American options pricing under regime-switching jump-diffusion models with meshfree finite point method

In an incomplete market construction and by no-arbitrage assumption, the American options pricing problem under the jump-diffusion regime-switching process is formulated by a variational form of coupled partial integro-differential equations. In this paper, a valuation algorithm is developed for Ame...

Full description

Saved in:
Bibliographic Details
Published inChaos, solitons and fractals Vol. 166; p. 112919
Main Authors Shirzadi, Mohammad, Rostami, Mohammadreza, Dehghan, Mehdi, Li, Xiaolin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text
ISSN0960-0779
1873-2887
DOI10.1016/j.chaos.2022.112919

Cover

Abstract In an incomplete market construction and by no-arbitrage assumption, the American options pricing problem under the jump-diffusion regime-switching process is formulated by a variational form of coupled partial integro-differential equations. In this paper, a valuation algorithm is developed for American options when the dynamics of underlying assets follow the regime-switching jump-diffusion processes. Using the fact that the price of an American option under jump-diffusion regime-switching processes is formulated by a collection of coupled variational partial integro-differential equations with the free boundary characteristic, we combine the moving least-squares approximation with an operator splitting method to treat American constraints. Numerical experiments with American options under three, five, and seven regimes demonstrate the efficiency and effectiveness of our computational scheme for pricing American options under the regime-switching models. •Applying the meshfree moving least-squares collocation for options pricing problem under the jump-diffusion regime-switching processes.•Applying the proposed method for pricing American options with the free boundary feature.•Computing hedge parameters of American options and early exercise boundary of American options with little extra cost via the proposed method.•Proposing numerical test problems for American options pricing with high regimes-switching (till seven regimes) assumption.
AbstractList In an incomplete market construction and by no-arbitrage assumption, the American options pricing problem under the jump-diffusion regime-switching process is formulated by a variational form of coupled partial integro-differential equations. In this paper, a valuation algorithm is developed for American options when the dynamics of underlying assets follow the regime-switching jump-diffusion processes. Using the fact that the price of an American option under jump-diffusion regime-switching processes is formulated by a collection of coupled variational partial integro-differential equations with the free boundary characteristic, we combine the moving least-squares approximation with an operator splitting method to treat American constraints. Numerical experiments with American options under three, five, and seven regimes demonstrate the efficiency and effectiveness of our computational scheme for pricing American options under the regime-switching models. •Applying the meshfree moving least-squares collocation for options pricing problem under the jump-diffusion regime-switching processes.•Applying the proposed method for pricing American options with the free boundary feature.•Computing hedge parameters of American options and early exercise boundary of American options with little extra cost via the proposed method.•Proposing numerical test problems for American options pricing with high regimes-switching (till seven regimes) assumption.
ArticleNumber 112919
Author Li, Xiaolin
Shirzadi, Mohammad
Dehghan, Mehdi
Rostami, Mohammadreza
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Shirzadi
  fullname: Shirzadi, Mohammad
  email: m.shirzadi.aut@gmail.com
  organization: Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., 15914, Tehran, Iran
– sequence: 2
  givenname: Mohammadreza
  surname: Rostami
  fullname: Rostami, Mohammadreza
  email: m.rostami@alzahra.ac.ir
  organization: Management department, Faculty of Economics and Social Science, Alzahra University, Tehran, Iran
– sequence: 3
  givenname: Mehdi
  surname: Dehghan
  fullname: Dehghan, Mehdi
  email: mdehghan@aut.ac.ir
  organization: Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., 15914, Tehran, Iran
– sequence: 4
  givenname: Xiaolin
  surname: Li
  fullname: Li, Xiaolin
  email: lxlmath@163.com
  organization: School of Mathematics Sciences, Chongqing Normal University, Chongqing 400047, PR China
BookMark eNqFkE1LAzEQhoNUsFZ_gZf8gV3zsdtNDh5K8QsKXvQc0mTSTekmJUkV_71b68mDnoZ5Z56BeS7RJMQACN1QUlNC57fb2vQ65poRxmpKmaTyDE2p6HjFhOgmaErknFSk6-QFusx5SwihZM6maLMYIHmjA4774mPIeD-2PmzwIVhIOMHGD1DlD19Mf4y3h2FfWe_cIY_reIgWdhmP4x4PkHuXALDzwRfA--hDGdPSR3uFzp3eZbj-qTP09nD_unyqVi-Pz8vFqjKM81KJzhDZNrblnAonqVg3nQPNO2iNZK3QQoiGSNfQRtqGOrAtW7sREJrNubB8hvjprkkx5wROjf8MOn0qStTRldqqb1fq6EqdXI2U_EUZX_TRR0na7_5h707s6AHePSSVjYdgwPoEpigb_Z_8F_aAij0
CitedBy_id crossref_primary_10_1109_TCSS_2023_3346439
crossref_primary_10_1007_s44198_023_00153_1
crossref_primary_10_1103_PhysRevE_108_035306
crossref_primary_10_1186_s13660_024_03230_1
crossref_primary_10_3934_math_2023968
crossref_primary_10_1016_j_cam_2023_115484
crossref_primary_10_1016_j_techfore_2024_123429
crossref_primary_10_1007_s12190_025_02424_0
crossref_primary_10_1007_s12190_024_02020_8
crossref_primary_10_1007_s10203_023_00407_z
crossref_primary_10_1007_s11075_023_01719_2
crossref_primary_10_1007_s11075_024_01936_3
crossref_primary_10_1007_s00521_024_10761_7
crossref_primary_10_1007_s11075_024_01959_w
crossref_primary_10_1080_00207160_2024_2383757
crossref_primary_10_3934_math_20241704
Cites_doi 10.1137/S0036142903436186
10.1093/imanum/drr030
10.1016/j.camwa.2018.01.026
10.1016/j.apnum.2016.08.006
10.1016/j.camwa.2016.06.047
10.1016/j.apnum.2015.07.006
10.1016/j.enganabound.2021.02.005
10.1016/j.apnum.2012.10.005
10.1016/j.cnsns.2019.105160
10.1007/s11075-016-0201-0
10.1007/s11147-013-9095-3
10.1016/j.cam.2015.12.019
10.1080/15502287.2019.1687607
10.1016/j.insmatheco.2006.05.001
10.1080/00207160.2012.663911
10.1016/j.aml.2004.06.010
10.1515/zna-2011-0504
10.1016/j.camwa.2018.08.040
10.1016/j.camwa.2014.06.015
10.1137/090777529
10.1016/j.aml.2014.07.020
10.1016/j.apnum.2016.07.002
10.1002/num.22520
10.1007/s40324-017-0137-x
10.1093/imanum/drh011
10.1137/16M1074746
10.1137/110820920
10.1002/mma.5539
10.1080/00207160.2014.950571
10.1016/j.apnum.2018.07.008
10.1016/j.camwa.2015.11.019
10.1142/S0219024913500465
10.1080/02533839.2004.9670904
10.1142/S0219024909005245
10.1137/100806552
10.1016/j.jedc.2013.01.013
10.1080/00207160.2018.1446526
10.1090/S0025-5718-1981-0616367-1
10.1007/s40819-017-0369-6
10.1016/0304-405X(76)90022-2
10.1007/s40314-017-0540-z
10.1016/j.camwa.2016.06.041
10.1287/mnsc.48.8.1086.166
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2022.112919
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
ExternalDocumentID 10_1016_j_chaos_2022_112919
S0960077922010980
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c233t-87c0954d53318f918b47fea37e5c9258a888409f4149d41fed52bf54d8a2638d3
IEDL.DBID .~1
ISSN 0960-0779
IngestDate Wed Oct 01 02:44:36 EDT 2025
Thu Apr 24 23:09:31 EDT 2025
Fri Feb 23 02:39:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 65K15
65N35
60J60
American options pricing
Finite point method
65C40
Meshfree methods
Moving least-squares method
45K05
35R35
Partial integro-differential equations
Regime-switching jump-diffusion processes
60J22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c233t-87c0954d53318f918b47fea37e5c9258a888409f4149d41fed52bf54d8a2638d3
ParticipantIDs crossref_primary_10_1016_j_chaos_2022_112919
crossref_citationtrail_10_1016_j_chaos_2022_112919
elsevier_sciencedirect_doi_10_1016_j_chaos_2022_112919
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kadalbajoo, Kumar, Tripathi (b33) 2016; 110
Shirzadi, Dehghan, Bastani (b8) 2021; 37
Ballestra, Pacelli (b29) 2013; 37
Huang, Forsyth, Labahn (b14) 2011; 33
Haghi, Mollapourasl, Vanmaele (b31) 2018; 76
Jackson KR, Jaimungal S, Surkov V. Option pricing with regime switching Lévy processes using Fourier space time stepping. In: Proc. 4th IASTED intern. conf. financial engin. applic.. 2007, p. 92–7.
Merton (b1) 1976; 3
Chan, Hubbert (b3) 2014; 17
Mollapourasl, Haghi, Liu (b28) 2018; 134
Heidari, Azari (b12) 2018; 75
Shirzadi, Dehghan, Bastani (b35) 2021; 126
Shirzadi, Dehghan, Bastani (b48) 2020; 84
Kazmi (b20) 2019; 96
Dehghan, Pourghanbar (b10) 2011; 66a
Mirzaei, Schaback, Dehghan (b42) 2012; 32
Holmes, Yang, Zhang (b13) 2012; 89
Lee (b18) 2014; 68
Chen, Xiao, Wang (b19) 2019; 42
Bastani, Ahmadi, Damircheli (b26) 2013; 65
Florescu, Liu, Mariani, Sewell (b23) 2013; 16
Liu, Gu (b45) 2005
Khaliq, Liu (b15) 2009; 12
Heidari, Azari (b24) 2018; 37
Cont, Voltchkova (b4) 2005; 43
Kwon, Lee (b7) 2011; 33
Patel, Mehra (b21) 2017; 3
Ikonen, Toivanen (b47) 2004; 17
Ballestra, Cecere (b46) 2016; 72
Yousuf, Khaliq, Alrabeei (b22) 2018; 75
Kwon, Lee (b49) 2011; 49
Lancaster, Salkauskas (b36) 1981; 37
Kou (b2) 2002; 48
Kumar, Rathish Kumar (b27) 2019; 20
Li, Li (b41) 2016; 72
Ma, Zhu (b16) 2015; 39
d’Halluin, Forsyth, Vetzal (b5) 2005; 25
Fasshauer, Khaliq, Voss (b30) 2004; 27
Li (b39) 2016; 99
Kadalbajoo, Kumar, Tripathi (b32) 2015; 92
Egorova, Company, Jódar (b11) 2016; 71
Dehghan, Abbaszadeh (b38) 2016; 109
Kadalbajoo, Tripathi, Kumar (b6) 2017; 55
Wendland (b43) 2004
Rad, Parand, Ballestra (b34) 2015; 251
Boyle, Draviam (b9) 2007; 40
Rambeerich, Pantelous (b25) 2016; 300
Li, Chen, Wang (b40) 2015; 262
Abbaszadeh, Dehghan (b37) 2017; 75
Elliott, Moore (b44) 1995
Heidari (10.1016/j.chaos.2022.112919_b12) 2018; 75
Mollapourasl (10.1016/j.chaos.2022.112919_b28) 2018; 134
Merton (10.1016/j.chaos.2022.112919_b1) 1976; 3
Kadalbajoo (10.1016/j.chaos.2022.112919_b33) 2016; 110
Dehghan (10.1016/j.chaos.2022.112919_b38) 2016; 109
Patel (10.1016/j.chaos.2022.112919_b21) 2017; 3
Fasshauer (10.1016/j.chaos.2022.112919_b30) 2004; 27
Chan (10.1016/j.chaos.2022.112919_b3) 2014; 17
Li (10.1016/j.chaos.2022.112919_b40) 2015; 262
Ballestra (10.1016/j.chaos.2022.112919_b46) 2016; 72
Wendland (10.1016/j.chaos.2022.112919_b43) 2004
Florescu (10.1016/j.chaos.2022.112919_b23) 2013; 16
Mirzaei (10.1016/j.chaos.2022.112919_b42) 2012; 32
Kwon (10.1016/j.chaos.2022.112919_b7) 2011; 33
Rad (10.1016/j.chaos.2022.112919_b34) 2015; 251
Chen (10.1016/j.chaos.2022.112919_b19) 2019; 42
Haghi (10.1016/j.chaos.2022.112919_b31) 2018; 76
Holmes (10.1016/j.chaos.2022.112919_b13) 2012; 89
Li (10.1016/j.chaos.2022.112919_b39) 2016; 99
Ikonen (10.1016/j.chaos.2022.112919_b47) 2004; 17
Ma (10.1016/j.chaos.2022.112919_b16) 2015; 39
Kadalbajoo (10.1016/j.chaos.2022.112919_b6) 2017; 55
Heidari (10.1016/j.chaos.2022.112919_b24) 2018; 37
Abbaszadeh (10.1016/j.chaos.2022.112919_b37) 2017; 75
Cont (10.1016/j.chaos.2022.112919_b4) 2005; 43
Elliott (10.1016/j.chaos.2022.112919_b44) 1995
Khaliq (10.1016/j.chaos.2022.112919_b15) 2009; 12
Kazmi (10.1016/j.chaos.2022.112919_b20) 2019; 96
Dehghan (10.1016/j.chaos.2022.112919_b10) 2011; 66a
Egorova (10.1016/j.chaos.2022.112919_b11) 2016; 71
Shirzadi (10.1016/j.chaos.2022.112919_b8) 2021; 37
Lee (10.1016/j.chaos.2022.112919_b18) 2014; 68
Kou (10.1016/j.chaos.2022.112919_b2) 2002; 48
Kwon (10.1016/j.chaos.2022.112919_b49) 2011; 49
Shirzadi (10.1016/j.chaos.2022.112919_b35) 2021; 126
Li (10.1016/j.chaos.2022.112919_b41) 2016; 72
d’Halluin (10.1016/j.chaos.2022.112919_b5) 2005; 25
Rambeerich (10.1016/j.chaos.2022.112919_b25) 2016; 300
Lancaster (10.1016/j.chaos.2022.112919_b36) 1981; 37
Liu (10.1016/j.chaos.2022.112919_b45) 2005
Huang (10.1016/j.chaos.2022.112919_b14) 2011; 33
Kadalbajoo (10.1016/j.chaos.2022.112919_b32) 2015; 92
Shirzadi (10.1016/j.chaos.2022.112919_b48) 2020; 84
10.1016/j.chaos.2022.112919_b17
Bastani (10.1016/j.chaos.2022.112919_b26) 2013; 65
Kumar (10.1016/j.chaos.2022.112919_b27) 2019; 20
Ballestra (10.1016/j.chaos.2022.112919_b29) 2013; 37
Boyle (10.1016/j.chaos.2022.112919_b9) 2007; 40
Yousuf (10.1016/j.chaos.2022.112919_b22) 2018; 75
References_xml – volume: 39
  start-page: 13
  year: 2015
  end-page: 18
  ident: b16
  article-title: Convergence rates of trinomial tree methods for option pricing under regime–switching models
  publication-title: Appl Math Lett
– volume: 20
  start-page: 451
  year: 2019
  end-page: 459
  ident: b27
  article-title: A RBF based finite difference method for option pricing under regime–switching jump–diffusion model
  publication-title: Int J Comput Methods Eng Sci Mech
– year: 2005
  ident: b45
  article-title: An introduction to meshfree methods and their programming
– volume: 48
  start-page: 1086
  year: 2002
  end-page: 1101
  ident: b2
  article-title: A jump-diffusion model for option pricing
  publication-title: Manage Sci
– volume: 134
  start-page: 81
  year: 2018
  end-page: 104
  ident: b28
  article-title: Localized kernel-based approximation for pricing financial options under regime switching jump diffusion model
  publication-title: Appl Numer Math
– volume: 71
  start-page: 224
  year: 2016
  end-page: 237
  ident: b11
  article-title: A new efficient numerical method for solving American option under regime switching model
  publication-title: Comput Math Appl
– volume: 72
  start-page: 1305
  year: 2016
  end-page: 1319
  ident: b46
  article-title: A fast numerical method to price American options under the bates model
  publication-title: Comput Math Appl
– volume: 75
  start-page: 365
  year: 2018
  end-page: 378
  ident: b12
  article-title: Pricing American options under multi-states: A radial basis collocation approach
  publication-title: SeMA J
– year: 1995
  ident: b44
  article-title: Hidden Markov models: Estimation and control
– volume: 3
  start-page: 125
  year: 1976
  end-page: 144
  ident: b1
  article-title: Option pricing when underlying stock returns are discontinuous
  publication-title: J Financ Econ
– year: 2004
  ident: b43
  article-title: Scattered data approximation
– volume: 42
  start-page: 2646
  year: 2019
  end-page: 2663
  ident: b19
  article-title: An IMEX–BDF2 compact scheme for pricing options under regime–switching jump–diffusion models
  publication-title: Math Methods Appl Sci
– reference: Jackson KR, Jaimungal S, Surkov V. Option pricing with regime switching Lévy processes using Fourier space time stepping. In: Proc. 4th IASTED intern. conf. financial engin. applic.. 2007, p. 92–7.
– volume: 99
  start-page: 77
  year: 2016
  end-page: 97
  ident: b39
  article-title: Error estimates for the moving least–square approximation and the element–free Galerkin method in n–dimensional spaces
  publication-title: Appl Numer Math
– volume: 262
  start-page: 56
  year: 2015
  end-page: 78
  ident: b40
  article-title: Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method
  publication-title: Appl Math Comput
– volume: 84
  year: 2020
  ident: b48
  article-title: On the pricing of multi–asset options under jump–diffusion processes using meshfree moving least–squares approximation
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 92
  start-page: 1608
  year: 2015
  end-page: 1624
  ident: b32
  article-title: Application of the local radial basis function–based finite difference method for pricing American options
  publication-title: Int J Comput Math
– volume: 3
  start-page: 547
  year: 2017
  end-page: 567
  ident: b21
  article-title: Fourth-order compact finite difference scheme for American option pricing under regime–switching jump–diffusion models
  publication-title: Int J Appl Comput Math
– volume: 75
  start-page: 2989
  year: 2018
  end-page: 3001
  ident: b22
  article-title: Solving complex PIDE systems for pricing American option under multi-state regime switching jump–diffusion model
  publication-title: Comput Math Appl
– volume: 65
  start-page: 79
  year: 2013
  end-page: 90
  ident: b26
  article-title: A radial basis collocation method for pricing American options under regime–switching jump–diffusion models
  publication-title: Appl Numer Math
– volume: 27
  start-page: 563
  year: 2004
  end-page: 571
  ident: b30
  article-title: Using meshfree approximation for multi–asset American options
  publication-title: J Chin Inst Eng
– volume: 75
  start-page: 173
  year: 2017
  end-page: 211
  ident: b37
  article-title: An improved meshless method for solving two-dimensional distributed order time–fractional diffusion–wave equation with error estimate
  publication-title: Numer Algorithms
– volume: 37
  start-page: 3691
  year: 2018
  end-page: 3707
  ident: b24
  article-title: A front–fixing finite element method for pricing American options under regime–switching jump–diffusion models
  publication-title: Comput Appl Math
– volume: 37
  start-page: 1142
  year: 2013
  end-page: 1167
  ident: b29
  article-title: Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach
  publication-title: J Econom Dynam Control
– volume: 12
  start-page: 319
  year: 2009
  end-page: 340
  ident: b15
  article-title: New numerical scheme for pricing American option with regime-switching
  publication-title: Int J Theor Appl Finance
– volume: 49
  start-page: 2598
  year: 2011
  end-page: 2617
  ident: b49
  article-title: A second-order finite difference method for option pricing under jump–diffusion models
  publication-title: SIAM J Numer Anal
– volume: 16
  year: 2013
  ident: b23
  article-title: Numerical schemes for option pricing in regime–switching jump diffusion models
  publication-title: Int J Theor Appl Finance
– volume: 68
  start-page: 392
  year: 2014
  end-page: 404
  ident: b18
  article-title: Financial options pricing with regime–switching jump–diffusions
  publication-title: Comput Math Appl
– volume: 300
  start-page: 83
  year: 2016
  end-page: 96
  ident: b25
  article-title: A high order finite element scheme for pricing options under regime switching jump diffusion processes
  publication-title: J Comput Appl Math
– volume: 251
  start-page: 363
  year: 2015
  end-page: 377
  ident: b34
  article-title: Pricing European and American options by radial basis point interpolation
  publication-title: Appl Math Comput
– volume: 17
  start-page: 161
  year: 2014
  end-page: 189
  ident: b3
  article-title: Options pricing under the one-dimensional jump–diffusion model using the radial basis function interpolation scheme
  publication-title: Rev Deriv Res
– volume: 33
  start-page: 2144
  year: 2011
  end-page: 2168
  ident: b14
  article-title: Methods for pricing American options under regime switching
  publication-title: SIAM J Sci Comput
– volume: 110
  start-page: 159
  year: 2016
  end-page: 173
  ident: b33
  article-title: A radial basis function based implicit–explicit method for option pricing under jump–diffusion models
  publication-title: Appl Numer Math
– volume: 37
  start-page: 141
  year: 1981
  end-page: 158
  ident: b36
  article-title: Surfaces generated by moving least squares methods
  publication-title: Math Comp
– volume: 72
  start-page: 1515
  year: 2016
  end-page: 1531
  ident: b41
  article-title: On the stability of the moving least squares approximation and the element-free Galerkin method
  publication-title: Comput Math Appl
– volume: 37
  start-page: 98
  year: 2021
  end-page: 117
  ident: b8
  article-title: Optimal uniform error estimates for moving least–squares collocation with application to option pricing under jump–diffusion processes
  publication-title: Numer Methods Partial Differential Equations
– volume: 66a
  start-page: 289
  year: 2011
  end-page: 296
  ident: b10
  article-title: Solution of the Black–Scholes equation for pricing of barrier option
  publication-title: Z Naturf a
– volume: 25
  start-page: 87
  year: 2005
  end-page: 112
  ident: b5
  article-title: Robust numerical methods for contingent claims under jump diffusion processes
  publication-title: IMA J Numer Anal
– volume: 33
  start-page: 1860
  year: 2011
  end-page: 1872
  ident: b7
  article-title: A second-order tridiagonal method for American options under jump–diffusion models
  publication-title: SIAM J Sci Comput
– volume: 96
  start-page: 1137
  year: 2019
  end-page: 1157
  ident: b20
  article-title: An IMEX predictor–corrector method for pricing options under regime–switching jump–diffusion models
  publication-title: Int J Comput Math
– volume: 55
  start-page: 869
  year: 2017
  end-page: 891
  ident: b6
  article-title: An error analysis of a finite element method with IMEX–time semidiscretizations for some partial integro–differential inequalities arising in the pricing of American options
  publication-title: SIAM J Numer Anal
– volume: 126
  start-page: 108
  year: 2021
  end-page: 117
  ident: b35
  article-title: A trustable shape parameter in the kernel-based collocation method with application to pricing financial options
  publication-title: Eng Anal Bound Elem
– volume: 17
  start-page: 809
  year: 2004
  end-page: 814
  ident: b47
  article-title: Operator splitting methods for American option pricing
  publication-title: Appl Math Lett
– volume: 76
  start-page: 2434
  year: 2018
  end-page: 2459
  ident: b31
  article-title: An RBF–FD method for pricing American options under jump–diffusion models
  publication-title: Comput Math Appl
– volume: 109
  start-page: 208
  year: 2016
  end-page: 234
  ident: b38
  article-title: Analysis of the element free Galerkin (EFG) method for solving fractional cable equation with Dirichlet boundary condition
  publication-title: Appl Numer Math
– volume: 32
  start-page: 983
  year: 2012
  end-page: 1000
  ident: b42
  article-title: On generalized moving least squares and diffuse derivatives
  publication-title: IMA J Numer Anal
– volume: 40
  start-page: 267
  year: 2007
  end-page: 282
  ident: b9
  article-title: Pricing exotic options under regime switching
  publication-title: Insurance Math Econom
– volume: 43
  start-page: 1596
  year: 2005
  end-page: 1626
  ident: b4
  article-title: A finite difference scheme for option pricing in jump diffusion and exponential Lévy models
  publication-title: SIAM J Numer Anal
– volume: 89
  start-page: 1094
  year: 2012
  end-page: 1111
  ident: b13
  article-title: A front–fixing finite element method for the valuation of American options with regime switching
  publication-title: Int J Comput Math
– volume: 43
  start-page: 1596
  issue: 4
  year: 2005
  ident: 10.1016/j.chaos.2022.112919_b4
  article-title: A finite difference scheme for option pricing in jump diffusion and exponential Lévy models
  publication-title: SIAM J Numer Anal
  doi: 10.1137/S0036142903436186
– volume: 32
  start-page: 983
  issue: 3
  year: 2012
  ident: 10.1016/j.chaos.2022.112919_b42
  article-title: On generalized moving least squares and diffuse derivatives
  publication-title: IMA J Numer Anal
  doi: 10.1093/imanum/drr030
– volume: 75
  start-page: 2989
  issue: 8
  year: 2018
  ident: 10.1016/j.chaos.2022.112919_b22
  article-title: Solving complex PIDE systems for pricing American option under multi-state regime switching jump–diffusion model
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2018.01.026
– volume: 110
  start-page: 159
  year: 2016
  ident: 10.1016/j.chaos.2022.112919_b33
  article-title: A radial basis function based implicit–explicit method for option pricing under jump–diffusion models
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2016.08.006
– volume: 72
  start-page: 1515
  issue: 6
  year: 2016
  ident: 10.1016/j.chaos.2022.112919_b41
  article-title: On the stability of the moving least squares approximation and the element-free Galerkin method
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2016.06.047
– year: 1995
  ident: 10.1016/j.chaos.2022.112919_b44
– volume: 99
  start-page: 77
  year: 2016
  ident: 10.1016/j.chaos.2022.112919_b39
  article-title: Error estimates for the moving least–square approximation and the element–free Galerkin method in n–dimensional spaces
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2015.07.006
– volume: 126
  start-page: 108
  year: 2021
  ident: 10.1016/j.chaos.2022.112919_b35
  article-title: A trustable shape parameter in the kernel-based collocation method with application to pricing financial options
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2021.02.005
– volume: 65
  start-page: 79
  year: 2013
  ident: 10.1016/j.chaos.2022.112919_b26
  article-title: A radial basis collocation method for pricing American options under regime–switching jump–diffusion models
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2012.10.005
– volume: 84
  year: 2020
  ident: 10.1016/j.chaos.2022.112919_b48
  article-title: On the pricing of multi–asset options under jump–diffusion processes using meshfree moving least–squares approximation
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2019.105160
– volume: 75
  start-page: 173
  issue: 1
  year: 2017
  ident: 10.1016/j.chaos.2022.112919_b37
  article-title: An improved meshless method for solving two-dimensional distributed order time–fractional diffusion–wave equation with error estimate
  publication-title: Numer Algorithms
  doi: 10.1007/s11075-016-0201-0
– volume: 17
  start-page: 161
  issue: 2
  year: 2014
  ident: 10.1016/j.chaos.2022.112919_b3
  article-title: Options pricing under the one-dimensional jump–diffusion model using the radial basis function interpolation scheme
  publication-title: Rev Deriv Res
  doi: 10.1007/s11147-013-9095-3
– volume: 300
  start-page: 83
  year: 2016
  ident: 10.1016/j.chaos.2022.112919_b25
  article-title: A high order finite element scheme for pricing options under regime switching jump diffusion processes
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2015.12.019
– volume: 20
  start-page: 451
  issue: 5
  year: 2019
  ident: 10.1016/j.chaos.2022.112919_b27
  article-title: A RBF based finite difference method for option pricing under regime–switching jump–diffusion model
  publication-title: Int J Comput Methods Eng Sci Mech
  doi: 10.1080/15502287.2019.1687607
– volume: 40
  start-page: 267
  issue: 2
  year: 2007
  ident: 10.1016/j.chaos.2022.112919_b9
  article-title: Pricing exotic options under regime switching
  publication-title: Insurance Math Econom
  doi: 10.1016/j.insmatheco.2006.05.001
– ident: 10.1016/j.chaos.2022.112919_b17
– volume: 89
  start-page: 1094
  issue: 9
  year: 2012
  ident: 10.1016/j.chaos.2022.112919_b13
  article-title: A front–fixing finite element method for the valuation of American options with regime switching
  publication-title: Int J Comput Math
  doi: 10.1080/00207160.2012.663911
– volume: 17
  start-page: 809
  issue: 7
  year: 2004
  ident: 10.1016/j.chaos.2022.112919_b47
  article-title: Operator splitting methods for American option pricing
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2004.06.010
– volume: 66a
  start-page: 289
  issue: 5
  year: 2011
  ident: 10.1016/j.chaos.2022.112919_b10
  article-title: Solution of the Black–Scholes equation for pricing of barrier option
  publication-title: Z Naturf a
  doi: 10.1515/zna-2011-0504
– volume: 76
  start-page: 2434
  issue: 10
  year: 2018
  ident: 10.1016/j.chaos.2022.112919_b31
  article-title: An RBF–FD method for pricing American options under jump–diffusion models
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2018.08.040
– volume: 68
  start-page: 392
  issue: 3
  year: 2014
  ident: 10.1016/j.chaos.2022.112919_b18
  article-title: Financial options pricing with regime–switching jump–diffusions
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2014.06.015
– volume: 49
  start-page: 2598
  issue: 6
  year: 2011
  ident: 10.1016/j.chaos.2022.112919_b49
  article-title: A second-order finite difference method for option pricing under jump–diffusion models
  publication-title: SIAM J Numer Anal
  doi: 10.1137/090777529
– volume: 39
  start-page: 13
  year: 2015
  ident: 10.1016/j.chaos.2022.112919_b16
  article-title: Convergence rates of trinomial tree methods for option pricing under regime–switching models
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2014.07.020
– volume: 109
  start-page: 208
  year: 2016
  ident: 10.1016/j.chaos.2022.112919_b38
  article-title: Analysis of the element free Galerkin (EFG) method for solving fractional cable equation with Dirichlet boundary condition
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2016.07.002
– year: 2005
  ident: 10.1016/j.chaos.2022.112919_b45
– volume: 37
  start-page: 98
  issue: 1
  year: 2021
  ident: 10.1016/j.chaos.2022.112919_b8
  article-title: Optimal uniform error estimates for moving least–squares collocation with application to option pricing under jump–diffusion processes
  publication-title: Numer Methods Partial Differential Equations
  doi: 10.1002/num.22520
– volume: 75
  start-page: 365
  issue: 2
  year: 2018
  ident: 10.1016/j.chaos.2022.112919_b12
  article-title: Pricing American options under multi-states: A radial basis collocation approach
  publication-title: SeMA J
  doi: 10.1007/s40324-017-0137-x
– year: 2004
  ident: 10.1016/j.chaos.2022.112919_b43
– volume: 25
  start-page: 87
  issue: 1
  year: 2005
  ident: 10.1016/j.chaos.2022.112919_b5
  article-title: Robust numerical methods for contingent claims under jump diffusion processes
  publication-title: IMA J Numer Anal
  doi: 10.1093/imanum/drh011
– volume: 55
  start-page: 869
  issue: 2
  year: 2017
  ident: 10.1016/j.chaos.2022.112919_b6
  article-title: An error analysis of a finite element method with IMEX–time semidiscretizations for some partial integro–differential inequalities arising in the pricing of American options
  publication-title: SIAM J Numer Anal
  doi: 10.1137/16M1074746
– volume: 33
  start-page: 2144
  issue: 5
  year: 2011
  ident: 10.1016/j.chaos.2022.112919_b14
  article-title: Methods for pricing American options under regime switching
  publication-title: SIAM J Sci Comput
  doi: 10.1137/110820920
– volume: 262
  start-page: 56
  year: 2015
  ident: 10.1016/j.chaos.2022.112919_b40
  article-title: Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method
  publication-title: Appl Math Comput
– volume: 42
  start-page: 2646
  issue: 8
  year: 2019
  ident: 10.1016/j.chaos.2022.112919_b19
  article-title: An IMEX–BDF2 compact scheme for pricing options under regime–switching jump–diffusion models
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.5539
– volume: 92
  start-page: 1608
  issue: 8
  year: 2015
  ident: 10.1016/j.chaos.2022.112919_b32
  article-title: Application of the local radial basis function–based finite difference method for pricing American options
  publication-title: Int J Comput Math
  doi: 10.1080/00207160.2014.950571
– volume: 134
  start-page: 81
  year: 2018
  ident: 10.1016/j.chaos.2022.112919_b28
  article-title: Localized kernel-based approximation for pricing financial options under regime switching jump diffusion model
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2018.07.008
– volume: 71
  start-page: 224
  issue: 1
  year: 2016
  ident: 10.1016/j.chaos.2022.112919_b11
  article-title: A new efficient numerical method for solving American option under regime switching model
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2015.11.019
– volume: 16
  issue: 08
  year: 2013
  ident: 10.1016/j.chaos.2022.112919_b23
  article-title: Numerical schemes for option pricing in regime–switching jump diffusion models
  publication-title: Int J Theor Appl Finance
  doi: 10.1142/S0219024913500465
– volume: 251
  start-page: 363
  year: 2015
  ident: 10.1016/j.chaos.2022.112919_b34
  article-title: Pricing European and American options by radial basis point interpolation
  publication-title: Appl Math Comput
– volume: 27
  start-page: 563
  issue: 4
  year: 2004
  ident: 10.1016/j.chaos.2022.112919_b30
  article-title: Using meshfree approximation for multi–asset American options
  publication-title: J Chin Inst Eng
  doi: 10.1080/02533839.2004.9670904
– volume: 12
  start-page: 319
  issue: 03
  year: 2009
  ident: 10.1016/j.chaos.2022.112919_b15
  article-title: New numerical scheme for pricing American option with regime-switching
  publication-title: Int J Theor Appl Finance
  doi: 10.1142/S0219024909005245
– volume: 33
  start-page: 1860
  issue: 4
  year: 2011
  ident: 10.1016/j.chaos.2022.112919_b7
  article-title: A second-order tridiagonal method for American options under jump–diffusion models
  publication-title: SIAM J Sci Comput
  doi: 10.1137/100806552
– volume: 37
  start-page: 1142
  issue: 6
  year: 2013
  ident: 10.1016/j.chaos.2022.112919_b29
  article-title: Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach
  publication-title: J Econom Dynam Control
  doi: 10.1016/j.jedc.2013.01.013
– volume: 96
  start-page: 1137
  issue: 6
  year: 2019
  ident: 10.1016/j.chaos.2022.112919_b20
  article-title: An IMEX predictor–corrector method for pricing options under regime–switching jump–diffusion models
  publication-title: Int J Comput Math
  doi: 10.1080/00207160.2018.1446526
– volume: 37
  start-page: 141
  issue: 155
  year: 1981
  ident: 10.1016/j.chaos.2022.112919_b36
  article-title: Surfaces generated by moving least squares methods
  publication-title: Math Comp
  doi: 10.1090/S0025-5718-1981-0616367-1
– volume: 3
  start-page: 547
  issue: 1
  year: 2017
  ident: 10.1016/j.chaos.2022.112919_b21
  article-title: Fourth-order compact finite difference scheme for American option pricing under regime–switching jump–diffusion models
  publication-title: Int J Appl Comput Math
  doi: 10.1007/s40819-017-0369-6
– volume: 3
  start-page: 125
  issue: 1–2
  year: 1976
  ident: 10.1016/j.chaos.2022.112919_b1
  article-title: Option pricing when underlying stock returns are discontinuous
  publication-title: J Financ Econ
  doi: 10.1016/0304-405X(76)90022-2
– volume: 37
  start-page: 3691
  issue: 3
  year: 2018
  ident: 10.1016/j.chaos.2022.112919_b24
  article-title: A front–fixing finite element method for pricing American options under regime–switching jump–diffusion models
  publication-title: Comput Appl Math
  doi: 10.1007/s40314-017-0540-z
– volume: 72
  start-page: 1305
  issue: 5
  year: 2016
  ident: 10.1016/j.chaos.2022.112919_b46
  article-title: A fast numerical method to price American options under the bates model
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2016.06.041
– volume: 48
  start-page: 1086
  issue: 8
  year: 2002
  ident: 10.1016/j.chaos.2022.112919_b2
  article-title: A jump-diffusion model for option pricing
  publication-title: Manage Sci
  doi: 10.1287/mnsc.48.8.1086.166
SSID ssj0001062
Score 2.4894772
Snippet In an incomplete market construction and by no-arbitrage assumption, the American options pricing problem under the jump-diffusion regime-switching process is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112919
SubjectTerms American options pricing
Finite point method
Meshfree methods
Moving least-squares method
Partial integro-differential equations
Regime-switching jump-diffusion processes
Title American options pricing under regime-switching jump-diffusion models with meshfree finite point method
URI https://dx.doi.org/10.1016/j.chaos.2022.112919
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: .~1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: AKRWK
  dateStart: 19910101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYEDYgPEeCkHDiBRRtN2bY7TxDRA7AKTdqvSJtk6sbVqO3Hjt2P3MUBCO3CtbKlyEudzbH8m5EpJTyLyNETAbMPWELAKoUzDNAXnIbPgfBXVFuPeaGI_TZ1pgwzqXhgsq6x8f-nTC29dfelW1uwmUdR9RfB977qcYUKXexi3I_sX7Om7z-8yDwh5ikwCCBsoXTMPFTVe4VzEyNnNGLbScKTb-et2-nHjDA_IfgUVab_8mxZpqFWb7L1seFazNmlVRzOj1xV_9M0hmdVZGBqXFSs0STF_PqPYMJZSnMWwVEb2EeVFISVdwJIaOClljU9ntBiOk1F8oaVLlc11qhTVEYJTmsTRKqfl2OkjMhk-vA1GRjVPwQCjWzk4vhAAlS0B4Zme5qYX2K5WwnKVE3LmeAKiYQj3tA1Rk7RNraTDAg0KnmBwTKV1TJqreKVOCA09IbkCUcCHtmN6PBCABJC93tHSkbJDWG1HP6zIxnHmxbtfV5Ut_ML4PhrfL43fIbcbpaTk2tgu3qsXyP-1ZXy4DbYpnv5X8Yzs4rT58gXmnDTzdK0uAJPkwWWx6S7JTv_xeTT-AgdO4Lo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2hdgAGBAXENx4YQCIqcR0ajwiBCrRdaKVukRPbkIp-qEnF3-cucSqQEANr5JOis31-5zu_B3BhdKgJeXoq5sITFhNWpYzv-b6SMuEt3F9Ft0X_tjMUz6NgtAb31VsYaqt0sb-M6UW0dl-azpvNeZo2Xwl837TbklNBV4aYt9dFgDG5BvW7p5dOfxWQMespigk43iODinyoaPNK3tWMaLs5p9c0khh3fjugvh06j9uw5dAiuyt_aAfWzLQBm70V1WrWgB23OzN26Sikr3bhrSrEsFnZtMLmCyqhvzF6M7ZgJMcwMV72meZFLyUb46x6JJaypNszVujjZIwuadnEZO92YQyzKeFTNp-l05yVytN7MHx8GNx3PCep4KHfWznGvgQxldAI8vzQSj-MRdsa1WqbIJE8CBUmxJjxWYGJkxa-NTrgsUWDUHHcqbq1D7XpbGoOgCWh0tLgUISIIvBDGSsEA0RgH1gdaH0IvPJjlDi-cZK9-IiqxrJxVDg_IudHpfMP4XplNC_pNv4efltNUPRj1UR4IPxlePRfw3NY7wx63aj71H85hg0Sny8vZE6gli-W5hQhSh6fuSX4BbRI42U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=American+options+pricing+under+regime-switching+jump-diffusion+models+with+meshfree+finite+point+method&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Shirzadi%2C+Mohammad&rft.au=Rostami%2C+Mohammadreza&rft.au=Dehghan%2C+Mehdi&rft.au=Li%2C+Xiaolin&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.eissn=1873-2887&rft.volume=166&rft_id=info:doi/10.1016%2Fj.chaos.2022.112919&rft.externalDocID=S0960077922010980
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon