American options pricing under regime-switching jump-diffusion models with meshfree finite point method
In an incomplete market construction and by no-arbitrage assumption, the American options pricing problem under the jump-diffusion regime-switching process is formulated by a variational form of coupled partial integro-differential equations. In this paper, a valuation algorithm is developed for Ame...
Saved in:
Published in | Chaos, solitons and fractals Vol. 166; p. 112919 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-0779 1873-2887 |
DOI | 10.1016/j.chaos.2022.112919 |
Cover
Abstract | In an incomplete market construction and by no-arbitrage assumption, the American options pricing problem under the jump-diffusion regime-switching process is formulated by a variational form of coupled partial integro-differential equations. In this paper, a valuation algorithm is developed for American options when the dynamics of underlying assets follow the regime-switching jump-diffusion processes. Using the fact that the price of an American option under jump-diffusion regime-switching processes is formulated by a collection of coupled variational partial integro-differential equations with the free boundary characteristic, we combine the moving least-squares approximation with an operator splitting method to treat American constraints. Numerical experiments with American options under three, five, and seven regimes demonstrate the efficiency and effectiveness of our computational scheme for pricing American options under the regime-switching models.
•Applying the meshfree moving least-squares collocation for options pricing problem under the jump-diffusion regime-switching processes.•Applying the proposed method for pricing American options with the free boundary feature.•Computing hedge parameters of American options and early exercise boundary of American options with little extra cost via the proposed method.•Proposing numerical test problems for American options pricing with high regimes-switching (till seven regimes) assumption. |
---|---|
AbstractList | In an incomplete market construction and by no-arbitrage assumption, the American options pricing problem under the jump-diffusion regime-switching process is formulated by a variational form of coupled partial integro-differential equations. In this paper, a valuation algorithm is developed for American options when the dynamics of underlying assets follow the regime-switching jump-diffusion processes. Using the fact that the price of an American option under jump-diffusion regime-switching processes is formulated by a collection of coupled variational partial integro-differential equations with the free boundary characteristic, we combine the moving least-squares approximation with an operator splitting method to treat American constraints. Numerical experiments with American options under three, five, and seven regimes demonstrate the efficiency and effectiveness of our computational scheme for pricing American options under the regime-switching models.
•Applying the meshfree moving least-squares collocation for options pricing problem under the jump-diffusion regime-switching processes.•Applying the proposed method for pricing American options with the free boundary feature.•Computing hedge parameters of American options and early exercise boundary of American options with little extra cost via the proposed method.•Proposing numerical test problems for American options pricing with high regimes-switching (till seven regimes) assumption. |
ArticleNumber | 112919 |
Author | Li, Xiaolin Shirzadi, Mohammad Dehghan, Mehdi Rostami, Mohammadreza |
Author_xml | – sequence: 1 givenname: Mohammad surname: Shirzadi fullname: Shirzadi, Mohammad email: m.shirzadi.aut@gmail.com organization: Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., 15914, Tehran, Iran – sequence: 2 givenname: Mohammadreza surname: Rostami fullname: Rostami, Mohammadreza email: m.rostami@alzahra.ac.ir organization: Management department, Faculty of Economics and Social Science, Alzahra University, Tehran, Iran – sequence: 3 givenname: Mehdi surname: Dehghan fullname: Dehghan, Mehdi email: mdehghan@aut.ac.ir organization: Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., 15914, Tehran, Iran – sequence: 4 givenname: Xiaolin surname: Li fullname: Li, Xiaolin email: lxlmath@163.com organization: School of Mathematics Sciences, Chongqing Normal University, Chongqing 400047, PR China |
BookMark | eNqFkE1LAzEQhoNUsFZ_gZf8gV3zsdtNDh5K8QsKXvQc0mTSTekmJUkV_71b68mDnoZ5Z56BeS7RJMQACN1QUlNC57fb2vQ65poRxmpKmaTyDE2p6HjFhOgmaErknFSk6-QFusx5SwihZM6maLMYIHmjA4774mPIeD-2PmzwIVhIOMHGD1DlD19Mf4y3h2FfWe_cIY_reIgWdhmP4x4PkHuXALDzwRfA--hDGdPSR3uFzp3eZbj-qTP09nD_unyqVi-Pz8vFqjKM81KJzhDZNrblnAonqVg3nQPNO2iNZK3QQoiGSNfQRtqGOrAtW7sREJrNubB8hvjprkkx5wROjf8MOn0qStTRldqqb1fq6EqdXI2U_EUZX_TRR0na7_5h707s6AHePSSVjYdgwPoEpigb_Z_8F_aAij0 |
CitedBy_id | crossref_primary_10_1109_TCSS_2023_3346439 crossref_primary_10_1007_s44198_023_00153_1 crossref_primary_10_1103_PhysRevE_108_035306 crossref_primary_10_1186_s13660_024_03230_1 crossref_primary_10_3934_math_2023968 crossref_primary_10_1016_j_cam_2023_115484 crossref_primary_10_1016_j_techfore_2024_123429 crossref_primary_10_1007_s12190_025_02424_0 crossref_primary_10_1007_s12190_024_02020_8 crossref_primary_10_1007_s10203_023_00407_z crossref_primary_10_1007_s11075_023_01719_2 crossref_primary_10_1007_s11075_024_01936_3 crossref_primary_10_1007_s00521_024_10761_7 crossref_primary_10_1007_s11075_024_01959_w crossref_primary_10_1080_00207160_2024_2383757 crossref_primary_10_3934_math_20241704 |
Cites_doi | 10.1137/S0036142903436186 10.1093/imanum/drr030 10.1016/j.camwa.2018.01.026 10.1016/j.apnum.2016.08.006 10.1016/j.camwa.2016.06.047 10.1016/j.apnum.2015.07.006 10.1016/j.enganabound.2021.02.005 10.1016/j.apnum.2012.10.005 10.1016/j.cnsns.2019.105160 10.1007/s11075-016-0201-0 10.1007/s11147-013-9095-3 10.1016/j.cam.2015.12.019 10.1080/15502287.2019.1687607 10.1016/j.insmatheco.2006.05.001 10.1080/00207160.2012.663911 10.1016/j.aml.2004.06.010 10.1515/zna-2011-0504 10.1016/j.camwa.2018.08.040 10.1016/j.camwa.2014.06.015 10.1137/090777529 10.1016/j.aml.2014.07.020 10.1016/j.apnum.2016.07.002 10.1002/num.22520 10.1007/s40324-017-0137-x 10.1093/imanum/drh011 10.1137/16M1074746 10.1137/110820920 10.1002/mma.5539 10.1080/00207160.2014.950571 10.1016/j.apnum.2018.07.008 10.1016/j.camwa.2015.11.019 10.1142/S0219024913500465 10.1080/02533839.2004.9670904 10.1142/S0219024909005245 10.1137/100806552 10.1016/j.jedc.2013.01.013 10.1080/00207160.2018.1446526 10.1090/S0025-5718-1981-0616367-1 10.1007/s40819-017-0369-6 10.1016/0304-405X(76)90022-2 10.1007/s40314-017-0540-z 10.1016/j.camwa.2016.06.041 10.1287/mnsc.48.8.1086.166 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chaos.2022.112919 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1873-2887 |
ExternalDocumentID | 10_1016_j_chaos_2022_112919 S0960077922010980 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
ID | FETCH-LOGICAL-c233t-87c0954d53318f918b47fea37e5c9258a888409f4149d41fed52bf54d8a2638d3 |
IEDL.DBID | .~1 |
ISSN | 0960-0779 |
IngestDate | Wed Oct 01 02:44:36 EDT 2025 Thu Apr 24 23:09:31 EDT 2025 Fri Feb 23 02:39:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 65K15 65N35 60J60 American options pricing Finite point method 65C40 Meshfree methods Moving least-squares method 45K05 35R35 Partial integro-differential equations Regime-switching jump-diffusion processes 60J22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c233t-87c0954d53318f918b47fea37e5c9258a888409f4149d41fed52bf54d8a2638d3 |
ParticipantIDs | crossref_primary_10_1016_j_chaos_2022_112919 crossref_citationtrail_10_1016_j_chaos_2022_112919 elsevier_sciencedirect_doi_10_1016_j_chaos_2022_112919 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Chaos, solitons and fractals |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kadalbajoo, Kumar, Tripathi (b33) 2016; 110 Shirzadi, Dehghan, Bastani (b8) 2021; 37 Ballestra, Pacelli (b29) 2013; 37 Huang, Forsyth, Labahn (b14) 2011; 33 Haghi, Mollapourasl, Vanmaele (b31) 2018; 76 Jackson KR, Jaimungal S, Surkov V. Option pricing with regime switching Lévy processes using Fourier space time stepping. In: Proc. 4th IASTED intern. conf. financial engin. applic.. 2007, p. 92–7. Merton (b1) 1976; 3 Chan, Hubbert (b3) 2014; 17 Mollapourasl, Haghi, Liu (b28) 2018; 134 Heidari, Azari (b12) 2018; 75 Shirzadi, Dehghan, Bastani (b35) 2021; 126 Shirzadi, Dehghan, Bastani (b48) 2020; 84 Kazmi (b20) 2019; 96 Dehghan, Pourghanbar (b10) 2011; 66a Mirzaei, Schaback, Dehghan (b42) 2012; 32 Holmes, Yang, Zhang (b13) 2012; 89 Lee (b18) 2014; 68 Chen, Xiao, Wang (b19) 2019; 42 Bastani, Ahmadi, Damircheli (b26) 2013; 65 Florescu, Liu, Mariani, Sewell (b23) 2013; 16 Liu, Gu (b45) 2005 Khaliq, Liu (b15) 2009; 12 Heidari, Azari (b24) 2018; 37 Cont, Voltchkova (b4) 2005; 43 Kwon, Lee (b7) 2011; 33 Patel, Mehra (b21) 2017; 3 Ikonen, Toivanen (b47) 2004; 17 Ballestra, Cecere (b46) 2016; 72 Yousuf, Khaliq, Alrabeei (b22) 2018; 75 Kwon, Lee (b49) 2011; 49 Lancaster, Salkauskas (b36) 1981; 37 Kou (b2) 2002; 48 Kumar, Rathish Kumar (b27) 2019; 20 Li, Li (b41) 2016; 72 Ma, Zhu (b16) 2015; 39 d’Halluin, Forsyth, Vetzal (b5) 2005; 25 Fasshauer, Khaliq, Voss (b30) 2004; 27 Li (b39) 2016; 99 Kadalbajoo, Kumar, Tripathi (b32) 2015; 92 Egorova, Company, Jódar (b11) 2016; 71 Dehghan, Abbaszadeh (b38) 2016; 109 Kadalbajoo, Tripathi, Kumar (b6) 2017; 55 Wendland (b43) 2004 Rad, Parand, Ballestra (b34) 2015; 251 Boyle, Draviam (b9) 2007; 40 Rambeerich, Pantelous (b25) 2016; 300 Li, Chen, Wang (b40) 2015; 262 Abbaszadeh, Dehghan (b37) 2017; 75 Elliott, Moore (b44) 1995 Heidari (10.1016/j.chaos.2022.112919_b12) 2018; 75 Mollapourasl (10.1016/j.chaos.2022.112919_b28) 2018; 134 Merton (10.1016/j.chaos.2022.112919_b1) 1976; 3 Kadalbajoo (10.1016/j.chaos.2022.112919_b33) 2016; 110 Dehghan (10.1016/j.chaos.2022.112919_b38) 2016; 109 Patel (10.1016/j.chaos.2022.112919_b21) 2017; 3 Fasshauer (10.1016/j.chaos.2022.112919_b30) 2004; 27 Chan (10.1016/j.chaos.2022.112919_b3) 2014; 17 Li (10.1016/j.chaos.2022.112919_b40) 2015; 262 Ballestra (10.1016/j.chaos.2022.112919_b46) 2016; 72 Wendland (10.1016/j.chaos.2022.112919_b43) 2004 Florescu (10.1016/j.chaos.2022.112919_b23) 2013; 16 Mirzaei (10.1016/j.chaos.2022.112919_b42) 2012; 32 Kwon (10.1016/j.chaos.2022.112919_b7) 2011; 33 Rad (10.1016/j.chaos.2022.112919_b34) 2015; 251 Chen (10.1016/j.chaos.2022.112919_b19) 2019; 42 Haghi (10.1016/j.chaos.2022.112919_b31) 2018; 76 Holmes (10.1016/j.chaos.2022.112919_b13) 2012; 89 Li (10.1016/j.chaos.2022.112919_b39) 2016; 99 Ikonen (10.1016/j.chaos.2022.112919_b47) 2004; 17 Ma (10.1016/j.chaos.2022.112919_b16) 2015; 39 Kadalbajoo (10.1016/j.chaos.2022.112919_b6) 2017; 55 Heidari (10.1016/j.chaos.2022.112919_b24) 2018; 37 Abbaszadeh (10.1016/j.chaos.2022.112919_b37) 2017; 75 Cont (10.1016/j.chaos.2022.112919_b4) 2005; 43 Elliott (10.1016/j.chaos.2022.112919_b44) 1995 Khaliq (10.1016/j.chaos.2022.112919_b15) 2009; 12 Kazmi (10.1016/j.chaos.2022.112919_b20) 2019; 96 Dehghan (10.1016/j.chaos.2022.112919_b10) 2011; 66a Egorova (10.1016/j.chaos.2022.112919_b11) 2016; 71 Shirzadi (10.1016/j.chaos.2022.112919_b8) 2021; 37 Lee (10.1016/j.chaos.2022.112919_b18) 2014; 68 Kou (10.1016/j.chaos.2022.112919_b2) 2002; 48 Kwon (10.1016/j.chaos.2022.112919_b49) 2011; 49 Shirzadi (10.1016/j.chaos.2022.112919_b35) 2021; 126 Li (10.1016/j.chaos.2022.112919_b41) 2016; 72 d’Halluin (10.1016/j.chaos.2022.112919_b5) 2005; 25 Rambeerich (10.1016/j.chaos.2022.112919_b25) 2016; 300 Lancaster (10.1016/j.chaos.2022.112919_b36) 1981; 37 Liu (10.1016/j.chaos.2022.112919_b45) 2005 Huang (10.1016/j.chaos.2022.112919_b14) 2011; 33 Kadalbajoo (10.1016/j.chaos.2022.112919_b32) 2015; 92 Shirzadi (10.1016/j.chaos.2022.112919_b48) 2020; 84 10.1016/j.chaos.2022.112919_b17 Bastani (10.1016/j.chaos.2022.112919_b26) 2013; 65 Kumar (10.1016/j.chaos.2022.112919_b27) 2019; 20 Ballestra (10.1016/j.chaos.2022.112919_b29) 2013; 37 Boyle (10.1016/j.chaos.2022.112919_b9) 2007; 40 Yousuf (10.1016/j.chaos.2022.112919_b22) 2018; 75 |
References_xml | – volume: 39 start-page: 13 year: 2015 end-page: 18 ident: b16 article-title: Convergence rates of trinomial tree methods for option pricing under regime–switching models publication-title: Appl Math Lett – volume: 20 start-page: 451 year: 2019 end-page: 459 ident: b27 article-title: A RBF based finite difference method for option pricing under regime–switching jump–diffusion model publication-title: Int J Comput Methods Eng Sci Mech – year: 2005 ident: b45 article-title: An introduction to meshfree methods and their programming – volume: 48 start-page: 1086 year: 2002 end-page: 1101 ident: b2 article-title: A jump-diffusion model for option pricing publication-title: Manage Sci – volume: 134 start-page: 81 year: 2018 end-page: 104 ident: b28 article-title: Localized kernel-based approximation for pricing financial options under regime switching jump diffusion model publication-title: Appl Numer Math – volume: 71 start-page: 224 year: 2016 end-page: 237 ident: b11 article-title: A new efficient numerical method for solving American option under regime switching model publication-title: Comput Math Appl – volume: 72 start-page: 1305 year: 2016 end-page: 1319 ident: b46 article-title: A fast numerical method to price American options under the bates model publication-title: Comput Math Appl – volume: 75 start-page: 365 year: 2018 end-page: 378 ident: b12 article-title: Pricing American options under multi-states: A radial basis collocation approach publication-title: SeMA J – year: 1995 ident: b44 article-title: Hidden Markov models: Estimation and control – volume: 3 start-page: 125 year: 1976 end-page: 144 ident: b1 article-title: Option pricing when underlying stock returns are discontinuous publication-title: J Financ Econ – year: 2004 ident: b43 article-title: Scattered data approximation – volume: 42 start-page: 2646 year: 2019 end-page: 2663 ident: b19 article-title: An IMEX–BDF2 compact scheme for pricing options under regime–switching jump–diffusion models publication-title: Math Methods Appl Sci – reference: Jackson KR, Jaimungal S, Surkov V. Option pricing with regime switching Lévy processes using Fourier space time stepping. In: Proc. 4th IASTED intern. conf. financial engin. applic.. 2007, p. 92–7. – volume: 99 start-page: 77 year: 2016 end-page: 97 ident: b39 article-title: Error estimates for the moving least–square approximation and the element–free Galerkin method in n–dimensional spaces publication-title: Appl Numer Math – volume: 262 start-page: 56 year: 2015 end-page: 78 ident: b40 article-title: Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method publication-title: Appl Math Comput – volume: 84 year: 2020 ident: b48 article-title: On the pricing of multi–asset options under jump–diffusion processes using meshfree moving least–squares approximation publication-title: Commun Nonlinear Sci Numer Simul – volume: 92 start-page: 1608 year: 2015 end-page: 1624 ident: b32 article-title: Application of the local radial basis function–based finite difference method for pricing American options publication-title: Int J Comput Math – volume: 3 start-page: 547 year: 2017 end-page: 567 ident: b21 article-title: Fourth-order compact finite difference scheme for American option pricing under regime–switching jump–diffusion models publication-title: Int J Appl Comput Math – volume: 75 start-page: 2989 year: 2018 end-page: 3001 ident: b22 article-title: Solving complex PIDE systems for pricing American option under multi-state regime switching jump–diffusion model publication-title: Comput Math Appl – volume: 65 start-page: 79 year: 2013 end-page: 90 ident: b26 article-title: A radial basis collocation method for pricing American options under regime–switching jump–diffusion models publication-title: Appl Numer Math – volume: 27 start-page: 563 year: 2004 end-page: 571 ident: b30 article-title: Using meshfree approximation for multi–asset American options publication-title: J Chin Inst Eng – volume: 75 start-page: 173 year: 2017 end-page: 211 ident: b37 article-title: An improved meshless method for solving two-dimensional distributed order time–fractional diffusion–wave equation with error estimate publication-title: Numer Algorithms – volume: 37 start-page: 3691 year: 2018 end-page: 3707 ident: b24 article-title: A front–fixing finite element method for pricing American options under regime–switching jump–diffusion models publication-title: Comput Appl Math – volume: 37 start-page: 1142 year: 2013 end-page: 1167 ident: b29 article-title: Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach publication-title: J Econom Dynam Control – volume: 12 start-page: 319 year: 2009 end-page: 340 ident: b15 article-title: New numerical scheme for pricing American option with regime-switching publication-title: Int J Theor Appl Finance – volume: 49 start-page: 2598 year: 2011 end-page: 2617 ident: b49 article-title: A second-order finite difference method for option pricing under jump–diffusion models publication-title: SIAM J Numer Anal – volume: 16 year: 2013 ident: b23 article-title: Numerical schemes for option pricing in regime–switching jump diffusion models publication-title: Int J Theor Appl Finance – volume: 68 start-page: 392 year: 2014 end-page: 404 ident: b18 article-title: Financial options pricing with regime–switching jump–diffusions publication-title: Comput Math Appl – volume: 300 start-page: 83 year: 2016 end-page: 96 ident: b25 article-title: A high order finite element scheme for pricing options under regime switching jump diffusion processes publication-title: J Comput Appl Math – volume: 251 start-page: 363 year: 2015 end-page: 377 ident: b34 article-title: Pricing European and American options by radial basis point interpolation publication-title: Appl Math Comput – volume: 17 start-page: 161 year: 2014 end-page: 189 ident: b3 article-title: Options pricing under the one-dimensional jump–diffusion model using the radial basis function interpolation scheme publication-title: Rev Deriv Res – volume: 33 start-page: 2144 year: 2011 end-page: 2168 ident: b14 article-title: Methods for pricing American options under regime switching publication-title: SIAM J Sci Comput – volume: 110 start-page: 159 year: 2016 end-page: 173 ident: b33 article-title: A radial basis function based implicit–explicit method for option pricing under jump–diffusion models publication-title: Appl Numer Math – volume: 37 start-page: 141 year: 1981 end-page: 158 ident: b36 article-title: Surfaces generated by moving least squares methods publication-title: Math Comp – volume: 72 start-page: 1515 year: 2016 end-page: 1531 ident: b41 article-title: On the stability of the moving least squares approximation and the element-free Galerkin method publication-title: Comput Math Appl – volume: 37 start-page: 98 year: 2021 end-page: 117 ident: b8 article-title: Optimal uniform error estimates for moving least–squares collocation with application to option pricing under jump–diffusion processes publication-title: Numer Methods Partial Differential Equations – volume: 66a start-page: 289 year: 2011 end-page: 296 ident: b10 article-title: Solution of the Black–Scholes equation for pricing of barrier option publication-title: Z Naturf a – volume: 25 start-page: 87 year: 2005 end-page: 112 ident: b5 article-title: Robust numerical methods for contingent claims under jump diffusion processes publication-title: IMA J Numer Anal – volume: 33 start-page: 1860 year: 2011 end-page: 1872 ident: b7 article-title: A second-order tridiagonal method for American options under jump–diffusion models publication-title: SIAM J Sci Comput – volume: 96 start-page: 1137 year: 2019 end-page: 1157 ident: b20 article-title: An IMEX predictor–corrector method for pricing options under regime–switching jump–diffusion models publication-title: Int J Comput Math – volume: 55 start-page: 869 year: 2017 end-page: 891 ident: b6 article-title: An error analysis of a finite element method with IMEX–time semidiscretizations for some partial integro–differential inequalities arising in the pricing of American options publication-title: SIAM J Numer Anal – volume: 126 start-page: 108 year: 2021 end-page: 117 ident: b35 article-title: A trustable shape parameter in the kernel-based collocation method with application to pricing financial options publication-title: Eng Anal Bound Elem – volume: 17 start-page: 809 year: 2004 end-page: 814 ident: b47 article-title: Operator splitting methods for American option pricing publication-title: Appl Math Lett – volume: 76 start-page: 2434 year: 2018 end-page: 2459 ident: b31 article-title: An RBF–FD method for pricing American options under jump–diffusion models publication-title: Comput Math Appl – volume: 109 start-page: 208 year: 2016 end-page: 234 ident: b38 article-title: Analysis of the element free Galerkin (EFG) method for solving fractional cable equation with Dirichlet boundary condition publication-title: Appl Numer Math – volume: 32 start-page: 983 year: 2012 end-page: 1000 ident: b42 article-title: On generalized moving least squares and diffuse derivatives publication-title: IMA J Numer Anal – volume: 40 start-page: 267 year: 2007 end-page: 282 ident: b9 article-title: Pricing exotic options under regime switching publication-title: Insurance Math Econom – volume: 43 start-page: 1596 year: 2005 end-page: 1626 ident: b4 article-title: A finite difference scheme for option pricing in jump diffusion and exponential Lévy models publication-title: SIAM J Numer Anal – volume: 89 start-page: 1094 year: 2012 end-page: 1111 ident: b13 article-title: A front–fixing finite element method for the valuation of American options with regime switching publication-title: Int J Comput Math – volume: 43 start-page: 1596 issue: 4 year: 2005 ident: 10.1016/j.chaos.2022.112919_b4 article-title: A finite difference scheme for option pricing in jump diffusion and exponential Lévy models publication-title: SIAM J Numer Anal doi: 10.1137/S0036142903436186 – volume: 32 start-page: 983 issue: 3 year: 2012 ident: 10.1016/j.chaos.2022.112919_b42 article-title: On generalized moving least squares and diffuse derivatives publication-title: IMA J Numer Anal doi: 10.1093/imanum/drr030 – volume: 75 start-page: 2989 issue: 8 year: 2018 ident: 10.1016/j.chaos.2022.112919_b22 article-title: Solving complex PIDE systems for pricing American option under multi-state regime switching jump–diffusion model publication-title: Comput Math Appl doi: 10.1016/j.camwa.2018.01.026 – volume: 110 start-page: 159 year: 2016 ident: 10.1016/j.chaos.2022.112919_b33 article-title: A radial basis function based implicit–explicit method for option pricing under jump–diffusion models publication-title: Appl Numer Math doi: 10.1016/j.apnum.2016.08.006 – volume: 72 start-page: 1515 issue: 6 year: 2016 ident: 10.1016/j.chaos.2022.112919_b41 article-title: On the stability of the moving least squares approximation and the element-free Galerkin method publication-title: Comput Math Appl doi: 10.1016/j.camwa.2016.06.047 – year: 1995 ident: 10.1016/j.chaos.2022.112919_b44 – volume: 99 start-page: 77 year: 2016 ident: 10.1016/j.chaos.2022.112919_b39 article-title: Error estimates for the moving least–square approximation and the element–free Galerkin method in n–dimensional spaces publication-title: Appl Numer Math doi: 10.1016/j.apnum.2015.07.006 – volume: 126 start-page: 108 year: 2021 ident: 10.1016/j.chaos.2022.112919_b35 article-title: A trustable shape parameter in the kernel-based collocation method with application to pricing financial options publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2021.02.005 – volume: 65 start-page: 79 year: 2013 ident: 10.1016/j.chaos.2022.112919_b26 article-title: A radial basis collocation method for pricing American options under regime–switching jump–diffusion models publication-title: Appl Numer Math doi: 10.1016/j.apnum.2012.10.005 – volume: 84 year: 2020 ident: 10.1016/j.chaos.2022.112919_b48 article-title: On the pricing of multi–asset options under jump–diffusion processes using meshfree moving least–squares approximation publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2019.105160 – volume: 75 start-page: 173 issue: 1 year: 2017 ident: 10.1016/j.chaos.2022.112919_b37 article-title: An improved meshless method for solving two-dimensional distributed order time–fractional diffusion–wave equation with error estimate publication-title: Numer Algorithms doi: 10.1007/s11075-016-0201-0 – volume: 17 start-page: 161 issue: 2 year: 2014 ident: 10.1016/j.chaos.2022.112919_b3 article-title: Options pricing under the one-dimensional jump–diffusion model using the radial basis function interpolation scheme publication-title: Rev Deriv Res doi: 10.1007/s11147-013-9095-3 – volume: 300 start-page: 83 year: 2016 ident: 10.1016/j.chaos.2022.112919_b25 article-title: A high order finite element scheme for pricing options under regime switching jump diffusion processes publication-title: J Comput Appl Math doi: 10.1016/j.cam.2015.12.019 – volume: 20 start-page: 451 issue: 5 year: 2019 ident: 10.1016/j.chaos.2022.112919_b27 article-title: A RBF based finite difference method for option pricing under regime–switching jump–diffusion model publication-title: Int J Comput Methods Eng Sci Mech doi: 10.1080/15502287.2019.1687607 – volume: 40 start-page: 267 issue: 2 year: 2007 ident: 10.1016/j.chaos.2022.112919_b9 article-title: Pricing exotic options under regime switching publication-title: Insurance Math Econom doi: 10.1016/j.insmatheco.2006.05.001 – ident: 10.1016/j.chaos.2022.112919_b17 – volume: 89 start-page: 1094 issue: 9 year: 2012 ident: 10.1016/j.chaos.2022.112919_b13 article-title: A front–fixing finite element method for the valuation of American options with regime switching publication-title: Int J Comput Math doi: 10.1080/00207160.2012.663911 – volume: 17 start-page: 809 issue: 7 year: 2004 ident: 10.1016/j.chaos.2022.112919_b47 article-title: Operator splitting methods for American option pricing publication-title: Appl Math Lett doi: 10.1016/j.aml.2004.06.010 – volume: 66a start-page: 289 issue: 5 year: 2011 ident: 10.1016/j.chaos.2022.112919_b10 article-title: Solution of the Black–Scholes equation for pricing of barrier option publication-title: Z Naturf a doi: 10.1515/zna-2011-0504 – volume: 76 start-page: 2434 issue: 10 year: 2018 ident: 10.1016/j.chaos.2022.112919_b31 article-title: An RBF–FD method for pricing American options under jump–diffusion models publication-title: Comput Math Appl doi: 10.1016/j.camwa.2018.08.040 – volume: 68 start-page: 392 issue: 3 year: 2014 ident: 10.1016/j.chaos.2022.112919_b18 article-title: Financial options pricing with regime–switching jump–diffusions publication-title: Comput Math Appl doi: 10.1016/j.camwa.2014.06.015 – volume: 49 start-page: 2598 issue: 6 year: 2011 ident: 10.1016/j.chaos.2022.112919_b49 article-title: A second-order finite difference method for option pricing under jump–diffusion models publication-title: SIAM J Numer Anal doi: 10.1137/090777529 – volume: 39 start-page: 13 year: 2015 ident: 10.1016/j.chaos.2022.112919_b16 article-title: Convergence rates of trinomial tree methods for option pricing under regime–switching models publication-title: Appl Math Lett doi: 10.1016/j.aml.2014.07.020 – volume: 109 start-page: 208 year: 2016 ident: 10.1016/j.chaos.2022.112919_b38 article-title: Analysis of the element free Galerkin (EFG) method for solving fractional cable equation with Dirichlet boundary condition publication-title: Appl Numer Math doi: 10.1016/j.apnum.2016.07.002 – year: 2005 ident: 10.1016/j.chaos.2022.112919_b45 – volume: 37 start-page: 98 issue: 1 year: 2021 ident: 10.1016/j.chaos.2022.112919_b8 article-title: Optimal uniform error estimates for moving least–squares collocation with application to option pricing under jump–diffusion processes publication-title: Numer Methods Partial Differential Equations doi: 10.1002/num.22520 – volume: 75 start-page: 365 issue: 2 year: 2018 ident: 10.1016/j.chaos.2022.112919_b12 article-title: Pricing American options under multi-states: A radial basis collocation approach publication-title: SeMA J doi: 10.1007/s40324-017-0137-x – year: 2004 ident: 10.1016/j.chaos.2022.112919_b43 – volume: 25 start-page: 87 issue: 1 year: 2005 ident: 10.1016/j.chaos.2022.112919_b5 article-title: Robust numerical methods for contingent claims under jump diffusion processes publication-title: IMA J Numer Anal doi: 10.1093/imanum/drh011 – volume: 55 start-page: 869 issue: 2 year: 2017 ident: 10.1016/j.chaos.2022.112919_b6 article-title: An error analysis of a finite element method with IMEX–time semidiscretizations for some partial integro–differential inequalities arising in the pricing of American options publication-title: SIAM J Numer Anal doi: 10.1137/16M1074746 – volume: 33 start-page: 2144 issue: 5 year: 2011 ident: 10.1016/j.chaos.2022.112919_b14 article-title: Methods for pricing American options under regime switching publication-title: SIAM J Sci Comput doi: 10.1137/110820920 – volume: 262 start-page: 56 year: 2015 ident: 10.1016/j.chaos.2022.112919_b40 article-title: Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method publication-title: Appl Math Comput – volume: 42 start-page: 2646 issue: 8 year: 2019 ident: 10.1016/j.chaos.2022.112919_b19 article-title: An IMEX–BDF2 compact scheme for pricing options under regime–switching jump–diffusion models publication-title: Math Methods Appl Sci doi: 10.1002/mma.5539 – volume: 92 start-page: 1608 issue: 8 year: 2015 ident: 10.1016/j.chaos.2022.112919_b32 article-title: Application of the local radial basis function–based finite difference method for pricing American options publication-title: Int J Comput Math doi: 10.1080/00207160.2014.950571 – volume: 134 start-page: 81 year: 2018 ident: 10.1016/j.chaos.2022.112919_b28 article-title: Localized kernel-based approximation for pricing financial options under regime switching jump diffusion model publication-title: Appl Numer Math doi: 10.1016/j.apnum.2018.07.008 – volume: 71 start-page: 224 issue: 1 year: 2016 ident: 10.1016/j.chaos.2022.112919_b11 article-title: A new efficient numerical method for solving American option under regime switching model publication-title: Comput Math Appl doi: 10.1016/j.camwa.2015.11.019 – volume: 16 issue: 08 year: 2013 ident: 10.1016/j.chaos.2022.112919_b23 article-title: Numerical schemes for option pricing in regime–switching jump diffusion models publication-title: Int J Theor Appl Finance doi: 10.1142/S0219024913500465 – volume: 251 start-page: 363 year: 2015 ident: 10.1016/j.chaos.2022.112919_b34 article-title: Pricing European and American options by radial basis point interpolation publication-title: Appl Math Comput – volume: 27 start-page: 563 issue: 4 year: 2004 ident: 10.1016/j.chaos.2022.112919_b30 article-title: Using meshfree approximation for multi–asset American options publication-title: J Chin Inst Eng doi: 10.1080/02533839.2004.9670904 – volume: 12 start-page: 319 issue: 03 year: 2009 ident: 10.1016/j.chaos.2022.112919_b15 article-title: New numerical scheme for pricing American option with regime-switching publication-title: Int J Theor Appl Finance doi: 10.1142/S0219024909005245 – volume: 33 start-page: 1860 issue: 4 year: 2011 ident: 10.1016/j.chaos.2022.112919_b7 article-title: A second-order tridiagonal method for American options under jump–diffusion models publication-title: SIAM J Sci Comput doi: 10.1137/100806552 – volume: 37 start-page: 1142 issue: 6 year: 2013 ident: 10.1016/j.chaos.2022.112919_b29 article-title: Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach publication-title: J Econom Dynam Control doi: 10.1016/j.jedc.2013.01.013 – volume: 96 start-page: 1137 issue: 6 year: 2019 ident: 10.1016/j.chaos.2022.112919_b20 article-title: An IMEX predictor–corrector method for pricing options under regime–switching jump–diffusion models publication-title: Int J Comput Math doi: 10.1080/00207160.2018.1446526 – volume: 37 start-page: 141 issue: 155 year: 1981 ident: 10.1016/j.chaos.2022.112919_b36 article-title: Surfaces generated by moving least squares methods publication-title: Math Comp doi: 10.1090/S0025-5718-1981-0616367-1 – volume: 3 start-page: 547 issue: 1 year: 2017 ident: 10.1016/j.chaos.2022.112919_b21 article-title: Fourth-order compact finite difference scheme for American option pricing under regime–switching jump–diffusion models publication-title: Int J Appl Comput Math doi: 10.1007/s40819-017-0369-6 – volume: 3 start-page: 125 issue: 1–2 year: 1976 ident: 10.1016/j.chaos.2022.112919_b1 article-title: Option pricing when underlying stock returns are discontinuous publication-title: J Financ Econ doi: 10.1016/0304-405X(76)90022-2 – volume: 37 start-page: 3691 issue: 3 year: 2018 ident: 10.1016/j.chaos.2022.112919_b24 article-title: A front–fixing finite element method for pricing American options under regime–switching jump–diffusion models publication-title: Comput Appl Math doi: 10.1007/s40314-017-0540-z – volume: 72 start-page: 1305 issue: 5 year: 2016 ident: 10.1016/j.chaos.2022.112919_b46 article-title: A fast numerical method to price American options under the bates model publication-title: Comput Math Appl doi: 10.1016/j.camwa.2016.06.041 – volume: 48 start-page: 1086 issue: 8 year: 2002 ident: 10.1016/j.chaos.2022.112919_b2 article-title: A jump-diffusion model for option pricing publication-title: Manage Sci doi: 10.1287/mnsc.48.8.1086.166 |
SSID | ssj0001062 |
Score | 2.4894772 |
Snippet | In an incomplete market construction and by no-arbitrage assumption, the American options pricing problem under the jump-diffusion regime-switching process is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112919 |
SubjectTerms | American options pricing Finite point method Meshfree methods Moving least-squares method Partial integro-differential equations Regime-switching jump-diffusion processes |
Title | American options pricing under regime-switching jump-diffusion models with meshfree finite point method |
URI | https://dx.doi.org/10.1016/j.chaos.2022.112919 |
Volume | 166 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001062 issn: 0960-0779 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001062 issn: 0960-0779 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-2887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001062 issn: 0960-0779 databaseCode: .~1 dateStart: 0 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1873-2887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001062 issn: 0960-0779 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001062 issn: 0960-0779 databaseCode: AKRWK dateStart: 19910101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYEDYgPEeCkHDiBRRtN2bY7TxDRA7AKTdqvSJtk6sbVqO3Hjt2P3MUBCO3CtbKlyEudzbH8m5EpJTyLyNETAbMPWELAKoUzDNAXnIbPgfBXVFuPeaGI_TZ1pgwzqXhgsq6x8f-nTC29dfelW1uwmUdR9RfB977qcYUKXexi3I_sX7Om7z-8yDwh5ikwCCBsoXTMPFTVe4VzEyNnNGLbScKTb-et2-nHjDA_IfgUVab_8mxZpqFWb7L1seFazNmlVRzOj1xV_9M0hmdVZGBqXFSs0STF_PqPYMJZSnMWwVEb2EeVFISVdwJIaOClljU9ntBiOk1F8oaVLlc11qhTVEYJTmsTRKqfl2OkjMhk-vA1GRjVPwQCjWzk4vhAAlS0B4Zme5qYX2K5WwnKVE3LmeAKiYQj3tA1Rk7RNraTDAg0KnmBwTKV1TJqreKVOCA09IbkCUcCHtmN6PBCABJC93tHSkbJDWG1HP6zIxnHmxbtfV5Ut_ML4PhrfL43fIbcbpaTk2tgu3qsXyP-1ZXy4DbYpnv5X8Yzs4rT58gXmnDTzdK0uAJPkwWWx6S7JTv_xeTT-AgdO4Lo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2hdgAGBAXENx4YQCIqcR0ajwiBCrRdaKVukRPbkIp-qEnF3-cucSqQEANr5JOis31-5zu_B3BhdKgJeXoq5sITFhNWpYzv-b6SMuEt3F9Ft0X_tjMUz6NgtAb31VsYaqt0sb-M6UW0dl-azpvNeZo2Xwl837TbklNBV4aYt9dFgDG5BvW7p5dOfxWQMespigk43iODinyoaPNK3tWMaLs5p9c0khh3fjugvh06j9uw5dAiuyt_aAfWzLQBm70V1WrWgB23OzN26Sikr3bhrSrEsFnZtMLmCyqhvzF6M7ZgJMcwMV72meZFLyUb46x6JJaypNszVujjZIwuadnEZO92YQyzKeFTNp-l05yVytN7MHx8GNx3PCep4KHfWznGvgQxldAI8vzQSj-MRdsa1WqbIJE8CBUmxJjxWYGJkxa-NTrgsUWDUHHcqbq1D7XpbGoOgCWh0tLgUISIIvBDGSsEA0RgH1gdaH0IvPJjlDi-cZK9-IiqxrJxVDg_IudHpfMP4XplNC_pNv4efltNUPRj1UR4IPxlePRfw3NY7wx63aj71H85hg0Sny8vZE6gli-W5hQhSh6fuSX4BbRI42U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=American+options+pricing+under+regime-switching+jump-diffusion+models+with+meshfree+finite+point+method&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Shirzadi%2C+Mohammad&rft.au=Rostami%2C+Mohammadreza&rft.au=Dehghan%2C+Mehdi&rft.au=Li%2C+Xiaolin&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0960-0779&rft.eissn=1873-2887&rft.volume=166&rft_id=info:doi/10.1016%2Fj.chaos.2022.112919&rft.externalDocID=S0960077922010980 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |