocchi, Cantarella (bb0010) 2009; 4
Lahmiri (bb0110) 2020; 60
Cover, Hart (bb0125) 1967; 13
Vapnik, Golowich, Smola (bb0100) 1996; 9
Lahmiri, Shmuel (bb0145) 2019; 68
Gelbart, Snoek, Adams (bb0150) 2014
Cortes, Vapnik (bb0095) 1995; 20
Li, Shi, Zhang, Chen, Zhang (bb0130) 2015; 57
Kheddache, Tadj (bb0040) 2015; 29
Li, Lin, An, Zuo, Zhu, Zhang, Mu, Cao, Prades García (bb0165) 2022; 73
Cao, Duan, Lin, Shugart, Calhoun, Wang (bb0190) 2014; 102
Parmar, Kumar, Kalita (bb0140) 2022; 76
Lahmiri, Shmuel (bb0120) 2019; 52
Lahmiri, Tadj, Gargour, Bekiros (bb0085) 2021; 143
Selamtzis, Castellana, Salvi, Carullo, Astolfi (bb0020) 2019; 47
Lahmiri, Tadj, Gargour (bb0090) 2022; 24
Lee, Choi, Jun (bb0185) 2021; 166
Loey (10.1016/j.chaos.2022.112972_bb0170) 2022; 142
Lahmiri (10.1016/j.chaos.2022.112972_bb0065) 2021; 24
Kheddache (10.1016/j.chaos.2022.112972_bb0055) 2019; 50
Sahak (10.1016/j.chaos.2022.112972_bb0030) 2010
Lahmiri (10.1016/j.chaos.2022.112972_bb0120) 2019; 52
Lahmiri (10.1016/j.chaos.2022.112972_bb0085) 2021; 143
Li (10.1016/j.chaos.2022.112972_bb0130) 2015; 57
Poel (10.1016/j.chaos.2022.112972_bb0025) 2006; 15
Salehian Matikolaie (10.1016/j.chaos.2022.112972_bb0075) 2022; 73
Abou-Abbas (10.1016/j.chaos.2022.112972_bb0035) 2015; 19
Salehian Matikolaie (10.1016/j.chaos.2022.112972_bb0080) 2022
Manfredi (10.1016/j.chaos.2022.112972_bb0010) 2009; 4
Alaie (10.1016/j.chaos.2022.112972_bb0045) 2016; 77
Selamtzis (10.1016/j.chaos.2022.112972_bb0020) 2019; 47
Abou-Abbas (10.1016/j.chaos.2022.112972_bb0050) 2017; 31
Ali (10.1016/j.chaos.2022.112972_bb0180) 2019; 137
Gelbart (10.1016/j.chaos.2022.112972_bb0150)
Lahmiri (10.1016/j.chaos.2022.112972_bb0110) 2020; 60
Lahmiri (10.1016/j.chaos.2022.112972_bb0115) 2019; 49
Lahmiri (10.1016/j.chaos.2022.112972_bb0070) 2022; 154
Li (10.1016/j.chaos.2022.112972_bb0165) 2022; 73
Vapnik (10.1016/j.chaos.2022.112972_bb0100) 1996; 9
Joseph (10.1016/j.chaos.2022.112972_bb0175) 2022
Salehian Matikolaie (10.1016/j.chaos.2022.112972_bb0060) 2020; 59
Orlandi (10.1016/j.chaos.2022.112972_bb0005) 2016; 30
Kheddache (10.1016/j.chaos.2022.112972_bb0040) 2015; 29
Cao (10.1016/j.chaos.2022.112972_bb0190) 2014; 102
Hosny (10.1016/j.chaos.2022.112972_bb0135) 2022; 77
Cover (10.1016/j.chaos.2022.112972_bb0125) 1967; 13
Lahmiri (10.1016/j.chaos.2022.112972_bb0145) 2019; 68
Di̇ker (10.1016/j.chaos.2022.112972_bb0160) 2022; 148
Lahmiri (10.1016/j.chaos.2022.112972_bb0090) 2022; 24
Cortes (10.1016/j.chaos.2022.112972_bb0095) 1995; 20
Lahmiri (10.1016/j.chaos.2022.112972_bb0105) 2022; 154
Sarria-Paja (10.1016/j.chaos.2022.112972_bb0195) 2017; 45
Lee (10.1016/j.chaos.2022.112972_bb0185) 2021; 166
Satar (10.1016/j.chaos.2022.112972_bb0015) 2022
Parmar (10.1016/j.chaos.2022.112972_bb0140) 2022; 76
References_xml – volume: 154
  year: 2022
  ident: bb0070
  article-title: Deep learning systems for automatic diagnosis of infant cry signals
  publication-title: Chaos Solitons Fractals
– volume: 45
  start-page: 437
  year: 2017
  end-page: 456
  ident: bb0195
  article-title: Fusion of auditory inspired amplitude modulation spectrum and cepstral features for whispered and normal speech speaker verification
  publication-title: Comput Speech Lang
– volume: 31
  year: 2017
  ident: bb0050
  article-title: Expiratory and inspiratory cries detection using different signals’ decomposition techniques
  publication-title: Journal of Voice
– year: 2022
  ident: bb0015
  article-title: Investigation of relation between hypoxic-ischemic encephalopathy and spectral features of infant cry audio
  publication-title: J Voice
– volume: 102
  start-page: 220
  year: 2014
  end-page: 228
  ident: bb0190
  article-title: Sparse representation based biomarker selection for schizophrenia with integrated analysis of MRI and SNPs
  publication-title: Neuroimage
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bb0095
  article-title: Support-vector networks
  publication-title: MachLearn
– volume: 19
  start-page: 35
  year: 2015
  end-page: 43
  ident: bb0035
  article-title: Automatic detection of the expiratory and inspiratory phases in newborn cry signals
  publication-title: Biomed Signal Processing Control
– volume: 24
  start-page: 24
  year: 2021
  end-page: 29
  ident: bb0065
  article-title: Biomedical diagnosis of infant cry signal based on analysis of cepstrum by deep feedforward artificial neural networks
  publication-title: IEEE Inst Meas Mag
– year: 2022
  ident: bb0175
  article-title: Explainable diabetes classification using hybrid bayesian-optimized TabNet architecture
  publication-title: Comput Biol Med
– volume: 76
  year: 2022
  ident: bb0140
  article-title: ECG signal based automated hypertension detection using fourier decomposition method and cosine modulated filter banks
  publication-title: Biomed Signal Process Control
– volume: 77
  year: 2022
  ident: bb0135
  article-title: A novel deep learning model for STN localization from LFPs in Parkinson's disease
  publication-title: Biomed Signal Process Control
– volume: 137
  start-page: 22
  year: 2019
  end-page: 28
  ident: bb0180
  article-title: Early diagnosis of Parkinson’s disease from multiple voice recordings by simultaneous sample and feature selection
  publication-title: Expert Syst Appl
– volume: 47
  start-page: 350
  year: 2019
  end-page: 357
  ident: bb0020
  article-title: Effect of vowel context in cepstral and entropy analysis of pathological voices
  publication-title: Biomed Signal Process Control
– volume: 30
  start-page: 656
  year: 2016
  end-page: 663
  ident: bb0005
  article-title: Application of pattern recognition techniques to the classification of full-term and preterm infant cry
  publication-title: J Voice
– volume: 142
  year: 2022
  ident: bb0170
  article-title: Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data
  publication-title: Comput Biol Med
– volume: 49
  start-page: 427
  year: 2019
  end-page: 433
  ident: bb0115
  article-title: Detection of Parkinson’s disease based on voice patterns ranking and optimized support vector machine
  publication-title: Biomed Signal Process Control
– volume: 154
  year: 2022
  ident: bb0105
  article-title: Complexity measures of high oscillations in phonocardiogram as biomarkers to distinguish between normal heart sound and pathological murmur
  publication-title: Chaos Solitons Fractals
– volume: 60
  year: 2020
  ident: bb0110
  article-title: Hybrid deep learning convolutional neural networks and optimal nonlinear support vector machine to detect presence of hemorrhage in retina
  publication-title: Biomed Signal Process Control
– volume: 29
  start-page: 1
  year: 2015
  end-page: 12
  ident: bb0040
  article-title: Resonance frequencies behavior in pathologic cries of newborns
  publication-title: J Voice
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: bb0125
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Transact Information Theory
– volume: 73
  year: 2022
  ident: bb0165
  article-title: Automatic electrocardiogram detection and classification using bidirectional long short-term memory network improved by Bayesian optimization
  publication-title: Biomed Signal Process Control
– start-page: 6292
  year: 2010
  end-page: 6295
  ident: bb0030
  article-title: Performance of combined support vector machine and principal component analysis in recognizing infant cry with asphyxia
  publication-title: Proceeding of the 32nd IEEE EMBS international conference
– volume: 73
  year: 2022
  ident: bb0075
  article-title: Automated newborn cry diagnostic system using machine learning approach
  publication-title: Biomed Signal Process Control
– volume: 59
  year: 2020
  ident: bb0060
  article-title: On the use of long-term features in a newborn cry diagnostic system
  publication-title: Biomed Signal Process Control
– volume: 68
  start-page: 791
  year: 2019
  end-page: 796
  ident: bb0145
  article-title: Accurate classification of seizure and seizure-free intervals of intracranial EEG signals from epileptic patients
  publication-title: IEEE Trans Inst Meas
– volume: 57
  start-page: 358
  year: 2015
  end-page: 368
  ident: bb0130
  article-title: Multiple instance learning for computer aided detection and diagnosis of gastric cancer with dual-energy CT imaging
  publication-title: J Biomed Inform
– volume: 50
  start-page: 35
  year: 2019
  end-page: 44
  ident: bb0055
  article-title: Identification of diseases in newborns using advanced acoustic features of cry signals
  publication-title: BiomedSignal Process Control
– volume: 15
  start-page: 397
  year: 2006
  end-page: 410
  ident: bb0025
  article-title: F analyzing infant cries using a committee of neural networks in order to detect hypoxia related disorder
  publication-title: Int J Artif Intell Tools
– year: 2014
  ident: bb0150
  article-title: Bayesian optimization with unknown constraints
– year: 2022
  ident: bb0080
  article-title: Machine learning-based cry diagnostic system for identifying septic newborns
  publication-title: J Voice
– volume: 166
  year: 2021
  ident: bb0185
  article-title: An efficient multivariate feature ranking method for gene selection in high-dimensional microarray data
  publication-title: Expert Syst Appl
– volume: 9
  start-page: 281
  year: 1996
  end-page: 287
  ident: bb0100
  article-title: Support vector machine for function approximation, regression estimation, and signal processing
  publication-title: Adv Neural Information Process Syst
– volume: 77
  start-page: 28
  year: 2016
  end-page: 52
  ident: bb0045
  article-title: Cry-based infant pathology classification using GMMs
  publication-title: Speech Commun
– volume: 143
  year: 2021
  ident: bb0085
  article-title: Characterization of infant healthy and pathological cry signals in cepstrum domain based on approximate entropy and correlation dimension
  publication-title: Chaos Solitons Fractals
– volume: 52
  start-page: 414
  year: 2019
  end-page: 419
  ident: bb0120
  article-title: Performance of machine learning methods applied to structural MRI and ADAS cognitive scores in diagnosing Alzheimer's disease
  publication-title: Biomed Signal Process Control
– volume: 148
  year: 2022
  ident: bb0160
  article-title: An efficient model of residual based convolutional neural network with Bayesian optimization for the classification of malarial cell images
  publication-title: Comput Biol Med
– volume: 24
  start-page: 1166
  year: 2022
  ident: bb0090
  article-title: Nonlinear statistical analysis of normal and pathological infant cry signals in cepstrum domain by multifractal wavelet leaders
  publication-title: Entropy
– volume: 4
  start-page: 212
  year: 2009
  end-page: 220
  ident: bb0010
  article-title: A multipurpose user-friendly tool for voice analysis: application to pathological adult voices
  publication-title: Biomed Signal Process Control
– volume: 29
  start-page: 1
  year: 2015
  ident: 10.1016/j.chaos.2022.112972_bb0040
  article-title: Resonance frequencies behavior in pathologic cries of newborns
  publication-title: J Voice
  doi: 10.1016/j.jvoice.2014.04.007
– volume: 73
  year: 2022
  ident: 10.1016/j.chaos.2022.112972_bb0075
  article-title: Automated newborn cry diagnostic system using machine learning approach
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103434
– volume: 73
  year: 2022
  ident: 10.1016/j.chaos.2022.112972_bb0165
  article-title: Automatic electrocardiogram detection and classification using bidirectional long short-term memory network improved by Bayesian optimization
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103424
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.chaos.2022.112972_bb0095
  article-title: Support-vector networks
  publication-title: MachLearn
– volume: 76
  year: 2022
  ident: 10.1016/j.chaos.2022.112972_bb0140
  article-title: ECG signal based automated hypertension detection using fourier decomposition method and cosine modulated filter banks
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.103629
– volume: 59
  year: 2020
  ident: 10.1016/j.chaos.2022.112972_bb0060
  article-title: On the use of long-term features in a newborn cry diagnostic system
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.101889
– volume: 24
  start-page: 24
  year: 2021
  ident: 10.1016/j.chaos.2022.112972_bb0065
  article-title: Biomedical diagnosis of infant cry signal based on analysis of cepstrum by deep feedforward artificial neural networks
  publication-title: IEEE Inst Meas Mag
  doi: 10.1109/MIM.2021.9400952
– volume: 154
  year: 2022
  ident: 10.1016/j.chaos.2022.112972_bb0070
  article-title: Deep learning systems for automatic diagnosis of infant cry signals
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111700
– volume: 52
  start-page: 414
  year: 2019
  ident: 10.1016/j.chaos.2022.112972_bb0120
  article-title: Performance of machine learning methods applied to structural MRI and ADAS cognitive scores in diagnosing Alzheimer's disease
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2018.08.009
– volume: 50
  start-page: 35
  year: 2019
  ident: 10.1016/j.chaos.2022.112972_bb0055
  article-title: Identification of diseases in newborns using advanced acoustic features of cry signals
  publication-title: BiomedSignal Process Control
  doi: 10.1016/j.bspc.2019.01.010
– volume: 154
  year: 2022
  ident: 10.1016/j.chaos.2022.112972_bb0105
  article-title: Complexity measures of high oscillations in phonocardiogram as biomarkers to distinguish between normal heart sound and pathological murmur
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2021.111610
– volume: 4
  start-page: 212
  year: 2009
  ident: 10.1016/j.chaos.2022.112972_bb0010
  article-title: A multipurpose user-friendly tool for voice analysis: application to pathological adult voices
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2008.11.006
– volume: 68
  start-page: 791
  year: 2019
  ident: 10.1016/j.chaos.2022.112972_bb0145
  article-title: Accurate classification of seizure and seizure-free intervals of intracranial EEG signals from epileptic patients
  publication-title: IEEE Trans Inst Meas
  doi: 10.1109/TIM.2018.2855518
– volume: 102
  start-page: 220
  year: 2014
  ident: 10.1016/j.chaos.2022.112972_bb0190
  article-title: Sparse representation based biomarker selection for schizophrenia with integrated analysis of MRI and SNPs
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.01.021
– volume: 60
  year: 2020
  ident: 10.1016/j.chaos.2022.112972_bb0110
  article-title: Hybrid deep learning convolutional neural networks and optimal nonlinear support vector machine to detect presence of hemorrhage in retina
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.101978
– ident: 10.1016/j.chaos.2022.112972_bb0150
– volume: 166
  year: 2021
  ident: 10.1016/j.chaos.2022.112972_bb0185
  article-title: An efficient multivariate feature ranking method for gene selection in high-dimensional microarray data
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113971
– volume: 142
  year: 2022
  ident: 10.1016/j.chaos.2022.112972_bb0170
  article-title: Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105213
– year: 2022
  ident: 10.1016/j.chaos.2022.112972_bb0175
  article-title: Explainable diabetes classification using hybrid bayesian-optimized TabNet architecture
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.106178
– volume: 13
  start-page: 21
  year: 1967
  ident: 10.1016/j.chaos.2022.112972_bb0125
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Transact Information Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 31
  year: 2017
  ident: 10.1016/j.chaos.2022.112972_bb0050
  article-title: Expiratory and inspiratory cries detection using different signals’ decomposition techniques
  publication-title: Journal of Voice
  doi: 10.1016/j.jvoice.2016.05.015
– volume: 148
  year: 2022
  ident: 10.1016/j.chaos.2022.112972_bb0160
  article-title: An efficient model of residual based convolutional neural network with Bayesian optimization for the classification of malarial cell images
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105635
– volume: 47
  start-page: 350
  year: 2019
  ident: 10.1016/j.chaos.2022.112972_bb0020
  article-title: Effect of vowel context in cepstral and entropy analysis of pathological voices
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2018.08.021
– volume: 77
  year: 2022
  ident: 10.1016/j.chaos.2022.112972_bb0135
  article-title: A novel deep learning model for STN localization from LFPs in Parkinson's disease
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.103830
– volume: 143
  year: 2021
  ident: 10.1016/j.chaos.2022.112972_bb0085
  article-title: Characterization of infant healthy and pathological cry signals in cepstrum domain based on approximate entropy and correlation dimension
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110639
– volume: 24
  start-page: 1166
  year: 2022
  ident: 10.1016/j.chaos.2022.112972_bb0090
  article-title: Nonlinear statistical analysis of normal and pathological infant cry signals in cepstrum domain by multifractal wavelet leaders
  publication-title: Entropy
  doi: 10.3390/e24081166
– volume: 77
  start-page: 28
  year: 2016
  ident: 10.1016/j.chaos.2022.112972_bb0045
  article-title: Cry-based infant pathology classification using GMMs
  publication-title: Speech Commun
  doi: 10.1016/j.specom.2015.12.001
– volume: 137
  start-page: 22
  year: 2019
  ident: 10.1016/j.chaos.2022.112972_bb0180
  article-title: Early diagnosis of Parkinson’s disease from multiple voice recordings by simultaneous sample and feature selection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.06.052
– start-page: 6292
  year: 2010
  ident: 10.1016/j.chaos.2022.112972_bb0030
  article-title: Performance of combined support vector machine and principal component analysis in recognizing infant cry with asphyxia
– volume: 15
  start-page: 397
  year: 2006
  ident: 10.1016/j.chaos.2022.112972_bb0025
  article-title: F analyzing infant cries using a committee of neural networks in order to detect hypoxia related disorder
  publication-title: Int J Artif Intell Tools
  doi: 10.1142/S0218213006002734
– year: 2022
  ident: 10.1016/j.chaos.2022.112972_bb0015
  article-title: Investigation of relation between hypoxic-ischemic encephalopathy and spectral features of infant cry audio
  publication-title: J Voice
  doi: 10.1016/j.jvoice.2022.05.015
– volume: 19
  start-page: 35
  year: 2015
  ident: 10.1016/j.chaos.2022.112972_bb0035
  article-title: Automatic detection of the expiratory and inspiratory phases in newborn cry signals
  publication-title: Biomed Signal Processing Control
  doi: 10.1016/j.bspc.2015.03.007
– volume: 49
  start-page: 427
  year: 2019
  ident: 10.1016/j.chaos.2022.112972_bb0115
  article-title: Detection of Parkinson’s disease based on voice patterns ranking and optimized support vector machine
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2018.08.029
– volume: 9
  start-page: 281
  issue: 1996
  year: 1996
  ident: 10.1016/j.chaos.2022.112972_bb0100
  article-title: Support vector machine for function approximation, regression estimation, and signal processing
  publication-title: Adv Neural Information Process Syst
– volume: 30
  start-page: 656
  year: 2016
  ident: 10.1016/j.chaos.2022.112972_bb0005
  article-title: Application of pattern recognition techniques to the classification of full-term and preterm infant cry
  publication-title: J Voice
  doi: 10.1016/j.jvoice.2015.08.007
– year: 2022
  ident: 10.1016/j.chaos.2022.112972_bb0080
  article-title: Machine learning-based cry diagnostic system for identifying septic newborns
  publication-title: J Voice
– volume: 57
  start-page: 358
  year: 2015
  ident: 10.1016/j.chaos.2022.112972_bb0130
  article-title: Multiple instance learning for computer aided detection and diagnosis of gastric cancer with dual-energy CT imaging
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2015.08.017
– volume: 45
  start-page: 437
  year: 2017
  ident: 10.1016/j.chaos.2022.112972_bb0195
  article-title: Fusion of auditory inspired amplitude modulation spectrum and cepstral features for whispered and normal speech speaker verification
  publication-title: Comput Speech Lang
  doi: 10.1016/j.csl.2017.04.004
SSID ssj0001062
Score 2.480371
Snippet Recently, the number of machine learning models used to classify cry signals of healthy and unhealthy newborns has been significantly increasing. Various works...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112972
SubjectTerms Auditory-inspired amplitude modulation
Bayesian optimization
k-Nearest neighbors
Mel-frequency cepstral coefficients
Newborn cry
Prosody
Support vector machines
Title Optimal tuning of support vector machines and k-NN algorithm by using Bayesian optimization for newborn cry signal diagnosis based on audio signal processing features
URI https://dx.doi.org/10.1016/j.chaos.2022.112972
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: .~1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: AKRWK
  dateStart: 19910101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcikHRFsQLVDNgUMrEXbjTeLkWCqqpVWXQ0HqLfJnm7abrDZZpL3wc_idzDhOAQn1wDWZSSLPZGZsv3lm7J0Zcys4R-fVSRIlbmwjmeNkRahE6VhLrTzFxsUsm35Lzq7Sqw12MvTCEKwyxP4-pvtoHa6MwmiOFlU1uqTieyxEwSmHpb6_N0kEnWLw4cdvmAdOefxOAgpHJD0wD3mMl76RDXF2c06tNIXg_85Of2Sc0-fsWSgV4bj_mm22Yesd9vTigWe13WHb4dds4TDwRx_tsp9fMAzMUbNb0aIHNA7a1YLqbPju1-hh7hGUqCVrA3fRbAby_rpZVt3NHNQaCAt_DR_l2lKHJTT0uNCuCVjjAlbi6Dk16OUaCP-BrzI9Yq9qgdKiAZSUK1M1w_1F349Az3XWc4m2L9jl6aevJ9MoHMcQaT6ZdFGuhRZuksZ5IWizM-W20Jr2PTMcXWn0JLaZM0K5FINmnDuVFxiHjRRa4qToJdusm9q-YoCaOpNOYXGqkxilTKoxRTqsLZTIrd1jfDBCqQNTOR2YcV8OkLTb0luuJMuVveX22PsHpUVP1PG4eDZYt_zL30pMJY8p7v-v4mu2RUfV94jvN2yzW67sWyxoOnXgPfaAPTn-fD6d_QK-4_ia
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOiBYQ5VHmwAEkwm68SZwcaUW1QHc5tEi9RX62gW6y2mSR9sLP6e_sjOMUkFAPXJOZJPJMZsb2N58Ze23G3ArO0Xl1kkSJG9tI5jhZESpROtZSK0-xMZtn02_J57P0bIsdDr0wBKsMsb-P6T5ahyujMJqjZVWNTqj4HgtRcMphKfX33klSLmgG9v7Xb5wHznn8VgJKRyQ-UA95kJe-kA2RdnNOvTSF4P9OT3-knKOH7EGoFeFD_zk7bMvWu-z-7IZotd1lO-HfbOFNIJB--4hdfcU4sEDNbk2rHtA4aNdLKrThp1-kh4WHUKKWrA38iOZzkJfnzarqLhagNkBg-HM4kBtLLZbQ0ONCvyZgkQtYiqPr1KBXGyAACL7K9JC9qgXKiwZQUq5N1Qz3l31DAj3XWU8m2j5mJ0cfTw-nUTiPIdJ8MumiXAst3CSN80LQbmfKbaE1bXxmOLrS6ElsM2eEcilGzTh3Ki8wEBsptMRZ0RO2XTe1fcoANXUmncLqVCcxSplUY450WFwokVu7x_hghFIHqnI6MeOyHDBp30tvuZIsV_aW22PvbpSWPVPH7eLZYN3yL4crMZfcpvjsfxVfsbvT09lxefxp_uU5u0fn1vfw7xdsu1ut7Uusbjq17733Gnkw-i8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+tuning+of+support+vector+machines+and+k-NN+algorithm+by+using+Bayesian+optimization+for+newborn+cry+signal+diagnosis+based+on+audio+signal+processing+features&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Lahmiri%2C+Salim&rft.au=Tadj%2C+Chakib&rft.au=Gargour%2C+Christian&rft.au=Bekiros%2C+Stelios&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.eissn=1873-2887&rft.volume=167&rft_id=info:doi/10.1016%2Fj.chaos.2022.112972&rft.externalDocID=S0960077922011511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon