Optimal tuning of support vector machines and k-NN algorithm by using Bayesian optimization for newborn cry signal diagnosis based on audio signal processing features
Recently, the number of machine learning models used to classify cry signals of healthy and unhealthy newborns has been significantly increasing. Various works have already reported encouraging classification results; however, fine-tuning of the hyper-parameters of machine leaning algorithms is stil...
        Saved in:
      
    
          | Published in | Chaos, solitons and fractals Vol. 167; p. 112972 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.02.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0960-0779 1873-2887  | 
| DOI | 10.1016/j.chaos.2022.112972 | 
Cover
| Abstract | Recently, the number of machine learning models used to classify cry signals of healthy and unhealthy newborns has been significantly increasing. Various works have already reported encouraging classification results; however, fine-tuning of the hyper-parameters of machine leaning algorithms is still an open problem in the context of newborn cry signal classification. This paper proposes to use Bayesian optimization (BO) method to optimize the hyper-parameters of Support Vector Machine (SVM) with radial basis function (RBF) kernel and k-nearest neighbors (kNN) trained with different audio features separately or combined; namely, mel-frequency cepstral coefficients (MFCC), auditory-inspired amplitude modulation (AAM), and prosody. Particularly, the chi-square test is applied to each set of features to retain the ten most significant ones used to train optimal classifiers. The accuracy, sensitivity, and specificity of each experimental model are computed following the standard 10-fold cross-validation protocol. One of the contributions is an improvement over previous works on newborn cry signal classification used to distinguish between healthy and unhealthy ones over the same database, in terms of performance. The best model is the SVM trained with AAM ten most significant features achieved 83.62 % ± 0.022 accuracy, 59.18 % ± 0.0469 sensitivity, and 93.87 % ± 0.0190 specificity followed by kNN trained with ten most features from MFCC, AAM, and prosody to obtain 82.88 % ± 0.0144 accuracy, 55.34 % ± 0.0350 sensitivity, and 94.42 % ± 0.0075 specificity. These results outperformed existing works validated on the same database. In addition, optimally tuned SVM and kNN are fed with a restricted number of selected patterns so as the processing time for training and testing is significantly limited. This means that the RBF-SVM-BO classifier trained with AAM ten most significant features is more able to distinguish between healthy and unhealthy newborns.
•Nonlinear SVM and kNN algorithm trained with different audio features to classify newborn cry audios.•Chi-square test is applied for selection of audio features.•Bayesian optimization is used to tune hyper-parameters of SVM and kNN.•The best model is the SVM trained with AAM ten most significant features•These results outperformed existing works validated on the same database. | 
    
|---|---|
| AbstractList | Recently, the number of machine learning models used to classify cry signals of healthy and unhealthy newborns has been significantly increasing. Various works have already reported encouraging classification results; however, fine-tuning of the hyper-parameters of machine leaning algorithms is still an open problem in the context of newborn cry signal classification. This paper proposes to use Bayesian optimization (BO) method to optimize the hyper-parameters of Support Vector Machine (SVM) with radial basis function (RBF) kernel and k-nearest neighbors (kNN) trained with different audio features separately or combined; namely, mel-frequency cepstral coefficients (MFCC), auditory-inspired amplitude modulation (AAM), and prosody. Particularly, the chi-square test is applied to each set of features to retain the ten most significant ones used to train optimal classifiers. The accuracy, sensitivity, and specificity of each experimental model are computed following the standard 10-fold cross-validation protocol. One of the contributions is an improvement over previous works on newborn cry signal classification used to distinguish between healthy and unhealthy ones over the same database, in terms of performance. The best model is the SVM trained with AAM ten most significant features achieved 83.62 % ± 0.022 accuracy, 59.18 % ± 0.0469 sensitivity, and 93.87 % ± 0.0190 specificity followed by kNN trained with ten most features from MFCC, AAM, and prosody to obtain 82.88 % ± 0.0144 accuracy, 55.34 % ± 0.0350 sensitivity, and 94.42 % ± 0.0075 specificity. These results outperformed existing works validated on the same database. In addition, optimally tuned SVM and kNN are fed with a restricted number of selected patterns so as the processing time for training and testing is significantly limited. This means that the RBF-SVM-BO classifier trained with AAM ten most significant features is more able to distinguish between healthy and unhealthy newborns.
•Nonlinear SVM and kNN algorithm trained with different audio features to classify newborn cry audios.•Chi-square test is applied for selection of audio features.•Bayesian optimization is used to tune hyper-parameters of SVM and kNN.•The best model is the SVM trained with AAM ten most significant features•These results outperformed existing works validated on the same database. | 
    
| ArticleNumber | 112972 | 
    
| Author | Tadj, Chakib Lahmiri, Salim Gargour, Christian Bekiros, Stelios  | 
    
| Author_xml | – sequence: 1 givenname: Salim surname: Lahmiri fullname: Lahmiri, Salim email: salim.lahmiri@concordia.ca organization: Department of Supply Chain and Business Technology Management, John Molson School of Business, Concordia University, Montreal, Canada – sequence: 2 givenname: Chakib surname: Tadj fullname: Tadj, Chakib email: chakib.tadj@etsmtl.ca organization: Department of Electrical Engineering, École de Technologie Supérieure, Montreal, Canada – sequence: 3 givenname: Christian surname: Gargour fullname: Gargour, Christian email: christian.gargour@etsmtl.ca organization: Department of Electrical Engineering, École de Technologie Supérieure, Montreal, Canada – sequence: 4 givenname: Stelios surname: Bekiros fullname: Bekiros, Stelios email: stelios.bekiros@um.edu.mt, s.bekiros@lse.ac.uk organization: FEMA, University of Malta, MSD 2080 Msida, Malta  | 
    
| BookMark | eNqFkEuOEzEQhi00SGQGTsDGF-hgu-l294IFjHhJo5kF7K1qP5IKid1yuQeFA3FOnAQ2LGBVJVV9f6m-a3YVU_SMvZRiLYXsX-3WdguJ1kootZZSjVo9YSs56LZRw6Cv2EqMvWiE1uMzdk20E0JI0asV-_kwFzzAnpclYtzwFDgt85xy4Y_elpT5AewWoycO0fFvzf09h_0mZSzbA5-OfKET9g6OnhAiT6c4_AEFU-Sh4tF_n1KO3OYjJ9zEesohbGIiJD4BecfrJiwO05_5nJP1dM4NHsqSPT1nTwPsyb_4XW_Ylw_vv95-au4ePn6-fXvXWNW2pRmstjq0nRxGLZTuOuVHa9va9lUAONtK3wenp9CBc3II0zDK170DbUF37Q1rL6k2J6Lsg5lzlZOPRgpzEm125izanESbi-hKjX9RFstZQMmA-_-wby6sr089os-GLPpovcNc9RuX8J_8L_7NoYg | 
    
| CitedBy_id | crossref_primary_10_1038_s41598_024_76639_9 crossref_primary_10_1016_j_jvoice_2023_06_014 crossref_primary_10_1007_s40866_025_00249_1 crossref_primary_10_1016_j_resourpol_2024_105008 crossref_primary_10_1080_17509653_2025_2453902 crossref_primary_10_1007_s12541_025_01230_9 crossref_primary_10_1007_s42824_024_00123_y crossref_primary_10_1142_S2737599425500021 crossref_primary_10_1007_s40815_024_01704_4 crossref_primary_10_1016_j_precisioneng_2025_02_024 crossref_primary_10_1007_s10658_023_02791_z crossref_primary_10_1142_S2737599424500130  | 
    
| Cites_doi | 10.1016/j.jvoice.2014.04.007 10.1016/j.bspc.2021.103434 10.1016/j.bspc.2021.103424 10.1016/j.bspc.2022.103629 10.1016/j.bspc.2020.101889 10.1109/MIM.2021.9400952 10.1016/j.chaos.2021.111700 10.1016/j.bspc.2018.08.009 10.1016/j.bspc.2019.01.010 10.1016/j.chaos.2021.111610 10.1016/j.bspc.2008.11.006 10.1109/TIM.2018.2855518 10.1016/j.neuroimage.2014.01.021 10.1016/j.bspc.2020.101978 10.1016/j.eswa.2020.113971 10.1016/j.compbiomed.2022.105213 10.1016/j.compbiomed.2022.106178 10.1109/TIT.1967.1053964 10.1016/j.jvoice.2016.05.015 10.1016/j.compbiomed.2022.105635 10.1016/j.bspc.2018.08.021 10.1016/j.bspc.2022.103830 10.1016/j.chaos.2020.110639 10.3390/e24081166 10.1016/j.specom.2015.12.001 10.1016/j.eswa.2019.06.052 10.1142/S0218213006002734 10.1016/j.jvoice.2022.05.015 10.1016/j.bspc.2015.03.007 10.1016/j.bspc.2018.08.029 10.1016/j.jvoice.2015.08.007 10.1016/j.jbi.2015.08.017 10.1016/j.csl.2017.04.004  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2022 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.chaos.2022.112972 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) Mathematics  | 
    
| EISSN | 1873-2887 | 
    
| ExternalDocumentID | 10_1016_j_chaos_2022_112972 S0960077922011511  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c233t-8c7c7f351897027552e9cc30276096adc31e6fd7bf5add18fb89146da7ca753 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0960-0779 | 
    
| IngestDate | Thu Apr 24 23:09:13 EDT 2025 Wed Oct 01 02:44:37 EDT 2025 Fri Feb 23 02:38:48 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Support vector machines Mel-frequency cepstral coefficients Prosody Newborn cry k-Nearest neighbors Auditory-inspired amplitude modulation Bayesian optimization  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c233t-8c7c7f351897027552e9cc30276096adc31e6fd7bf5add18fb89146da7ca753 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_chaos_2022_112972 crossref_citationtrail_10_1016_j_chaos_2022_112972 elsevier_sciencedirect_doi_10_1016_j_chaos_2022_112972  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | February 2023 2023-02-00  | 
    
| PublicationDateYYYYMMDD | 2023-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2023 text: February 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Chaos, solitons and fractals | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Lahmiri, Tadj, Gargour (bb0065) 2021; 24 Lahmiri, Bekiros (bb0105) 2022; 154 Lahmiri, Tadj, Gargour, Bekiros (bb0070) 2022; 154 Salehian Matikolaie, Kheddache, Tadj (bb0075) 2022; 73 Hosny, Zhu, Gao, Fu (bb0135) 2022; 77 Abou-Abbas, Alaie, Tadj (bb0035) 2015; 19 Salehian Matikolaie, Tadj (bb0080) 2022 Kheddache, Tadj (bb0055) 2019; 50 Di̇ker (bb0160) 2022; 148 Abou-Abbas, Tadj, Gargour, Montazeri (bb0050) 2017; 31 Loey, El-Sappagh, Mirjalili (bb0170) 2022; 142 Joseph, Joseph, Prasad (bb0175) 2022 Poel, Ekkel (bb0025) 2006; 15 Satar, Cengizler, Hamitoglu, Ozdemir (bb0015) 2022 Alaie, Abou-Abbas, Tadj (bb0045) 2016; 77 Salehian Matikolaie, Tadj (bb0060) 2020; 59 Orlandi, Reyes Garcia, Bandini, Donzelli, Manfredi (bb0005) 2016; 30 Sahak, Mansor, Lee, Yassin, Zabidi (bb0030) 2010 Ali, Zhu, Zhou, Liu (bb0180) 2019; 137 Sarria-Paja, Falk (bb0195) 2017; 45 Lahmiri, Shmuel (bb0115) 2019; 49 Manfredi, Bocchi, Cantarella (bb0010) 2009; 4 Lahmiri (bb0110) 2020; 60 Cover, Hart (bb0125) 1967; 13 Vapnik, Golowich, Smola (bb0100) 1996; 9 Lahmiri, Shmuel (bb0145) 2019; 68 Gelbart, Snoek, Adams (bb0150) 2014 Cortes, Vapnik (bb0095) 1995; 20 Li, Shi, Zhang, Chen, Zhang (bb0130) 2015; 57 Kheddache, Tadj (bb0040) 2015; 29 Li, Lin, An, Zuo, Zhu, Zhang, Mu, Cao, Prades García (bb0165) 2022; 73 Cao, Duan, Lin, Shugart, Calhoun, Wang (bb0190) 2014; 102 Parmar, Kumar, Kalita (bb0140) 2022; 76 Lahmiri, Shmuel (bb0120) 2019; 52 Lahmiri, Tadj, Gargour, Bekiros (bb0085) 2021; 143 Selamtzis, Castellana, Salvi, Carullo, Astolfi (bb0020) 2019; 47 Lahmiri, Tadj, Gargour (bb0090) 2022; 24 Lee, Choi, Jun (bb0185) 2021; 166 Loey (10.1016/j.chaos.2022.112972_bb0170) 2022; 142 Lahmiri (10.1016/j.chaos.2022.112972_bb0065) 2021; 24 Kheddache (10.1016/j.chaos.2022.112972_bb0055) 2019; 50 Sahak (10.1016/j.chaos.2022.112972_bb0030) 2010 Lahmiri (10.1016/j.chaos.2022.112972_bb0120) 2019; 52 Lahmiri (10.1016/j.chaos.2022.112972_bb0085) 2021; 143 Li (10.1016/j.chaos.2022.112972_bb0130) 2015; 57 Poel (10.1016/j.chaos.2022.112972_bb0025) 2006; 15 Salehian Matikolaie (10.1016/j.chaos.2022.112972_bb0075) 2022; 73 Abou-Abbas (10.1016/j.chaos.2022.112972_bb0035) 2015; 19 Salehian Matikolaie (10.1016/j.chaos.2022.112972_bb0080) 2022 Manfredi (10.1016/j.chaos.2022.112972_bb0010) 2009; 4 Alaie (10.1016/j.chaos.2022.112972_bb0045) 2016; 77 Selamtzis (10.1016/j.chaos.2022.112972_bb0020) 2019; 47 Abou-Abbas (10.1016/j.chaos.2022.112972_bb0050) 2017; 31 Ali (10.1016/j.chaos.2022.112972_bb0180) 2019; 137 Gelbart (10.1016/j.chaos.2022.112972_bb0150) Lahmiri (10.1016/j.chaos.2022.112972_bb0110) 2020; 60 Lahmiri (10.1016/j.chaos.2022.112972_bb0115) 2019; 49 Lahmiri (10.1016/j.chaos.2022.112972_bb0070) 2022; 154 Li (10.1016/j.chaos.2022.112972_bb0165) 2022; 73 Vapnik (10.1016/j.chaos.2022.112972_bb0100) 1996; 9 Joseph (10.1016/j.chaos.2022.112972_bb0175) 2022 Salehian Matikolaie (10.1016/j.chaos.2022.112972_bb0060) 2020; 59 Orlandi (10.1016/j.chaos.2022.112972_bb0005) 2016; 30 Kheddache (10.1016/j.chaos.2022.112972_bb0040) 2015; 29 Cao (10.1016/j.chaos.2022.112972_bb0190) 2014; 102 Hosny (10.1016/j.chaos.2022.112972_bb0135) 2022; 77 Cover (10.1016/j.chaos.2022.112972_bb0125) 1967; 13 Lahmiri (10.1016/j.chaos.2022.112972_bb0145) 2019; 68 Di̇ker (10.1016/j.chaos.2022.112972_bb0160) 2022; 148 Lahmiri (10.1016/j.chaos.2022.112972_bb0090) 2022; 24 Cortes (10.1016/j.chaos.2022.112972_bb0095) 1995; 20 Lahmiri (10.1016/j.chaos.2022.112972_bb0105) 2022; 154 Sarria-Paja (10.1016/j.chaos.2022.112972_bb0195) 2017; 45 Lee (10.1016/j.chaos.2022.112972_bb0185) 2021; 166 Satar (10.1016/j.chaos.2022.112972_bb0015) 2022 Parmar (10.1016/j.chaos.2022.112972_bb0140) 2022; 76  | 
    
| References_xml | – volume: 154 year: 2022 ident: bb0070 article-title: Deep learning systems for automatic diagnosis of infant cry signals publication-title: Chaos Solitons Fractals – volume: 45 start-page: 437 year: 2017 end-page: 456 ident: bb0195 article-title: Fusion of auditory inspired amplitude modulation spectrum and cepstral features for whispered and normal speech speaker verification publication-title: Comput Speech Lang – volume: 31 year: 2017 ident: bb0050 article-title: Expiratory and inspiratory cries detection using different signals’ decomposition techniques publication-title: Journal of Voice – year: 2022 ident: bb0015 article-title: Investigation of relation between hypoxic-ischemic encephalopathy and spectral features of infant cry audio publication-title: J Voice – volume: 102 start-page: 220 year: 2014 end-page: 228 ident: bb0190 article-title: Sparse representation based biomarker selection for schizophrenia with integrated analysis of MRI and SNPs publication-title: Neuroimage – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bb0095 article-title: Support-vector networks publication-title: MachLearn – volume: 19 start-page: 35 year: 2015 end-page: 43 ident: bb0035 article-title: Automatic detection of the expiratory and inspiratory phases in newborn cry signals publication-title: Biomed Signal Processing Control – volume: 24 start-page: 24 year: 2021 end-page: 29 ident: bb0065 article-title: Biomedical diagnosis of infant cry signal based on analysis of cepstrum by deep feedforward artificial neural networks publication-title: IEEE Inst Meas Mag – year: 2022 ident: bb0175 article-title: Explainable diabetes classification using hybrid bayesian-optimized TabNet architecture publication-title: Comput Biol Med – volume: 76 year: 2022 ident: bb0140 article-title: ECG signal based automated hypertension detection using fourier decomposition method and cosine modulated filter banks publication-title: Biomed Signal Process Control – volume: 77 year: 2022 ident: bb0135 article-title: A novel deep learning model for STN localization from LFPs in Parkinson's disease publication-title: Biomed Signal Process Control – volume: 137 start-page: 22 year: 2019 end-page: 28 ident: bb0180 article-title: Early diagnosis of Parkinson’s disease from multiple voice recordings by simultaneous sample and feature selection publication-title: Expert Syst Appl – volume: 47 start-page: 350 year: 2019 end-page: 357 ident: bb0020 article-title: Effect of vowel context in cepstral and entropy analysis of pathological voices publication-title: Biomed Signal Process Control – volume: 30 start-page: 656 year: 2016 end-page: 663 ident: bb0005 article-title: Application of pattern recognition techniques to the classification of full-term and preterm infant cry publication-title: J Voice – volume: 142 year: 2022 ident: bb0170 article-title: Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data publication-title: Comput Biol Med – volume: 49 start-page: 427 year: 2019 end-page: 433 ident: bb0115 article-title: Detection of Parkinson’s disease based on voice patterns ranking and optimized support vector machine publication-title: Biomed Signal Process Control – volume: 154 year: 2022 ident: bb0105 article-title: Complexity measures of high oscillations in phonocardiogram as biomarkers to distinguish between normal heart sound and pathological murmur publication-title: Chaos Solitons Fractals – volume: 60 year: 2020 ident: bb0110 article-title: Hybrid deep learning convolutional neural networks and optimal nonlinear support vector machine to detect presence of hemorrhage in retina publication-title: Biomed Signal Process Control – volume: 29 start-page: 1 year: 2015 end-page: 12 ident: bb0040 article-title: Resonance frequencies behavior in pathologic cries of newborns publication-title: J Voice – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: bb0125 article-title: Nearest neighbor pattern classification publication-title: IEEE Transact Information Theory – volume: 73 year: 2022 ident: bb0165 article-title: Automatic electrocardiogram detection and classification using bidirectional long short-term memory network improved by Bayesian optimization publication-title: Biomed Signal Process Control – start-page: 6292 year: 2010 end-page: 6295 ident: bb0030 article-title: Performance of combined support vector machine and principal component analysis in recognizing infant cry with asphyxia publication-title: Proceeding of the 32nd IEEE EMBS international conference – volume: 73 year: 2022 ident: bb0075 article-title: Automated newborn cry diagnostic system using machine learning approach publication-title: Biomed Signal Process Control – volume: 59 year: 2020 ident: bb0060 article-title: On the use of long-term features in a newborn cry diagnostic system publication-title: Biomed Signal Process Control – volume: 68 start-page: 791 year: 2019 end-page: 796 ident: bb0145 article-title: Accurate classification of seizure and seizure-free intervals of intracranial EEG signals from epileptic patients publication-title: IEEE Trans Inst Meas – volume: 57 start-page: 358 year: 2015 end-page: 368 ident: bb0130 article-title: Multiple instance learning for computer aided detection and diagnosis of gastric cancer with dual-energy CT imaging publication-title: J Biomed Inform – volume: 50 start-page: 35 year: 2019 end-page: 44 ident: bb0055 article-title: Identification of diseases in newborns using advanced acoustic features of cry signals publication-title: BiomedSignal Process Control – volume: 15 start-page: 397 year: 2006 end-page: 410 ident: bb0025 article-title: F analyzing infant cries using a committee of neural networks in order to detect hypoxia related disorder publication-title: Int J Artif Intell Tools – year: 2014 ident: bb0150 article-title: Bayesian optimization with unknown constraints – year: 2022 ident: bb0080 article-title: Machine learning-based cry diagnostic system for identifying septic newborns publication-title: J Voice – volume: 166 year: 2021 ident: bb0185 article-title: An efficient multivariate feature ranking method for gene selection in high-dimensional microarray data publication-title: Expert Syst Appl – volume: 9 start-page: 281 year: 1996 end-page: 287 ident: bb0100 article-title: Support vector machine for function approximation, regression estimation, and signal processing publication-title: Adv Neural Information Process Syst – volume: 77 start-page: 28 year: 2016 end-page: 52 ident: bb0045 article-title: Cry-based infant pathology classification using GMMs publication-title: Speech Commun – volume: 143 year: 2021 ident: bb0085 article-title: Characterization of infant healthy and pathological cry signals in cepstrum domain based on approximate entropy and correlation dimension publication-title: Chaos Solitons Fractals – volume: 52 start-page: 414 year: 2019 end-page: 419 ident: bb0120 article-title: Performance of machine learning methods applied to structural MRI and ADAS cognitive scores in diagnosing Alzheimer's disease publication-title: Biomed Signal Process Control – volume: 148 year: 2022 ident: bb0160 article-title: An efficient model of residual based convolutional neural network with Bayesian optimization for the classification of malarial cell images publication-title: Comput Biol Med – volume: 24 start-page: 1166 year: 2022 ident: bb0090 article-title: Nonlinear statistical analysis of normal and pathological infant cry signals in cepstrum domain by multifractal wavelet leaders publication-title: Entropy – volume: 4 start-page: 212 year: 2009 end-page: 220 ident: bb0010 article-title: A multipurpose user-friendly tool for voice analysis: application to pathological adult voices publication-title: Biomed Signal Process Control – volume: 29 start-page: 1 year: 2015 ident: 10.1016/j.chaos.2022.112972_bb0040 article-title: Resonance frequencies behavior in pathologic cries of newborns publication-title: J Voice doi: 10.1016/j.jvoice.2014.04.007 – volume: 73 year: 2022 ident: 10.1016/j.chaos.2022.112972_bb0075 article-title: Automated newborn cry diagnostic system using machine learning approach publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103434 – volume: 73 year: 2022 ident: 10.1016/j.chaos.2022.112972_bb0165 article-title: Automatic electrocardiogram detection and classification using bidirectional long short-term memory network improved by Bayesian optimization publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103424 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.chaos.2022.112972_bb0095 article-title: Support-vector networks publication-title: MachLearn – volume: 76 year: 2022 ident: 10.1016/j.chaos.2022.112972_bb0140 article-title: ECG signal based automated hypertension detection using fourier decomposition method and cosine modulated filter banks publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103629 – volume: 59 year: 2020 ident: 10.1016/j.chaos.2022.112972_bb0060 article-title: On the use of long-term features in a newborn cry diagnostic system publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.101889 – volume: 24 start-page: 24 year: 2021 ident: 10.1016/j.chaos.2022.112972_bb0065 article-title: Biomedical diagnosis of infant cry signal based on analysis of cepstrum by deep feedforward artificial neural networks publication-title: IEEE Inst Meas Mag doi: 10.1109/MIM.2021.9400952 – volume: 154 year: 2022 ident: 10.1016/j.chaos.2022.112972_bb0070 article-title: Deep learning systems for automatic diagnosis of infant cry signals publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111700 – volume: 52 start-page: 414 year: 2019 ident: 10.1016/j.chaos.2022.112972_bb0120 article-title: Performance of machine learning methods applied to structural MRI and ADAS cognitive scores in diagnosing Alzheimer's disease publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2018.08.009 – volume: 50 start-page: 35 year: 2019 ident: 10.1016/j.chaos.2022.112972_bb0055 article-title: Identification of diseases in newborns using advanced acoustic features of cry signals publication-title: BiomedSignal Process Control doi: 10.1016/j.bspc.2019.01.010 – volume: 154 year: 2022 ident: 10.1016/j.chaos.2022.112972_bb0105 article-title: Complexity measures of high oscillations in phonocardiogram as biomarkers to distinguish between normal heart sound and pathological murmur publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2021.111610 – volume: 4 start-page: 212 year: 2009 ident: 10.1016/j.chaos.2022.112972_bb0010 article-title: A multipurpose user-friendly tool for voice analysis: application to pathological adult voices publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2008.11.006 – volume: 68 start-page: 791 year: 2019 ident: 10.1016/j.chaos.2022.112972_bb0145 article-title: Accurate classification of seizure and seizure-free intervals of intracranial EEG signals from epileptic patients publication-title: IEEE Trans Inst Meas doi: 10.1109/TIM.2018.2855518 – volume: 102 start-page: 220 year: 2014 ident: 10.1016/j.chaos.2022.112972_bb0190 article-title: Sparse representation based biomarker selection for schizophrenia with integrated analysis of MRI and SNPs publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.01.021 – volume: 60 year: 2020 ident: 10.1016/j.chaos.2022.112972_bb0110 article-title: Hybrid deep learning convolutional neural networks and optimal nonlinear support vector machine to detect presence of hemorrhage in retina publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.101978 – ident: 10.1016/j.chaos.2022.112972_bb0150 – volume: 166 year: 2021 ident: 10.1016/j.chaos.2022.112972_bb0185 article-title: An efficient multivariate feature ranking method for gene selection in high-dimensional microarray data publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113971 – volume: 142 year: 2022 ident: 10.1016/j.chaos.2022.112972_bb0170 article-title: Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105213 – year: 2022 ident: 10.1016/j.chaos.2022.112972_bb0175 article-title: Explainable diabetes classification using hybrid bayesian-optimized TabNet architecture publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.106178 – volume: 13 start-page: 21 year: 1967 ident: 10.1016/j.chaos.2022.112972_bb0125 article-title: Nearest neighbor pattern classification publication-title: IEEE Transact Information Theory doi: 10.1109/TIT.1967.1053964 – volume: 31 year: 2017 ident: 10.1016/j.chaos.2022.112972_bb0050 article-title: Expiratory and inspiratory cries detection using different signals’ decomposition techniques publication-title: Journal of Voice doi: 10.1016/j.jvoice.2016.05.015 – volume: 148 year: 2022 ident: 10.1016/j.chaos.2022.112972_bb0160 article-title: An efficient model of residual based convolutional neural network with Bayesian optimization for the classification of malarial cell images publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105635 – volume: 47 start-page: 350 year: 2019 ident: 10.1016/j.chaos.2022.112972_bb0020 article-title: Effect of vowel context in cepstral and entropy analysis of pathological voices publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2018.08.021 – volume: 77 year: 2022 ident: 10.1016/j.chaos.2022.112972_bb0135 article-title: A novel deep learning model for STN localization from LFPs in Parkinson's disease publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103830 – volume: 143 year: 2021 ident: 10.1016/j.chaos.2022.112972_bb0085 article-title: Characterization of infant healthy and pathological cry signals in cepstrum domain based on approximate entropy and correlation dimension publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110639 – volume: 24 start-page: 1166 year: 2022 ident: 10.1016/j.chaos.2022.112972_bb0090 article-title: Nonlinear statistical analysis of normal and pathological infant cry signals in cepstrum domain by multifractal wavelet leaders publication-title: Entropy doi: 10.3390/e24081166 – volume: 77 start-page: 28 year: 2016 ident: 10.1016/j.chaos.2022.112972_bb0045 article-title: Cry-based infant pathology classification using GMMs publication-title: Speech Commun doi: 10.1016/j.specom.2015.12.001 – volume: 137 start-page: 22 year: 2019 ident: 10.1016/j.chaos.2022.112972_bb0180 article-title: Early diagnosis of Parkinson’s disease from multiple voice recordings by simultaneous sample and feature selection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.06.052 – start-page: 6292 year: 2010 ident: 10.1016/j.chaos.2022.112972_bb0030 article-title: Performance of combined support vector machine and principal component analysis in recognizing infant cry with asphyxia – volume: 15 start-page: 397 year: 2006 ident: 10.1016/j.chaos.2022.112972_bb0025 article-title: F analyzing infant cries using a committee of neural networks in order to detect hypoxia related disorder publication-title: Int J Artif Intell Tools doi: 10.1142/S0218213006002734 – year: 2022 ident: 10.1016/j.chaos.2022.112972_bb0015 article-title: Investigation of relation between hypoxic-ischemic encephalopathy and spectral features of infant cry audio publication-title: J Voice doi: 10.1016/j.jvoice.2022.05.015 – volume: 19 start-page: 35 year: 2015 ident: 10.1016/j.chaos.2022.112972_bb0035 article-title: Automatic detection of the expiratory and inspiratory phases in newborn cry signals publication-title: Biomed Signal Processing Control doi: 10.1016/j.bspc.2015.03.007 – volume: 49 start-page: 427 year: 2019 ident: 10.1016/j.chaos.2022.112972_bb0115 article-title: Detection of Parkinson’s disease based on voice patterns ranking and optimized support vector machine publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2018.08.029 – volume: 9 start-page: 281 issue: 1996 year: 1996 ident: 10.1016/j.chaos.2022.112972_bb0100 article-title: Support vector machine for function approximation, regression estimation, and signal processing publication-title: Adv Neural Information Process Syst – volume: 30 start-page: 656 year: 2016 ident: 10.1016/j.chaos.2022.112972_bb0005 article-title: Application of pattern recognition techniques to the classification of full-term and preterm infant cry publication-title: J Voice doi: 10.1016/j.jvoice.2015.08.007 – year: 2022 ident: 10.1016/j.chaos.2022.112972_bb0080 article-title: Machine learning-based cry diagnostic system for identifying septic newborns publication-title: J Voice – volume: 57 start-page: 358 year: 2015 ident: 10.1016/j.chaos.2022.112972_bb0130 article-title: Multiple instance learning for computer aided detection and diagnosis of gastric cancer with dual-energy CT imaging publication-title: J Biomed Inform doi: 10.1016/j.jbi.2015.08.017 – volume: 45 start-page: 437 year: 2017 ident: 10.1016/j.chaos.2022.112972_bb0195 article-title: Fusion of auditory inspired amplitude modulation spectrum and cepstral features for whispered and normal speech speaker verification publication-title: Comput Speech Lang doi: 10.1016/j.csl.2017.04.004  | 
    
| SSID | ssj0001062 | 
    
| Score | 2.480371 | 
    
| Snippet | Recently, the number of machine learning models used to classify cry signals of healthy and unhealthy newborns has been significantly increasing. Various works... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 112972 | 
    
| SubjectTerms | Auditory-inspired amplitude modulation Bayesian optimization k-Nearest neighbors Mel-frequency cepstral coefficients Newborn cry Prosody Support vector machines  | 
    
| Title | Optimal tuning of support vector machines and k-NN algorithm by using Bayesian optimization for newborn cry signal diagnosis based on audio signal processing features | 
    
| URI | https://dx.doi.org/10.1016/j.chaos.2022.112972 | 
    
| Volume | 167 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001062 issn: 0960-0779 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1873-2887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001062 issn: 0960-0779 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-2887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001062 issn: 0960-0779 databaseCode: .~1 dateStart: 0 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-2887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001062 issn: 0960-0779 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001062 issn: 0960-0779 databaseCode: AKRWK dateStart: 19910101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcikHRFsQLVDNgUMrEXbjTeLkWCqqpVWXQ0HqLfJnm7abrDZZpL3wc_idzDhOAQn1wDWZSSLPZGZsv3lm7J0Zcys4R-fVSRIlbmwjmeNkRahE6VhLrTzFxsUsm35Lzq7Sqw12MvTCEKwyxP4-pvtoHa6MwmiOFlU1uqTieyxEwSmHpb6_N0kEnWLw4cdvmAdOefxOAgpHJD0wD3mMl76RDXF2c06tNIXg_85Of2Sc0-fsWSgV4bj_mm22Yesd9vTigWe13WHb4dds4TDwRx_tsp9fMAzMUbNb0aIHNA7a1YLqbPju1-hh7hGUqCVrA3fRbAby_rpZVt3NHNQaCAt_DR_l2lKHJTT0uNCuCVjjAlbi6Dk16OUaCP-BrzI9Yq9qgdKiAZSUK1M1w_1F349Az3XWc4m2L9jl6aevJ9MoHMcQaT6ZdFGuhRZuksZ5IWizM-W20Jr2PTMcXWn0JLaZM0K5FINmnDuVFxiHjRRa4qToJdusm9q-YoCaOpNOYXGqkxilTKoxRTqsLZTIrd1jfDBCqQNTOR2YcV8OkLTb0luuJMuVveX22PsHpUVP1PG4eDZYt_zL30pMJY8p7v-v4mu2RUfV94jvN2yzW67sWyxoOnXgPfaAPTn-fD6d_QK-4_ia | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcgAOiBYQ5VHmwAEkwm68SZwcaUW1QHc5tEi9RX62gW6y2mSR9sLP6e_sjOMUkFAPXJOZJPJMZsb2N58Ze23G3ArO0Xl1kkSJG9tI5jhZESpROtZSK0-xMZtn02_J57P0bIsdDr0wBKsMsb-P6T5ahyujMJqjZVWNTqj4HgtRcMphKfX33klSLmgG9v7Xb5wHznn8VgJKRyQ-UA95kJe-kA2RdnNOvTSF4P9OT3-knKOH7EGoFeFD_zk7bMvWu-z-7IZotd1lO-HfbOFNIJB--4hdfcU4sEDNbk2rHtA4aNdLKrThp1-kh4WHUKKWrA38iOZzkJfnzarqLhagNkBg-HM4kBtLLZbQ0ONCvyZgkQtYiqPr1KBXGyAACL7K9JC9qgXKiwZQUq5N1Qz3l31DAj3XWU8m2j5mJ0cfTw-nUTiPIdJ8MumiXAst3CSN80LQbmfKbaE1bXxmOLrS6ElsM2eEcilGzTh3Ki8wEBsptMRZ0RO2XTe1fcoANXUmncLqVCcxSplUY450WFwokVu7x_hghFIHqnI6MeOyHDBp30tvuZIsV_aW22PvbpSWPVPH7eLZYN3yL4crMZfcpvjsfxVfsbvT09lxefxp_uU5u0fn1vfw7xdsu1ut7Uusbjq17733Gnkw-i8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+tuning+of+support+vector+machines+and+k-NN+algorithm+by+using+Bayesian+optimization+for+newborn+cry+signal+diagnosis+based+on+audio+signal+processing+features&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Lahmiri%2C+Salim&rft.au=Tadj%2C+Chakib&rft.au=Gargour%2C+Christian&rft.au=Bekiros%2C+Stelios&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.eissn=1873-2887&rft.volume=167&rft_id=info:doi/10.1016%2Fj.chaos.2022.112972&rft.externalDocID=S0960077922011511 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |