Study of population partitioning techniques on efficiency of swarm algorithms

This paper presents a study of various population partitioning techniques and their effect on the efficiency of swarm algorithms. Population partitioning techniques based on different concepts have been studied. Prominent amongst them is self-adaptive multi-population (SAMP) technique where populati...

Full description

Saved in:
Bibliographic Details
Published inSwarm and evolutionary computation Vol. 55; p. 100672
Main Authors Chaudhary, Reshu, Banati, Hema
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text
ISSN2210-6502
DOI10.1016/j.swevo.2020.100672

Cover

Abstract This paper presents a study of various population partitioning techniques and their effect on the efficiency of swarm algorithms. Population partitioning techniques based on different concepts have been studied. Prominent amongst them is self-adaptive multi-population (SAMP) technique where populations are added and deleted dynamically based on their diversity. This techniques start with a single randomly initialised population, called free population. After evolution, if the distance between solutions drops below a limit, it is considered to have converged. If all existing populations have converged, a new randomly generated population is added. SAMP keeps at least one free population at all times, hence ensuring the algorithm doesn’t get trapped in local optima. Another promising population partitioning technique studied is random partitioning, where a single population is divided into many smaller sub-populations randomly. Few extensions to the studied techniques are proposed, like an adaptive hierarchical partitioning technique, seed based partitioning with fixed seeds, random partitioning with master population, SAMP with random partitioning etc. All the studied and proposed techniques are compared over a set of benchmark functions. The strongest amongst all techniques was found to be SAMPR. SAMPR is a hybrid of self-adaptive multi-population (SAMP) technique and random partitioning where after every few generations all populations are combined together and re-partitioned randomly. Efficiency of SAMPR is validated over seven well-known swarm algorithms. Extensive comparisons are conducted over multiple benchmark functions, CEC′14 function set and 800 GKLS generated functions. Results establish the efficiency of the proposed technique for improving performance of swarm algorithms.
AbstractList This paper presents a study of various population partitioning techniques and their effect on the efficiency of swarm algorithms. Population partitioning techniques based on different concepts have been studied. Prominent amongst them is self-adaptive multi-population (SAMP) technique where populations are added and deleted dynamically based on their diversity. This techniques start with a single randomly initialised population, called free population. After evolution, if the distance between solutions drops below a limit, it is considered to have converged. If all existing populations have converged, a new randomly generated population is added. SAMP keeps at least one free population at all times, hence ensuring the algorithm doesn’t get trapped in local optima. Another promising population partitioning technique studied is random partitioning, where a single population is divided into many smaller sub-populations randomly. Few extensions to the studied techniques are proposed, like an adaptive hierarchical partitioning technique, seed based partitioning with fixed seeds, random partitioning with master population, SAMP with random partitioning etc. All the studied and proposed techniques are compared over a set of benchmark functions. The strongest amongst all techniques was found to be SAMPR. SAMPR is a hybrid of self-adaptive multi-population (SAMP) technique and random partitioning where after every few generations all populations are combined together and re-partitioned randomly. Efficiency of SAMPR is validated over seven well-known swarm algorithms. Extensive comparisons are conducted over multiple benchmark functions, CEC′14 function set and 800 GKLS generated functions. Results establish the efficiency of the proposed technique for improving performance of swarm algorithms.
ArticleNumber 100672
Author Chaudhary, Reshu
Banati, Hema
Author_xml – sequence: 1
  givenname: Reshu
  surname: Chaudhary
  fullname: Chaudhary, Reshu
  email: reshu.dumca@gmail.com
  organization: Department of Computer Science, University of Delhi, India
– sequence: 2
  givenname: Hema
  surname: Banati
  fullname: Banati, Hema
  email: banatihema@hotmail.com
  organization: Dyal Singh College, University of Delhi, India
BookMark eNqFkD1PwzAQhj0UiVL6C1jyBxL8UTvJwIAqvqQiBmC2XOfcukrjYDut-u9JUiYGuOVOd3pOep8rNGlcAwjdEJwRTMTtLgtHOLiMYjpssMjpBE0pJTgVHNNLNA9hh_sSmHJeTtHre-yqU-JM0rq2q1W0rkla5aMdJttskgh629ivDkLSn8AYqy00emTCUfl9ouqN8zZu9-EaXRhVB5j_9Bn6fHz4WD6nq7enl-X9KtWUsZgWvCR6LTilAohSJan4osAFxyxfM0VMwYGV5SJXmvFcKFMBMUAWwlREExCczRA7_9XeheDByNbbvfInSbAcRMidHEXIQYQ8i-ip8helbRwTR69s_Q97d2ahj3Ww4GUYNUBlPegoK2f_5L8BUdx_4w
CitedBy_id crossref_primary_10_1007_s11042_022_13790_3
crossref_primary_10_1016_j_eswa_2024_123214
crossref_primary_10_1016_j_asoc_2024_111952
crossref_primary_10_1016_j_engappai_2023_106277
crossref_primary_10_1016_j_istruc_2020_11_008
crossref_primary_10_1155_2024_2228698
crossref_primary_10_1109_ACCESS_2024_3427632
crossref_primary_10_1007_s10489_023_04761_8
crossref_primary_10_1109_ACCESS_2022_3162634
crossref_primary_10_1007_s10878_023_01102_w
crossref_primary_10_1007_s10586_024_04883_9
crossref_primary_10_1007_s10462_024_10857_5
Cites_doi 10.1016/j.eswa.2018.04.024
10.1016/j.swevo.2018.05.002
10.1007/s11047-017-9660-z
10.1016/j.swevo.2017.04.008
10.1504/IJBIC.2018.093328
10.1016/j.neucom.2018.02.038
10.1145/962437.962444
10.1016/j.eswa.2014.10.008
10.1007/s12065-013-0102-2
10.1016/j.eswa.2018.12.020
10.1007/s11227-019-02776-y
10.1109/TSMCB.2012.2217491
10.1016/j.asoc.2018.06.024
10.1016/j.cor.2012.11.002
10.1016/j.swevo.2020.100665
10.1016/j.cnsns.2014.08.026
10.1016/j.swevo.2018.04.011
10.1016/j.ifacol.2018.09.311
10.1038/s41598-017-18940-4
10.1007/s10898-012-9864-9
10.1016/j.swevo.2019.04.008
10.1016/j.cie.2018.07.042
10.1007/s12559-018-9579-4
10.1109/TEVC.2011.2169966
10.1016/j.swevo.2013.08.001
10.1016/j.asoc.2018.02.042
10.1016/j.procs.2015.05.105
10.1016/j.swevo.2011.02.002
10.1016/j.swevo.2018.09.002
10.1016/j.eswa.2019.02.027
10.1007/BF00939380
10.1080/03052150500384759
10.1007/s12293-016-0212-3
10.1109/TEVC.2015.2504383
10.1016/j.ijepes.2016.01.003
10.1016/j.ins.2014.08.050
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2020.100672
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_swevo_2020_100672
S2210650219305553
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CBWCG
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c233t-8591cb65226e1aa91d548085037b3a1f85e39947ac3576afde1fe146fd1c1e653
IEDL.DBID .~1
ISSN 2210-6502
IngestDate Wed Oct 01 04:16:48 EDT 2025
Thu Apr 24 22:59:36 EDT 2025
Fri Feb 23 02:47:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-population
Swarm algorithms
Global optimisation
Population partitioning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c233t-8591cb65226e1aa91d548085037b3a1f85e39947ac3576afde1fe146fd1c1e653
ParticipantIDs crossref_primary_10_1016_j_swevo_2020_100672
crossref_citationtrail_10_1016_j_swevo_2020_100672
elsevier_sciencedirect_doi_10_1016_j_swevo_2020_100672
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Swarm and evolutionary computation
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gaviano, Kvasov, Lera, Sergeyev (bib52) 2003; 29
Wang, Deb, Coelho (bib49) 2018; 12
Gutierrez, Dieulle, Labadie, Velasco (bib16) 2018; 125
Yang, Deb (bib46) 2009
Li, Yang (bib43) 2009
Jun, Liheng, Xianyi (bib10) 2015; 263
Al-Betar, Awadallah, Doush, Hammouri, Mafarja, Alyasseri (bib19) 2019
Yu, Gen (bib1) 2010
Al-Betar, Awadallah (bib23) 2018; 107
Zhang, He, Zhang (bib21) 2019; 121
Sergeyev, Kvasov, Mukhametzhanov (bib53) 2018; 8
Li, Nguyen, Yang, Mavrovouniotis, Yang (bib40) 2016; 20
Mansour, Basseur, Saubion (bib17) 2018; 70
Eusuff, Lansey, Pasha (bib29) 2006; 38
Tonga, Dongab, Jing (bib18) 2018; 290
Yang (bib22) 2010; vol. 284
Duan, Gupta, Sorooshian (bib28) 1993; 76
Cui, Li, Luo, Chen, Ming, Lu, Lu (bib14) 2018; 43
Carrasco, García, Rueda, Das, Herrera (bib56) 2020; 54
Banati, Chaudhary (bib31) 2016
Zhu, Jiao, Pan (bib12) 2006; vol. 4222
Parrott, Li (bib35) 2004
Lardeux, Maturana, Rodriguez-Tello, Saubion (bib9) 2019; 18
Yang (bib45) 2012; vol. 7445
Yang, Deb, Mishra (bib15) 2018; 10
Yang (bib44) 2009
Skakovski, Jedrzejowicz (bib20) 2019; 126
Hongru, Jinxing, Shouyong (bib42) 2018; 51
Kordestani, Ranginkaman, Meybodi, Novoa-Hernandez (bib6) 2019; 44
Zadeh, Kobti (bib11) 2015; 52
Li, Yang (bib5) 2012; 16
Blackwell (bib38) 2007; vol. 51
Yang (bib3) 2014; 7
Yang (bib2) 2010
Lassig, Sudholt (bib7) 2010
Yammani, Maheswarapu, Matam (bib30) 2016; 79
Derrac, García, Molina, Herrera (bib50) 2011; 1
Al-Betar, Awadallah, Khader, Abdalkareem (bib24) 2015; 42
Yazdani, Nezamabadi-pour, Kamyab (bib25) 2014; 14
Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho, Das, Suganthan, Coello, Herrera (bib55) 2019; 48
Maa, Shen, Yu, Yang, Fei, Zhou (bib4) 2019; 44
Chaudhary, Banati (bib32) 2018
Plessis, Engelbrecht (bib39) 2013; 55
Halder, Das, Maity (bib41) 2013; 43
Rao, Saroj (bib13) 2017; 37
Jaddi, Abdullah, Hamdan (bib26) 2015; 294
Wang (bib48) 2018; 10
Toledo, Oliveira, Franca (bib37) 2013; 40
Samal, Konar, Das, Abraham (bib57) 2007
Wang, Deb, Cui (bib47) 2015
Sergeyev, Kvasov (bib54) 2015; 21
Liang, Qu, Suganthan (bib51) 2013
Skolicki, Jong (bib8) 2005
Parrott, Li (bib33) 2006; vol. 10
Xia, Gui, Zhan (bib27) 2018; 67
Li (bib34) 2004
Petrowski (bib36) 1996
Sergeyev (10.1016/j.swevo.2020.100672_bib53) 2018; 8
Hongru (10.1016/j.swevo.2020.100672_bib42) 2018; 51
Xia (10.1016/j.swevo.2020.100672_bib27) 2018; 67
Parrott (10.1016/j.swevo.2020.100672_bib33) 2006; vol. 10
Li (10.1016/j.swevo.2020.100672_bib43) 2009
Sergeyev (10.1016/j.swevo.2020.100672_bib54) 2015; 21
Lassig (10.1016/j.swevo.2020.100672_bib7) 2010
Rao (10.1016/j.swevo.2020.100672_bib13) 2017; 37
Yang (10.1016/j.swevo.2020.100672_bib15) 2018; 10
Li (10.1016/j.swevo.2020.100672_bib5) 2012; 16
Kordestani (10.1016/j.swevo.2020.100672_bib6) 2019; 44
Mansour (10.1016/j.swevo.2020.100672_bib17) 2018; 70
Gutierrez (10.1016/j.swevo.2020.100672_bib16) 2018; 125
Lardeux (10.1016/j.swevo.2020.100672_bib9) 2019; 18
Liang (10.1016/j.swevo.2020.100672_bib51) 2013
Gaviano (10.1016/j.swevo.2020.100672_bib52) 2003; 29
Zhang (10.1016/j.swevo.2020.100672_bib21) 2019; 121
Wang (10.1016/j.swevo.2020.100672_bib49) 2018; 12
Yang (10.1016/j.swevo.2020.100672_bib22) 2010; vol. 284
Duan (10.1016/j.swevo.2020.100672_bib28) 1993; 76
Petrowski (10.1016/j.swevo.2020.100672_bib36) 1996
Ser (10.1016/j.swevo.2020.100672_bib55) 2019; 48
Skakovski (10.1016/j.swevo.2020.100672_bib20) 2019; 126
Yang (10.1016/j.swevo.2020.100672_bib2) 2010
Plessis (10.1016/j.swevo.2020.100672_bib39) 2013; 55
Yang (10.1016/j.swevo.2020.100672_bib45) 2012; vol. 7445
Yammani (10.1016/j.swevo.2020.100672_bib30) 2016; 79
Parrott (10.1016/j.swevo.2020.100672_bib35) 2004
Banati (10.1016/j.swevo.2020.100672_bib31) 2016
Carrasco (10.1016/j.swevo.2020.100672_bib56) 2020; 54
Al-Betar (10.1016/j.swevo.2020.100672_bib23) 2018; 107
Zadeh (10.1016/j.swevo.2020.100672_bib11) 2015; 52
Eusuff (10.1016/j.swevo.2020.100672_bib29) 2006; 38
Li (10.1016/j.swevo.2020.100672_bib34) 2004
Samal (10.1016/j.swevo.2020.100672_bib57) 2007
Zhu (10.1016/j.swevo.2020.100672_bib12) 2006; vol. 4222
Wang (10.1016/j.swevo.2020.100672_bib48) 2018; 10
Blackwell (10.1016/j.swevo.2020.100672_bib38) 2007; vol. 51
Skolicki (10.1016/j.swevo.2020.100672_bib8) 2005
Yang (10.1016/j.swevo.2020.100672_bib3) 2014; 7
Al-Betar (10.1016/j.swevo.2020.100672_bib24) 2015; 42
Yang (10.1016/j.swevo.2020.100672_bib44) 2009
Cui (10.1016/j.swevo.2020.100672_bib14) 2018; 43
Yu (10.1016/j.swevo.2020.100672_bib1) 2010
Wang (10.1016/j.swevo.2020.100672_bib47) 2015
Maa (10.1016/j.swevo.2020.100672_bib4) 2019; 44
Yazdani (10.1016/j.swevo.2020.100672_bib25) 2014; 14
Jaddi (10.1016/j.swevo.2020.100672_bib26) 2015; 294
Derrac (10.1016/j.swevo.2020.100672_bib50) 2011; 1
Toledo (10.1016/j.swevo.2020.100672_bib37) 2013; 40
Halder (10.1016/j.swevo.2020.100672_bib41) 2013; 43
Tonga (10.1016/j.swevo.2020.100672_bib18) 2018; 290
Al-Betar (10.1016/j.swevo.2020.100672_bib19) 2019
Yang (10.1016/j.swevo.2020.100672_bib46) 2009
Chaudhary (10.1016/j.swevo.2020.100672_bib32) 2018
Jun (10.1016/j.swevo.2020.100672_bib10) 2015; 263
Li (10.1016/j.swevo.2020.100672_bib40) 2016; 20
References_xml – year: 2010
  ident: bib1
  article-title: Introduction to Evolutionary Algorithms
– volume: 40
  start-page: 910
  year: 2013
  end-page: 919
  ident: bib37
  article-title: A hybrid multi-population genetic algorithm applied to solve the multi-level capacitated lot sizing problem with backlogging
  publication-title: Comput. Oper. Res.
– volume: 44
  start-page: 788
  year: 2019
  end-page: 805
  ident: bib6
  article-title: A novel framework for improving multi-population algorithms for dynamic optimization problems: a scheduling approach
  publication-title: Swarm Evol. Comput.
– volume: 76
  start-page: 501
  year: 1993
  end-page: 521
  ident: bib28
  article-title: Shuffled complex evolution approach for effective and efficient global minimization
  publication-title: J. Optim. Theor. Appl.
– start-page: 105
  year: 2004
  end-page: 116
  ident: bib34
  article-title: Adaptively choosing neighborhood bests in a particle swarm optimizer for multimodal function optimization
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-2004, Volume 3102 of LNCS
– volume: 8
  start-page: 453
  year: 2018
  ident: bib53
  article-title: On the efficiency of nature inspired metaheuristics in expensive global optimization with limited budget
  publication-title: Sci. Rep.
– volume: 20
  start-page: 590
  year: 2016
  end-page: 6056
  ident: bib40
  article-title: An adaptive multipopulation framework for locating and tracking multiple optima
  publication-title: IEEE Trans. Evol. Comput.
– volume: 44
  start-page: 365
  year: 2019
  end-page: 387
  ident: bib4
  article-title: Multi-population techniques in nature inspired optimization algorithms: a comprehensive survey
  publication-title: Swarm Evol. Comput.
– volume: 29
  start-page: 469
  year: 2003
  end-page: 480
  ident: bib52
  article-title: Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization
  publication-title: ACM Trans. Math Software
– start-page: 798
  year: 1996
  end-page: 803
  ident: bib36
  article-title: A clearing procedure as a niching method for genetic algorithms
  publication-title: Proceedings of International Conference on Evolutionary Computation
– volume: 10
  start-page: 1085
  year: 2018
  end-page: 1095
  ident: bib15
  article-title: Multi-species cuckoo search algorithm for global optimization
  publication-title: Cogn. Comput.
– volume: 290
  start-page: 130
  year: 2018
  end-page: 147
  ident: bib18
  article-title: An improved multi-population ensemble differential evolution
  publication-title: Neurocomputing
– volume: 125
  start-page: 144
  year: 2018
  end-page: 156
  ident: bib16
  article-title: A multi-population algorithm to solve the VRP with stochastic service and travel times
  publication-title: Comput. Ind. Eng.
– volume: 54
  year: 2020
  ident: bib56
  article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review
  publication-title: Swarm Evol. Comput.
– volume: 263
  start-page: 361
  year: 2015
  end-page: 377
  ident: bib10
  article-title: A double-subpopulation variant of the bat algorithm
  publication-title: Appl. Math. Comput.
– start-page: 731
  year: 2016
  end-page: 738
  ident: bib31
  article-title: Enhanced shuffled bat algorithm (EShBAT)
  publication-title: 2016 International Conference on Advances in Computing, Communications and Informatics
– volume: 37
  start-page: 1
  year: 2017
  end-page: 26
  ident: bib13
  article-title: A self-adaptive multi-population based Jaya algorithm for engineering optimization
  publication-title: Swarm Evol. Comput.
– volume: 79
  start-page: 120
  year: 2016
  end-page: 131
  ident: bib30
  article-title: A Multi-objective Shuffled Bat algorithm for optimal placement and sizing of multi distributed generations with different load models
  publication-title: Electric. Power Energy Syst.
– volume: 70
  start-page: 814
  year: 2018
  end-page: 825
  ident: bib17
  article-title: A multi-population algorithm for multi-objective knapsack problem
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib50
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 55
  start-page: 73
  year: 2013
  end-page: 99
  ident: bib39
  article-title: Differential evolution for dynamic environments with unknown numbers of optima
  publication-title: J. Global Optim.
– volume: vol. 284
  start-page: 65
  year: 2010
  end-page: 74
  ident: bib22
  article-title: A new metaheuristic bat-inspired algorithm
  publication-title: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence
– volume: 126
  start-page: 308
  year: 2019
  end-page: 320
  ident: bib20
  article-title: An island-based differential evolution algorithm with the multi-size populations
  publication-title: Expert Syst. Appl.
– year: 2013
  ident: bib51
  article-title: Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real- Parameter Numerical Optimization
– start-page: 210
  year: 2009
  end-page: 214
  ident: bib46
  article-title: Cuckoo Search via Lévy Flights.
– year: 2015
  ident: bib47
  article-title: Monarch butterfly optimization
  publication-title: Neural Comput. Appl.
– volume: 12
  year: 2018
  ident: bib49
  article-title: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems
  publication-title: Int. J. Bio-Inspired Comput.
– year: 2019
  ident: bib19
  article-title: Island flower pollination algorithm for global optimization
  publication-title: J. Supercomput.
– start-page: 98
  year: 2004
  end-page: 103
  ident: bib35
  article-title: A particle swarm model for tracking multiple peaks in a dynamic environment using speciation
  publication-title: Proceedings of the 2004 Congress on Evolutionary Computation
– volume: 14
  start-page: 1
  year: 2014
  end-page: 14
  ident: bib25
  article-title: A gravitational search algorithm for multimodal optimization
  publication-title: Swarm Evol. Comput.
– volume: 43
  start-page: 881
  year: 2013
  end-page: 897
  ident: bib41
  article-title: A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments
  publication-title: IEEE Trans. Cybern.
– volume: 48
  start-page: 220
  year: 2019
  end-page: 250
  ident: bib55
  article-title: Bio-inspired computation: Where we stand and what’s next
  publication-title: Swarm Evol. Comput.
– volume: 18
  start-page: 163
  year: 2019
  end-page: 179
  ident: bib9
  article-title: Migration policies in dynamic island models
  publication-title: Nat. Comput.
– volume: 43
  start-page: 184
  year: 2018
  end-page: 206
  ident: bib14
  article-title: An enhanced artificial bee colony algorithm with dual-population framework
  publication-title: Swarm Evol. Comput.
– volume: 294
  start-page: 628
  year: 2015
  end-page: 644
  ident: bib26
  article-title: Multi-population cooperative bat algorithm-based optimization of artificial neural network model
  publication-title: Inf. Sci.
– volume: 21
  start-page: 99
  year: 2015
  end-page: 111
  ident: bib54
  article-title: A deterministic global optimization using smooth diagonal auxiliary functions
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
– volume: 10
  start-page: 151
  year: 2018
  end-page: 164
  ident: bib48
  article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems
  publication-title: Memetic Comp
– volume: 51
  start-page: 269
  year: 2018
  end-page: 274
  ident: bib42
  article-title: A hybrid PSO based on dynamic clustering for global optimization
  publication-title: IFAC-Pap. OnLine
– volume: 42
  start-page: 2026
  year: 2015
  end-page: 2035
  ident: bib24
  article-title: Island-based harmony search for optimization problems
  publication-title: Expert Syst. Appl.
– volume: 7
  start-page: 17
  year: 2014
  end-page: 28
  ident: bib3
  article-title: Swarm intelligence based algorithms: a critical analysis
  publication-title: Evol. Intel.
– start-page: 169
  year: 2009
  end-page: 178
  ident: bib44
  article-title: Firefly algorithms for multimodal optimization
  publication-title: Stochastic Algorithms: Foundations and Applications, SAGA 2009, Lecture Notes in Computer Science 5792
– volume: vol. 4222
  year: 2006
  ident: bib12
  article-title: Multi-population genetic algorithm for feature selection
  publication-title: Advances in Natural Computation. ICNC 2006. Lecture Notes in Computer Science
– year: 2018
  ident: bib32
  article-title: Swarm bat algorithm with improved search (SBAIS) Soft Comput
– volume: 107
  start-page: 126
  year: 2018
  end-page: 145
  ident: bib23
  article-title: Island bat algorithm for optimization
  publication-title: Expert Syst. Appl.
– year: 2010
  ident: bib2
  article-title: Nature-Inspired Metaheuristic Algorithms
– start-page: 1105
  year: 2010
  end-page: 1112
  ident: bib7
  article-title: The benefit of migration in parallel evolutionary algorithms
  publication-title: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation
– start-page: 439
  year: 2009
  end-page: 446
  ident: bib43
  article-title: A Clustering Particle Swarm Optimizer for Dynamic Optimization
– start-page: 1295
  year: 2005
  end-page: 1302
  ident: bib8
  article-title: The influence of migration sizes and intervals on island models
  publication-title: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation
– volume: 52
  start-page: 342
  year: 2015
  end-page: 349
  ident: bib11
  article-title: A multi-population cultural algorithm for community detection in social networks
  publication-title: Procedia Comp. Sci.
– volume: 38
  start-page: 129
  year: 2006
  end-page: 154
  ident: bib29
  article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization
  publication-title: Eng. Optim.
– volume: vol. 51
  start-page: 29
  year: 2007
  end-page: 49
  ident: bib38
  article-title: Particle swarm optimization in dynamic environments
  publication-title: Evolutionary Computation in Dynamic and Uncertain Environments. Studies in Computational Intelligence
– volume: 67
  start-page: 126
  year: 2018
  end-page: 140
  ident: bib27
  article-title: A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting
  publication-title: Appl. Soft Comput.
– start-page: 1769
  year: 2007
  end-page: 1776
  ident: bib57
  article-title: A closed loop stability analysis and parameter selection of the Particle Swarm Optimization dynamics for faster convergence
  publication-title: 2007 IEEE Congress on Evolutionary Computation
– volume: vol. 7445
  start-page: 240
  year: 2012
  end-page: 249
  ident: bib45
  article-title: Flower pollination algorithm for global optimization
  publication-title: Unconventional Computation and Natural Computation. UCNC 2012. Lecture Notes in Computer Science
– volume: vol. 10
  start-page: 440
  year: 2006
  end-page: 458
  ident: bib33
  article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 16
  start-page: 556
  year: 2012
  end-page: 577
  ident: bib5
  article-title: A general framework of multipopulation methods with clustering in undetectable dynamic environments
  publication-title: IEEE Trans. Evol. Comput.
– volume: 121
  start-page: 221
  year: 2019
  end-page: 232
  ident: bib21
  article-title: A novel multi-stage hybrid model with enhanced multi-population niche genetic algorithm: an application in credit scoring
  publication-title: Expert Syst. Appl.
– year: 2015
  ident: 10.1016/j.swevo.2020.100672_bib47
  article-title: Monarch butterfly optimization
  publication-title: Neural Comput. Appl.
– volume: 107
  start-page: 126
  year: 2018
  ident: 10.1016/j.swevo.2020.100672_bib23
  article-title: Island bat algorithm for optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.04.024
– volume: 43
  start-page: 184
  year: 2018
  ident: 10.1016/j.swevo.2020.100672_bib14
  article-title: An enhanced artificial bee colony algorithm with dual-population framework
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.05.002
– start-page: 105
  year: 2004
  ident: 10.1016/j.swevo.2020.100672_bib34
  article-title: Adaptively choosing neighborhood bests in a particle swarm optimizer for multimodal function optimization
– volume: vol. 284
  start-page: 65
  year: 2010
  ident: 10.1016/j.swevo.2020.100672_bib22
  article-title: A new metaheuristic bat-inspired algorithm
– volume: 18
  start-page: 163
  issue: 1
  year: 2019
  ident: 10.1016/j.swevo.2020.100672_bib9
  article-title: Migration policies in dynamic island models
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-017-9660-z
– volume: 37
  start-page: 1
  year: 2017
  ident: 10.1016/j.swevo.2020.100672_bib13
  article-title: A self-adaptive multi-population based Jaya algorithm for engineering optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.04.008
– volume: 12
  year: 2018
  ident: 10.1016/j.swevo.2020.100672_bib49
  article-title: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2018.093328
– year: 2018
  ident: 10.1016/j.swevo.2020.100672_bib32
– start-page: 210
  year: 2009
  ident: 10.1016/j.swevo.2020.100672_bib46
– start-page: 1769
  year: 2007
  ident: 10.1016/j.swevo.2020.100672_bib57
  article-title: A closed loop stability analysis and parameter selection of the Particle Swarm Optimization dynamics for faster convergence
– volume: 290
  start-page: 130
  year: 2018
  ident: 10.1016/j.swevo.2020.100672_bib18
  article-title: An improved multi-population ensemble differential evolution
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.038
– volume: 29
  start-page: 469
  issue: 4
  year: 2003
  ident: 10.1016/j.swevo.2020.100672_bib52
  article-title: Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization
  publication-title: ACM Trans. Math Software
  doi: 10.1145/962437.962444
– volume: 42
  start-page: 2026
  issue: 4
  year: 2015
  ident: 10.1016/j.swevo.2020.100672_bib24
  article-title: Island-based harmony search for optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.10.008
– start-page: 798
  year: 1996
  ident: 10.1016/j.swevo.2020.100672_bib36
  article-title: A clearing procedure as a niching method for genetic algorithms
– volume: 7
  start-page: 17
  year: 2014
  ident: 10.1016/j.swevo.2020.100672_bib3
  article-title: Swarm intelligence based algorithms: a critical analysis
  publication-title: Evol. Intel.
  doi: 10.1007/s12065-013-0102-2
– volume: 121
  start-page: 221
  year: 2019
  ident: 10.1016/j.swevo.2020.100672_bib21
  article-title: A novel multi-stage hybrid model with enhanced multi-population niche genetic algorithm: an application in credit scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.12.020
– volume: vol. 51
  start-page: 29
  year: 2007
  ident: 10.1016/j.swevo.2020.100672_bib38
  article-title: Particle swarm optimization in dynamic environments
– year: 2019
  ident: 10.1016/j.swevo.2020.100672_bib19
  article-title: Island flower pollination algorithm for global optimization
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-019-02776-y
– volume: 43
  start-page: 881
  issue: 3
  year: 2013
  ident: 10.1016/j.swevo.2020.100672_bib41
  article-title: A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2217491
– start-page: 1105
  year: 2010
  ident: 10.1016/j.swevo.2020.100672_bib7
  article-title: The benefit of migration in parallel evolutionary algorithms
– volume: 70
  start-page: 814
  year: 2018
  ident: 10.1016/j.swevo.2020.100672_bib17
  article-title: A multi-population algorithm for multi-objective knapsack problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.06.024
– volume: 40
  start-page: 910
  issue: 4
  year: 2013
  ident: 10.1016/j.swevo.2020.100672_bib37
  article-title: A hybrid multi-population genetic algorithm applied to solve the multi-level capacitated lot sizing problem with backlogging
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2012.11.002
– start-page: 98
  year: 2004
  ident: 10.1016/j.swevo.2020.100672_bib35
  article-title: A particle swarm model for tracking multiple peaks in a dynamic environment using speciation
– volume: 54
  year: 2020
  ident: 10.1016/j.swevo.2020.100672_bib56
  article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100665
– volume: 21
  start-page: 99
  year: 2015
  ident: 10.1016/j.swevo.2020.100672_bib54
  article-title: A deterministic global optimization using smooth diagonal auxiliary functions
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2014.08.026
– volume: 44
  start-page: 365
  year: 2019
  ident: 10.1016/j.swevo.2020.100672_bib4
  article-title: Multi-population techniques in nature inspired optimization algorithms: a comprehensive survey
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.04.011
– volume: 51
  start-page: 269
  issue: 18
  year: 2018
  ident: 10.1016/j.swevo.2020.100672_bib42
  article-title: A hybrid PSO based on dynamic clustering for global optimization
  publication-title: IFAC-Pap. OnLine
  doi: 10.1016/j.ifacol.2018.09.311
– volume: 8
  start-page: 453
  year: 2018
  ident: 10.1016/j.swevo.2020.100672_bib53
  article-title: On the efficiency of nature inspired metaheuristics in expensive global optimization with limited budget
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-18940-4
– volume: 55
  start-page: 73
  year: 2013
  ident: 10.1016/j.swevo.2020.100672_bib39
  article-title: Differential evolution for dynamic environments with unknown numbers of optima
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-012-9864-9
– volume: 48
  start-page: 220
  year: 2019
  ident: 10.1016/j.swevo.2020.100672_bib55
  article-title: Bio-inspired computation: Where we stand and what’s next
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.04.008
– volume: 125
  start-page: 144
  year: 2018
  ident: 10.1016/j.swevo.2020.100672_bib16
  article-title: A multi-population algorithm to solve the VRP with stochastic service and travel times
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.07.042
– volume: 10
  start-page: 1085
  year: 2018
  ident: 10.1016/j.swevo.2020.100672_bib15
  article-title: Multi-species cuckoo search algorithm for global optimization
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-018-9579-4
– volume: vol. 10
  start-page: 440
  year: 2006
  ident: 10.1016/j.swevo.2020.100672_bib33
  article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation
– volume: 16
  start-page: 556
  issue: 4
  year: 2012
  ident: 10.1016/j.swevo.2020.100672_bib5
  article-title: A general framework of multipopulation methods with clustering in undetectable dynamic environments
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2011.2169966
– volume: 14
  start-page: 1
  year: 2014
  ident: 10.1016/j.swevo.2020.100672_bib25
  article-title: A gravitational search algorithm for multimodal optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.08.001
– start-page: 1295
  year: 2005
  ident: 10.1016/j.swevo.2020.100672_bib8
  article-title: The influence of migration sizes and intervals on island models
– volume: 67
  start-page: 126
  year: 2018
  ident: 10.1016/j.swevo.2020.100672_bib27
  article-title: A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.02.042
– volume: 52
  start-page: 342
  year: 2015
  ident: 10.1016/j.swevo.2020.100672_bib11
  article-title: A multi-population cultural algorithm for community detection in social networks
  publication-title: Procedia Comp. Sci.
  doi: 10.1016/j.procs.2015.05.105
– volume: 1
  start-page: 3
  year: 2011
  ident: 10.1016/j.swevo.2020.100672_bib50
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 44
  start-page: 788
  year: 2019
  ident: 10.1016/j.swevo.2020.100672_bib6
  article-title: A novel framework for improving multi-population algorithms for dynamic optimization problems: a scheduling approach
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.09.002
– volume: 126
  start-page: 308
  year: 2019
  ident: 10.1016/j.swevo.2020.100672_bib20
  article-title: An island-based differential evolution algorithm with the multi-size populations
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.02.027
– start-page: 731
  year: 2016
  ident: 10.1016/j.swevo.2020.100672_bib31
  article-title: Enhanced shuffled bat algorithm (EShBAT)
– volume: 263
  start-page: 361
  year: 2015
  ident: 10.1016/j.swevo.2020.100672_bib10
  article-title: A double-subpopulation variant of the bat algorithm
  publication-title: Appl. Math. Comput.
– volume: 76
  start-page: 501
  year: 1993
  ident: 10.1016/j.swevo.2020.100672_bib28
  article-title: Shuffled complex evolution approach for effective and efficient global minimization
  publication-title: J. Optim. Theor. Appl.
  doi: 10.1007/BF00939380
– volume: vol. 4222
  year: 2006
  ident: 10.1016/j.swevo.2020.100672_bib12
  article-title: Multi-population genetic algorithm for feature selection
– start-page: 169
  year: 2009
  ident: 10.1016/j.swevo.2020.100672_bib44
  article-title: Firefly algorithms for multimodal optimization
– volume: 38
  start-page: 129
  issue: 2
  year: 2006
  ident: 10.1016/j.swevo.2020.100672_bib29
  article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization
  publication-title: Eng. Optim.
  doi: 10.1080/03052150500384759
– volume: 10
  start-page: 151
  year: 2018
  ident: 10.1016/j.swevo.2020.100672_bib48
  article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems
  publication-title: Memetic Comp
  doi: 10.1007/s12293-016-0212-3
– year: 2013
  ident: 10.1016/j.swevo.2020.100672_bib51
– year: 2010
  ident: 10.1016/j.swevo.2020.100672_bib2
– volume: 20
  start-page: 590
  issue: 4
  year: 2016
  ident: 10.1016/j.swevo.2020.100672_bib40
  article-title: An adaptive multipopulation framework for locating and tracking multiple optima
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2504383
– start-page: 439
  year: 2009
  ident: 10.1016/j.swevo.2020.100672_bib43
– year: 2010
  ident: 10.1016/j.swevo.2020.100672_bib1
– volume: 79
  start-page: 120
  year: 2016
  ident: 10.1016/j.swevo.2020.100672_bib30
  article-title: A Multi-objective Shuffled Bat algorithm for optimal placement and sizing of multi distributed generations with different load models
  publication-title: Electric. Power Energy Syst.
  doi: 10.1016/j.ijepes.2016.01.003
– volume: vol. 7445
  start-page: 240
  year: 2012
  ident: 10.1016/j.swevo.2020.100672_bib45
  article-title: Flower pollination algorithm for global optimization
– volume: 294
  start-page: 628
  year: 2015
  ident: 10.1016/j.swevo.2020.100672_bib26
  article-title: Multi-population cooperative bat algorithm-based optimization of artificial neural network model
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.08.050
SSID ssj0000602559
Score 2.2785006
Snippet This paper presents a study of various population partitioning techniques and their effect on the efficiency of swarm algorithms. Population partitioning...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100672
SubjectTerms Global optimisation
Multi-population
Population partitioning
Swarm algorithms
Title Study of population partitioning techniques on efficiency of swarm algorithms
URI https://dx.doi.org/10.1016/j.swevo.2020.100672
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 2210-6502
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000602559
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 2210-6502
  databaseCode: AIKHN
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000602559
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 2210-6502
  databaseCode: .~1
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000602559
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 2210-6502
  databaseCode: ACRLP
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000602559
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 2210-6502
  databaseCode: AKRWK
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000602559
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MgGCbLvHjx2zg_Fg4erSu00HJcFpepcRddsltDC-jMPpq1unjxtwuUNpoYDx7b8jbtE3h5IA_PC8AlS7GQemrxfE6UFypMvJiw2JNcRr7wY4aUVfmO6WgS3k3JtAUG9VkYI6t0ub_K6TZbuzs9h2Yvn816j1ivVjS_0EPOulYZx88wjEwVg-tP1Oyz-NSyZlNjTrf3TEBtPmRlXsVGvptDgNgKBmiEf5-gvk06wz2w49gi7FcftA9acnkAdutKDNANzEPwYOSAH3ClYN4U5IK5-Q-33wobr9YC6kfSGkeYU5cmptjw9QLy-fNqPStfFsURmAxvngYjzxVK8DIcBKVBF2UpNVRKIs4ZEsbFLSZ-EKUBRyomUvOQMOJZoJcXXAmJlNQpUgmUIUlJcAzay9VSngBIQyoYYdgPmAgzJvTbNEcRVGRExoqmHYBrdJLMuYibYhbzpJaLvSYW0sRAmlSQdsBVE5RXJhp_N6c17MmPvpDoNP9X4Ol_A8_AtrmqJGDnoF2u3-SFJhtl2rW9qQu2-rf3o_EXbGvT-Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MgGCZzHvTit3F-cvBoXaGFtkezuEzddnFLdiO0gM7so1mrixd_u0DbRROzg9fSl7RP4OWBPDwvANdRjIXUS4vjcqIcX2HihCQKHcll4Ao3jJCyKt8-7Qz9xxEZ1UCrugtjZJVl7i9yus3W5ZNmiWYzHY-bz1jvVjS_0FPOulZ5G2DTJzgwO7DbL7Q6aHGppc2myJwOcExE5T5kdV7ZUn6YW4DYKgZogP9eoX6sOu09sFPSRXhXfNE-qMnZAditSjHAcmYegp7RA37CuYLpqiIXTM2PlAeucGXWmkHdJK1zhLl2aWKyJV9MIZ-8zBfj_HWaHYFh-37Q6jhlpQQnwZ6XG3hRElPDpSTiPELC2LiFxPWC2ONIhURqIuIHPPH0_oIrIZGSOkcqgRIkKfGOQX02n8kTAKlPRUQi7HqR8JNI6N40SRFUJESGisYNgCt0WFLaiJtqFhNW6cXemIWUGUhZAWkD3KyC0sJFY_3rtIKd_RoMTOf5dYGn_w28AludQa_Lug_9pzOwbVoKPdg5qOeLd3mhmUceX9qR9Q19i9WO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+population+partitioning+techniques+on+efficiency+of+swarm+algorithms&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Chaudhary%2C+Reshu&rft.au=Banati%2C+Hema&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=55&rft_id=info:doi/10.1016%2Fj.swevo.2020.100672&rft.externalDocID=S2210650219305553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon