Study of population partitioning techniques on efficiency of swarm algorithms
This paper presents a study of various population partitioning techniques and their effect on the efficiency of swarm algorithms. Population partitioning techniques based on different concepts have been studied. Prominent amongst them is self-adaptive multi-population (SAMP) technique where populati...
Saved in:
| Published in | Swarm and evolutionary computation Vol. 55; p. 100672 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.06.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2210-6502 |
| DOI | 10.1016/j.swevo.2020.100672 |
Cover
| Abstract | This paper presents a study of various population partitioning techniques and their effect on the efficiency of swarm algorithms. Population partitioning techniques based on different concepts have been studied. Prominent amongst them is self-adaptive multi-population (SAMP) technique where populations are added and deleted dynamically based on their diversity. This techniques start with a single randomly initialised population, called free population. After evolution, if the distance between solutions drops below a limit, it is considered to have converged. If all existing populations have converged, a new randomly generated population is added. SAMP keeps at least one free population at all times, hence ensuring the algorithm doesn’t get trapped in local optima. Another promising population partitioning technique studied is random partitioning, where a single population is divided into many smaller sub-populations randomly. Few extensions to the studied techniques are proposed, like an adaptive hierarchical partitioning technique, seed based partitioning with fixed seeds, random partitioning with master population, SAMP with random partitioning etc. All the studied and proposed techniques are compared over a set of benchmark functions. The strongest amongst all techniques was found to be SAMPR. SAMPR is a hybrid of self-adaptive multi-population (SAMP) technique and random partitioning where after every few generations all populations are combined together and re-partitioned randomly. Efficiency of SAMPR is validated over seven well-known swarm algorithms. Extensive comparisons are conducted over multiple benchmark functions, CEC′14 function set and 800 GKLS generated functions. Results establish the efficiency of the proposed technique for improving performance of swarm algorithms. |
|---|---|
| AbstractList | This paper presents a study of various population partitioning techniques and their effect on the efficiency of swarm algorithms. Population partitioning techniques based on different concepts have been studied. Prominent amongst them is self-adaptive multi-population (SAMP) technique where populations are added and deleted dynamically based on their diversity. This techniques start with a single randomly initialised population, called free population. After evolution, if the distance between solutions drops below a limit, it is considered to have converged. If all existing populations have converged, a new randomly generated population is added. SAMP keeps at least one free population at all times, hence ensuring the algorithm doesn’t get trapped in local optima. Another promising population partitioning technique studied is random partitioning, where a single population is divided into many smaller sub-populations randomly. Few extensions to the studied techniques are proposed, like an adaptive hierarchical partitioning technique, seed based partitioning with fixed seeds, random partitioning with master population, SAMP with random partitioning etc. All the studied and proposed techniques are compared over a set of benchmark functions. The strongest amongst all techniques was found to be SAMPR. SAMPR is a hybrid of self-adaptive multi-population (SAMP) technique and random partitioning where after every few generations all populations are combined together and re-partitioned randomly. Efficiency of SAMPR is validated over seven well-known swarm algorithms. Extensive comparisons are conducted over multiple benchmark functions, CEC′14 function set and 800 GKLS generated functions. Results establish the efficiency of the proposed technique for improving performance of swarm algorithms. |
| ArticleNumber | 100672 |
| Author | Chaudhary, Reshu Banati, Hema |
| Author_xml | – sequence: 1 givenname: Reshu surname: Chaudhary fullname: Chaudhary, Reshu email: reshu.dumca@gmail.com organization: Department of Computer Science, University of Delhi, India – sequence: 2 givenname: Hema surname: Banati fullname: Banati, Hema email: banatihema@hotmail.com organization: Dyal Singh College, University of Delhi, India |
| BookMark | eNqFkD1PwzAQhj0UiVL6C1jyBxL8UTvJwIAqvqQiBmC2XOfcukrjYDut-u9JUiYGuOVOd3pOep8rNGlcAwjdEJwRTMTtLgtHOLiMYjpssMjpBE0pJTgVHNNLNA9hh_sSmHJeTtHre-yqU-JM0rq2q1W0rkla5aMdJttskgh629ivDkLSn8AYqy00emTCUfl9ouqN8zZu9-EaXRhVB5j_9Bn6fHz4WD6nq7enl-X9KtWUsZgWvCR6LTilAohSJan4osAFxyxfM0VMwYGV5SJXmvFcKFMBMUAWwlREExCczRA7_9XeheDByNbbvfInSbAcRMidHEXIQYQ8i-ip8helbRwTR69s_Q97d2ahj3Ww4GUYNUBlPegoK2f_5L8BUdx_4w |
| CitedBy_id | crossref_primary_10_1007_s11042_022_13790_3 crossref_primary_10_1016_j_eswa_2024_123214 crossref_primary_10_1016_j_asoc_2024_111952 crossref_primary_10_1016_j_engappai_2023_106277 crossref_primary_10_1016_j_istruc_2020_11_008 crossref_primary_10_1155_2024_2228698 crossref_primary_10_1109_ACCESS_2024_3427632 crossref_primary_10_1007_s10489_023_04761_8 crossref_primary_10_1109_ACCESS_2022_3162634 crossref_primary_10_1007_s10878_023_01102_w crossref_primary_10_1007_s10586_024_04883_9 crossref_primary_10_1007_s10462_024_10857_5 |
| Cites_doi | 10.1016/j.eswa.2018.04.024 10.1016/j.swevo.2018.05.002 10.1007/s11047-017-9660-z 10.1016/j.swevo.2017.04.008 10.1504/IJBIC.2018.093328 10.1016/j.neucom.2018.02.038 10.1145/962437.962444 10.1016/j.eswa.2014.10.008 10.1007/s12065-013-0102-2 10.1016/j.eswa.2018.12.020 10.1007/s11227-019-02776-y 10.1109/TSMCB.2012.2217491 10.1016/j.asoc.2018.06.024 10.1016/j.cor.2012.11.002 10.1016/j.swevo.2020.100665 10.1016/j.cnsns.2014.08.026 10.1016/j.swevo.2018.04.011 10.1016/j.ifacol.2018.09.311 10.1038/s41598-017-18940-4 10.1007/s10898-012-9864-9 10.1016/j.swevo.2019.04.008 10.1016/j.cie.2018.07.042 10.1007/s12559-018-9579-4 10.1109/TEVC.2011.2169966 10.1016/j.swevo.2013.08.001 10.1016/j.asoc.2018.02.042 10.1016/j.procs.2015.05.105 10.1016/j.swevo.2011.02.002 10.1016/j.swevo.2018.09.002 10.1016/j.eswa.2019.02.027 10.1007/BF00939380 10.1080/03052150500384759 10.1007/s12293-016-0212-3 10.1109/TEVC.2015.2504383 10.1016/j.ijepes.2016.01.003 10.1016/j.ins.2014.08.050 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.swevo.2020.100672 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_swevo_2020_100672 S2210650219305553 |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AAXUO AAYFN ABAOU ABBOA ABGRD ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CBWCG EBS EFJIC EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c233t-8591cb65226e1aa91d548085037b3a1f85e39947ac3576afde1fe146fd1c1e653 |
| IEDL.DBID | .~1 |
| ISSN | 2210-6502 |
| IngestDate | Wed Oct 01 04:16:48 EDT 2025 Thu Apr 24 22:59:36 EDT 2025 Fri Feb 23 02:47:31 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-population Swarm algorithms Global optimisation Population partitioning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c233t-8591cb65226e1aa91d548085037b3a1f85e39947ac3576afde1fe146fd1c1e653 |
| ParticipantIDs | crossref_primary_10_1016_j_swevo_2020_100672 crossref_citationtrail_10_1016_j_swevo_2020_100672 elsevier_sciencedirect_doi_10_1016_j_swevo_2020_100672 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 2020-06-00 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Swarm and evolutionary computation |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Gaviano, Kvasov, Lera, Sergeyev (bib52) 2003; 29 Wang, Deb, Coelho (bib49) 2018; 12 Gutierrez, Dieulle, Labadie, Velasco (bib16) 2018; 125 Yang, Deb (bib46) 2009 Li, Yang (bib43) 2009 Jun, Liheng, Xianyi (bib10) 2015; 263 Al-Betar, Awadallah, Doush, Hammouri, Mafarja, Alyasseri (bib19) 2019 Yu, Gen (bib1) 2010 Al-Betar, Awadallah (bib23) 2018; 107 Zhang, He, Zhang (bib21) 2019; 121 Sergeyev, Kvasov, Mukhametzhanov (bib53) 2018; 8 Li, Nguyen, Yang, Mavrovouniotis, Yang (bib40) 2016; 20 Mansour, Basseur, Saubion (bib17) 2018; 70 Eusuff, Lansey, Pasha (bib29) 2006; 38 Tonga, Dongab, Jing (bib18) 2018; 290 Yang (bib22) 2010; vol. 284 Duan, Gupta, Sorooshian (bib28) 1993; 76 Cui, Li, Luo, Chen, Ming, Lu, Lu (bib14) 2018; 43 Carrasco, García, Rueda, Das, Herrera (bib56) 2020; 54 Banati, Chaudhary (bib31) 2016 Zhu, Jiao, Pan (bib12) 2006; vol. 4222 Parrott, Li (bib35) 2004 Lardeux, Maturana, Rodriguez-Tello, Saubion (bib9) 2019; 18 Yang (bib45) 2012; vol. 7445 Yang, Deb, Mishra (bib15) 2018; 10 Yang (bib44) 2009 Skakovski, Jedrzejowicz (bib20) 2019; 126 Hongru, Jinxing, Shouyong (bib42) 2018; 51 Kordestani, Ranginkaman, Meybodi, Novoa-Hernandez (bib6) 2019; 44 Zadeh, Kobti (bib11) 2015; 52 Li, Yang (bib5) 2012; 16 Blackwell (bib38) 2007; vol. 51 Yang (bib3) 2014; 7 Yang (bib2) 2010 Lassig, Sudholt (bib7) 2010 Yammani, Maheswarapu, Matam (bib30) 2016; 79 Derrac, García, Molina, Herrera (bib50) 2011; 1 Al-Betar, Awadallah, Khader, Abdalkareem (bib24) 2015; 42 Yazdani, Nezamabadi-pour, Kamyab (bib25) 2014; 14 Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho, Das, Suganthan, Coello, Herrera (bib55) 2019; 48 Maa, Shen, Yu, Yang, Fei, Zhou (bib4) 2019; 44 Chaudhary, Banati (bib32) 2018 Plessis, Engelbrecht (bib39) 2013; 55 Halder, Das, Maity (bib41) 2013; 43 Rao, Saroj (bib13) 2017; 37 Jaddi, Abdullah, Hamdan (bib26) 2015; 294 Wang (bib48) 2018; 10 Toledo, Oliveira, Franca (bib37) 2013; 40 Samal, Konar, Das, Abraham (bib57) 2007 Wang, Deb, Cui (bib47) 2015 Sergeyev, Kvasov (bib54) 2015; 21 Liang, Qu, Suganthan (bib51) 2013 Skolicki, Jong (bib8) 2005 Parrott, Li (bib33) 2006; vol. 10 Xia, Gui, Zhan (bib27) 2018; 67 Li (bib34) 2004 Petrowski (bib36) 1996 Sergeyev (10.1016/j.swevo.2020.100672_bib53) 2018; 8 Hongru (10.1016/j.swevo.2020.100672_bib42) 2018; 51 Xia (10.1016/j.swevo.2020.100672_bib27) 2018; 67 Parrott (10.1016/j.swevo.2020.100672_bib33) 2006; vol. 10 Li (10.1016/j.swevo.2020.100672_bib43) 2009 Sergeyev (10.1016/j.swevo.2020.100672_bib54) 2015; 21 Lassig (10.1016/j.swevo.2020.100672_bib7) 2010 Rao (10.1016/j.swevo.2020.100672_bib13) 2017; 37 Yang (10.1016/j.swevo.2020.100672_bib15) 2018; 10 Li (10.1016/j.swevo.2020.100672_bib5) 2012; 16 Kordestani (10.1016/j.swevo.2020.100672_bib6) 2019; 44 Mansour (10.1016/j.swevo.2020.100672_bib17) 2018; 70 Gutierrez (10.1016/j.swevo.2020.100672_bib16) 2018; 125 Lardeux (10.1016/j.swevo.2020.100672_bib9) 2019; 18 Liang (10.1016/j.swevo.2020.100672_bib51) 2013 Gaviano (10.1016/j.swevo.2020.100672_bib52) 2003; 29 Zhang (10.1016/j.swevo.2020.100672_bib21) 2019; 121 Wang (10.1016/j.swevo.2020.100672_bib49) 2018; 12 Yang (10.1016/j.swevo.2020.100672_bib22) 2010; vol. 284 Duan (10.1016/j.swevo.2020.100672_bib28) 1993; 76 Petrowski (10.1016/j.swevo.2020.100672_bib36) 1996 Ser (10.1016/j.swevo.2020.100672_bib55) 2019; 48 Skakovski (10.1016/j.swevo.2020.100672_bib20) 2019; 126 Yang (10.1016/j.swevo.2020.100672_bib2) 2010 Plessis (10.1016/j.swevo.2020.100672_bib39) 2013; 55 Yang (10.1016/j.swevo.2020.100672_bib45) 2012; vol. 7445 Yammani (10.1016/j.swevo.2020.100672_bib30) 2016; 79 Parrott (10.1016/j.swevo.2020.100672_bib35) 2004 Banati (10.1016/j.swevo.2020.100672_bib31) 2016 Carrasco (10.1016/j.swevo.2020.100672_bib56) 2020; 54 Al-Betar (10.1016/j.swevo.2020.100672_bib23) 2018; 107 Zadeh (10.1016/j.swevo.2020.100672_bib11) 2015; 52 Eusuff (10.1016/j.swevo.2020.100672_bib29) 2006; 38 Li (10.1016/j.swevo.2020.100672_bib34) 2004 Samal (10.1016/j.swevo.2020.100672_bib57) 2007 Zhu (10.1016/j.swevo.2020.100672_bib12) 2006; vol. 4222 Wang (10.1016/j.swevo.2020.100672_bib48) 2018; 10 Blackwell (10.1016/j.swevo.2020.100672_bib38) 2007; vol. 51 Skolicki (10.1016/j.swevo.2020.100672_bib8) 2005 Yang (10.1016/j.swevo.2020.100672_bib3) 2014; 7 Al-Betar (10.1016/j.swevo.2020.100672_bib24) 2015; 42 Yang (10.1016/j.swevo.2020.100672_bib44) 2009 Cui (10.1016/j.swevo.2020.100672_bib14) 2018; 43 Yu (10.1016/j.swevo.2020.100672_bib1) 2010 Wang (10.1016/j.swevo.2020.100672_bib47) 2015 Maa (10.1016/j.swevo.2020.100672_bib4) 2019; 44 Yazdani (10.1016/j.swevo.2020.100672_bib25) 2014; 14 Jaddi (10.1016/j.swevo.2020.100672_bib26) 2015; 294 Derrac (10.1016/j.swevo.2020.100672_bib50) 2011; 1 Toledo (10.1016/j.swevo.2020.100672_bib37) 2013; 40 Halder (10.1016/j.swevo.2020.100672_bib41) 2013; 43 Tonga (10.1016/j.swevo.2020.100672_bib18) 2018; 290 Al-Betar (10.1016/j.swevo.2020.100672_bib19) 2019 Yang (10.1016/j.swevo.2020.100672_bib46) 2009 Chaudhary (10.1016/j.swevo.2020.100672_bib32) 2018 Jun (10.1016/j.swevo.2020.100672_bib10) 2015; 263 Li (10.1016/j.swevo.2020.100672_bib40) 2016; 20 |
| References_xml | – year: 2010 ident: bib1 article-title: Introduction to Evolutionary Algorithms – volume: 40 start-page: 910 year: 2013 end-page: 919 ident: bib37 article-title: A hybrid multi-population genetic algorithm applied to solve the multi-level capacitated lot sizing problem with backlogging publication-title: Comput. Oper. Res. – volume: 44 start-page: 788 year: 2019 end-page: 805 ident: bib6 article-title: A novel framework for improving multi-population algorithms for dynamic optimization problems: a scheduling approach publication-title: Swarm Evol. Comput. – volume: 76 start-page: 501 year: 1993 end-page: 521 ident: bib28 article-title: Shuffled complex evolution approach for effective and efficient global minimization publication-title: J. Optim. Theor. Appl. – start-page: 105 year: 2004 end-page: 116 ident: bib34 article-title: Adaptively choosing neighborhood bests in a particle swarm optimizer for multimodal function optimization publication-title: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-2004, Volume 3102 of LNCS – volume: 8 start-page: 453 year: 2018 ident: bib53 article-title: On the efficiency of nature inspired metaheuristics in expensive global optimization with limited budget publication-title: Sci. Rep. – volume: 20 start-page: 590 year: 2016 end-page: 6056 ident: bib40 article-title: An adaptive multipopulation framework for locating and tracking multiple optima publication-title: IEEE Trans. Evol. Comput. – volume: 44 start-page: 365 year: 2019 end-page: 387 ident: bib4 article-title: Multi-population techniques in nature inspired optimization algorithms: a comprehensive survey publication-title: Swarm Evol. Comput. – volume: 29 start-page: 469 year: 2003 end-page: 480 ident: bib52 article-title: Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization publication-title: ACM Trans. Math Software – start-page: 798 year: 1996 end-page: 803 ident: bib36 article-title: A clearing procedure as a niching method for genetic algorithms publication-title: Proceedings of International Conference on Evolutionary Computation – volume: 10 start-page: 1085 year: 2018 end-page: 1095 ident: bib15 article-title: Multi-species cuckoo search algorithm for global optimization publication-title: Cogn. Comput. – volume: 290 start-page: 130 year: 2018 end-page: 147 ident: bib18 article-title: An improved multi-population ensemble differential evolution publication-title: Neurocomputing – volume: 125 start-page: 144 year: 2018 end-page: 156 ident: bib16 article-title: A multi-population algorithm to solve the VRP with stochastic service and travel times publication-title: Comput. Ind. Eng. – volume: 54 year: 2020 ident: bib56 article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review publication-title: Swarm Evol. Comput. – volume: 263 start-page: 361 year: 2015 end-page: 377 ident: bib10 article-title: A double-subpopulation variant of the bat algorithm publication-title: Appl. Math. Comput. – start-page: 731 year: 2016 end-page: 738 ident: bib31 article-title: Enhanced shuffled bat algorithm (EShBAT) publication-title: 2016 International Conference on Advances in Computing, Communications and Informatics – volume: 37 start-page: 1 year: 2017 end-page: 26 ident: bib13 article-title: A self-adaptive multi-population based Jaya algorithm for engineering optimization publication-title: Swarm Evol. Comput. – volume: 79 start-page: 120 year: 2016 end-page: 131 ident: bib30 article-title: A Multi-objective Shuffled Bat algorithm for optimal placement and sizing of multi distributed generations with different load models publication-title: Electric. Power Energy Syst. – volume: 70 start-page: 814 year: 2018 end-page: 825 ident: bib17 article-title: A multi-population algorithm for multi-objective knapsack problem publication-title: Appl. Soft Comput. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: bib50 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – volume: 55 start-page: 73 year: 2013 end-page: 99 ident: bib39 article-title: Differential evolution for dynamic environments with unknown numbers of optima publication-title: J. Global Optim. – volume: vol. 284 start-page: 65 year: 2010 end-page: 74 ident: bib22 article-title: A new metaheuristic bat-inspired algorithm publication-title: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Studies in Computational Intelligence – volume: 126 start-page: 308 year: 2019 end-page: 320 ident: bib20 article-title: An island-based differential evolution algorithm with the multi-size populations publication-title: Expert Syst. Appl. – year: 2013 ident: bib51 article-title: Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real- Parameter Numerical Optimization – start-page: 210 year: 2009 end-page: 214 ident: bib46 article-title: Cuckoo Search via Lévy Flights. – year: 2015 ident: bib47 article-title: Monarch butterfly optimization publication-title: Neural Comput. Appl. – volume: 12 year: 2018 ident: bib49 article-title: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems publication-title: Int. J. Bio-Inspired Comput. – year: 2019 ident: bib19 article-title: Island flower pollination algorithm for global optimization publication-title: J. Supercomput. – start-page: 98 year: 2004 end-page: 103 ident: bib35 article-title: A particle swarm model for tracking multiple peaks in a dynamic environment using speciation publication-title: Proceedings of the 2004 Congress on Evolutionary Computation – volume: 14 start-page: 1 year: 2014 end-page: 14 ident: bib25 article-title: A gravitational search algorithm for multimodal optimization publication-title: Swarm Evol. Comput. – volume: 43 start-page: 881 year: 2013 end-page: 897 ident: bib41 article-title: A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments publication-title: IEEE Trans. Cybern. – volume: 48 start-page: 220 year: 2019 end-page: 250 ident: bib55 article-title: Bio-inspired computation: Where we stand and what’s next publication-title: Swarm Evol. Comput. – volume: 18 start-page: 163 year: 2019 end-page: 179 ident: bib9 article-title: Migration policies in dynamic island models publication-title: Nat. Comput. – volume: 43 start-page: 184 year: 2018 end-page: 206 ident: bib14 article-title: An enhanced artificial bee colony algorithm with dual-population framework publication-title: Swarm Evol. Comput. – volume: 294 start-page: 628 year: 2015 end-page: 644 ident: bib26 article-title: Multi-population cooperative bat algorithm-based optimization of artificial neural network model publication-title: Inf. Sci. – volume: 21 start-page: 99 year: 2015 end-page: 111 ident: bib54 article-title: A deterministic global optimization using smooth diagonal auxiliary functions publication-title: Commun. Nonlinear Sci. Numer. Simulat. – volume: 10 start-page: 151 year: 2018 end-page: 164 ident: bib48 article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems publication-title: Memetic Comp – volume: 51 start-page: 269 year: 2018 end-page: 274 ident: bib42 article-title: A hybrid PSO based on dynamic clustering for global optimization publication-title: IFAC-Pap. OnLine – volume: 42 start-page: 2026 year: 2015 end-page: 2035 ident: bib24 article-title: Island-based harmony search for optimization problems publication-title: Expert Syst. Appl. – volume: 7 start-page: 17 year: 2014 end-page: 28 ident: bib3 article-title: Swarm intelligence based algorithms: a critical analysis publication-title: Evol. Intel. – start-page: 169 year: 2009 end-page: 178 ident: bib44 article-title: Firefly algorithms for multimodal optimization publication-title: Stochastic Algorithms: Foundations and Applications, SAGA 2009, Lecture Notes in Computer Science 5792 – volume: vol. 4222 year: 2006 ident: bib12 article-title: Multi-population genetic algorithm for feature selection publication-title: Advances in Natural Computation. ICNC 2006. Lecture Notes in Computer Science – year: 2018 ident: bib32 article-title: Swarm bat algorithm with improved search (SBAIS) Soft Comput – volume: 107 start-page: 126 year: 2018 end-page: 145 ident: bib23 article-title: Island bat algorithm for optimization publication-title: Expert Syst. Appl. – year: 2010 ident: bib2 article-title: Nature-Inspired Metaheuristic Algorithms – start-page: 1105 year: 2010 end-page: 1112 ident: bib7 article-title: The benefit of migration in parallel evolutionary algorithms publication-title: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation – start-page: 439 year: 2009 end-page: 446 ident: bib43 article-title: A Clustering Particle Swarm Optimizer for Dynamic Optimization – start-page: 1295 year: 2005 end-page: 1302 ident: bib8 article-title: The influence of migration sizes and intervals on island models publication-title: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation – volume: 52 start-page: 342 year: 2015 end-page: 349 ident: bib11 article-title: A multi-population cultural algorithm for community detection in social networks publication-title: Procedia Comp. Sci. – volume: 38 start-page: 129 year: 2006 end-page: 154 ident: bib29 article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization publication-title: Eng. Optim. – volume: vol. 51 start-page: 29 year: 2007 end-page: 49 ident: bib38 article-title: Particle swarm optimization in dynamic environments publication-title: Evolutionary Computation in Dynamic and Uncertain Environments. Studies in Computational Intelligence – volume: 67 start-page: 126 year: 2018 end-page: 140 ident: bib27 article-title: A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting publication-title: Appl. Soft Comput. – start-page: 1769 year: 2007 end-page: 1776 ident: bib57 article-title: A closed loop stability analysis and parameter selection of the Particle Swarm Optimization dynamics for faster convergence publication-title: 2007 IEEE Congress on Evolutionary Computation – volume: vol. 7445 start-page: 240 year: 2012 end-page: 249 ident: bib45 article-title: Flower pollination algorithm for global optimization publication-title: Unconventional Computation and Natural Computation. UCNC 2012. Lecture Notes in Computer Science – volume: vol. 10 start-page: 440 year: 2006 end-page: 458 ident: bib33 article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation publication-title: IEEE Transactions on Evolutionary Computation – volume: 16 start-page: 556 year: 2012 end-page: 577 ident: bib5 article-title: A general framework of multipopulation methods with clustering in undetectable dynamic environments publication-title: IEEE Trans. Evol. Comput. – volume: 121 start-page: 221 year: 2019 end-page: 232 ident: bib21 article-title: A novel multi-stage hybrid model with enhanced multi-population niche genetic algorithm: an application in credit scoring publication-title: Expert Syst. Appl. – year: 2015 ident: 10.1016/j.swevo.2020.100672_bib47 article-title: Monarch butterfly optimization publication-title: Neural Comput. Appl. – volume: 107 start-page: 126 year: 2018 ident: 10.1016/j.swevo.2020.100672_bib23 article-title: Island bat algorithm for optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.04.024 – volume: 43 start-page: 184 year: 2018 ident: 10.1016/j.swevo.2020.100672_bib14 article-title: An enhanced artificial bee colony algorithm with dual-population framework publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.05.002 – start-page: 105 year: 2004 ident: 10.1016/j.swevo.2020.100672_bib34 article-title: Adaptively choosing neighborhood bests in a particle swarm optimizer for multimodal function optimization – volume: vol. 284 start-page: 65 year: 2010 ident: 10.1016/j.swevo.2020.100672_bib22 article-title: A new metaheuristic bat-inspired algorithm – volume: 18 start-page: 163 issue: 1 year: 2019 ident: 10.1016/j.swevo.2020.100672_bib9 article-title: Migration policies in dynamic island models publication-title: Nat. Comput. doi: 10.1007/s11047-017-9660-z – volume: 37 start-page: 1 year: 2017 ident: 10.1016/j.swevo.2020.100672_bib13 article-title: A self-adaptive multi-population based Jaya algorithm for engineering optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.04.008 – volume: 12 year: 2018 ident: 10.1016/j.swevo.2020.100672_bib49 article-title: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2018.093328 – year: 2018 ident: 10.1016/j.swevo.2020.100672_bib32 – start-page: 210 year: 2009 ident: 10.1016/j.swevo.2020.100672_bib46 – start-page: 1769 year: 2007 ident: 10.1016/j.swevo.2020.100672_bib57 article-title: A closed loop stability analysis and parameter selection of the Particle Swarm Optimization dynamics for faster convergence – volume: 290 start-page: 130 year: 2018 ident: 10.1016/j.swevo.2020.100672_bib18 article-title: An improved multi-population ensemble differential evolution publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.038 – volume: 29 start-page: 469 issue: 4 year: 2003 ident: 10.1016/j.swevo.2020.100672_bib52 article-title: Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization publication-title: ACM Trans. Math Software doi: 10.1145/962437.962444 – volume: 42 start-page: 2026 issue: 4 year: 2015 ident: 10.1016/j.swevo.2020.100672_bib24 article-title: Island-based harmony search for optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.10.008 – start-page: 798 year: 1996 ident: 10.1016/j.swevo.2020.100672_bib36 article-title: A clearing procedure as a niching method for genetic algorithms – volume: 7 start-page: 17 year: 2014 ident: 10.1016/j.swevo.2020.100672_bib3 article-title: Swarm intelligence based algorithms: a critical analysis publication-title: Evol. Intel. doi: 10.1007/s12065-013-0102-2 – volume: 121 start-page: 221 year: 2019 ident: 10.1016/j.swevo.2020.100672_bib21 article-title: A novel multi-stage hybrid model with enhanced multi-population niche genetic algorithm: an application in credit scoring publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.12.020 – volume: vol. 51 start-page: 29 year: 2007 ident: 10.1016/j.swevo.2020.100672_bib38 article-title: Particle swarm optimization in dynamic environments – year: 2019 ident: 10.1016/j.swevo.2020.100672_bib19 article-title: Island flower pollination algorithm for global optimization publication-title: J. Supercomput. doi: 10.1007/s11227-019-02776-y – volume: 43 start-page: 881 issue: 3 year: 2013 ident: 10.1016/j.swevo.2020.100672_bib41 article-title: A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2217491 – start-page: 1105 year: 2010 ident: 10.1016/j.swevo.2020.100672_bib7 article-title: The benefit of migration in parallel evolutionary algorithms – volume: 70 start-page: 814 year: 2018 ident: 10.1016/j.swevo.2020.100672_bib17 article-title: A multi-population algorithm for multi-objective knapsack problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.06.024 – volume: 40 start-page: 910 issue: 4 year: 2013 ident: 10.1016/j.swevo.2020.100672_bib37 article-title: A hybrid multi-population genetic algorithm applied to solve the multi-level capacitated lot sizing problem with backlogging publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2012.11.002 – start-page: 98 year: 2004 ident: 10.1016/j.swevo.2020.100672_bib35 article-title: A particle swarm model for tracking multiple peaks in a dynamic environment using speciation – volume: 54 year: 2020 ident: 10.1016/j.swevo.2020.100672_bib56 article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100665 – volume: 21 start-page: 99 year: 2015 ident: 10.1016/j.swevo.2020.100672_bib54 article-title: A deterministic global optimization using smooth diagonal auxiliary functions publication-title: Commun. Nonlinear Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2014.08.026 – volume: 44 start-page: 365 year: 2019 ident: 10.1016/j.swevo.2020.100672_bib4 article-title: Multi-population techniques in nature inspired optimization algorithms: a comprehensive survey publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.04.011 – volume: 51 start-page: 269 issue: 18 year: 2018 ident: 10.1016/j.swevo.2020.100672_bib42 article-title: A hybrid PSO based on dynamic clustering for global optimization publication-title: IFAC-Pap. OnLine doi: 10.1016/j.ifacol.2018.09.311 – volume: 8 start-page: 453 year: 2018 ident: 10.1016/j.swevo.2020.100672_bib53 article-title: On the efficiency of nature inspired metaheuristics in expensive global optimization with limited budget publication-title: Sci. Rep. doi: 10.1038/s41598-017-18940-4 – volume: 55 start-page: 73 year: 2013 ident: 10.1016/j.swevo.2020.100672_bib39 article-title: Differential evolution for dynamic environments with unknown numbers of optima publication-title: J. Global Optim. doi: 10.1007/s10898-012-9864-9 – volume: 48 start-page: 220 year: 2019 ident: 10.1016/j.swevo.2020.100672_bib55 article-title: Bio-inspired computation: Where we stand and what’s next publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.04.008 – volume: 125 start-page: 144 year: 2018 ident: 10.1016/j.swevo.2020.100672_bib16 article-title: A multi-population algorithm to solve the VRP with stochastic service and travel times publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.07.042 – volume: 10 start-page: 1085 year: 2018 ident: 10.1016/j.swevo.2020.100672_bib15 article-title: Multi-species cuckoo search algorithm for global optimization publication-title: Cogn. Comput. doi: 10.1007/s12559-018-9579-4 – volume: vol. 10 start-page: 440 year: 2006 ident: 10.1016/j.swevo.2020.100672_bib33 article-title: Locating and tracking multiple dynamic optima by a particle swarm model using speciation – volume: 16 start-page: 556 issue: 4 year: 2012 ident: 10.1016/j.swevo.2020.100672_bib5 article-title: A general framework of multipopulation methods with clustering in undetectable dynamic environments publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2011.2169966 – volume: 14 start-page: 1 year: 2014 ident: 10.1016/j.swevo.2020.100672_bib25 article-title: A gravitational search algorithm for multimodal optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2013.08.001 – start-page: 1295 year: 2005 ident: 10.1016/j.swevo.2020.100672_bib8 article-title: The influence of migration sizes and intervals on island models – volume: 67 start-page: 126 year: 2018 ident: 10.1016/j.swevo.2020.100672_bib27 article-title: A multi-swarm particle swarm optimization algorithm based on dynamical topology and purposeful detecting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.02.042 – volume: 52 start-page: 342 year: 2015 ident: 10.1016/j.swevo.2020.100672_bib11 article-title: A multi-population cultural algorithm for community detection in social networks publication-title: Procedia Comp. Sci. doi: 10.1016/j.procs.2015.05.105 – volume: 1 start-page: 3 year: 2011 ident: 10.1016/j.swevo.2020.100672_bib50 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 44 start-page: 788 year: 2019 ident: 10.1016/j.swevo.2020.100672_bib6 article-title: A novel framework for improving multi-population algorithms for dynamic optimization problems: a scheduling approach publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.09.002 – volume: 126 start-page: 308 year: 2019 ident: 10.1016/j.swevo.2020.100672_bib20 article-title: An island-based differential evolution algorithm with the multi-size populations publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.02.027 – start-page: 731 year: 2016 ident: 10.1016/j.swevo.2020.100672_bib31 article-title: Enhanced shuffled bat algorithm (EShBAT) – volume: 263 start-page: 361 year: 2015 ident: 10.1016/j.swevo.2020.100672_bib10 article-title: A double-subpopulation variant of the bat algorithm publication-title: Appl. Math. Comput. – volume: 76 start-page: 501 year: 1993 ident: 10.1016/j.swevo.2020.100672_bib28 article-title: Shuffled complex evolution approach for effective and efficient global minimization publication-title: J. Optim. Theor. Appl. doi: 10.1007/BF00939380 – volume: vol. 4222 year: 2006 ident: 10.1016/j.swevo.2020.100672_bib12 article-title: Multi-population genetic algorithm for feature selection – start-page: 169 year: 2009 ident: 10.1016/j.swevo.2020.100672_bib44 article-title: Firefly algorithms for multimodal optimization – volume: 38 start-page: 129 issue: 2 year: 2006 ident: 10.1016/j.swevo.2020.100672_bib29 article-title: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization publication-title: Eng. Optim. doi: 10.1080/03052150500384759 – volume: 10 start-page: 151 year: 2018 ident: 10.1016/j.swevo.2020.100672_bib48 article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems publication-title: Memetic Comp doi: 10.1007/s12293-016-0212-3 – year: 2013 ident: 10.1016/j.swevo.2020.100672_bib51 – year: 2010 ident: 10.1016/j.swevo.2020.100672_bib2 – volume: 20 start-page: 590 issue: 4 year: 2016 ident: 10.1016/j.swevo.2020.100672_bib40 article-title: An adaptive multipopulation framework for locating and tracking multiple optima publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2504383 – start-page: 439 year: 2009 ident: 10.1016/j.swevo.2020.100672_bib43 – year: 2010 ident: 10.1016/j.swevo.2020.100672_bib1 – volume: 79 start-page: 120 year: 2016 ident: 10.1016/j.swevo.2020.100672_bib30 article-title: A Multi-objective Shuffled Bat algorithm for optimal placement and sizing of multi distributed generations with different load models publication-title: Electric. Power Energy Syst. doi: 10.1016/j.ijepes.2016.01.003 – volume: vol. 7445 start-page: 240 year: 2012 ident: 10.1016/j.swevo.2020.100672_bib45 article-title: Flower pollination algorithm for global optimization – volume: 294 start-page: 628 year: 2015 ident: 10.1016/j.swevo.2020.100672_bib26 article-title: Multi-population cooperative bat algorithm-based optimization of artificial neural network model publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.08.050 |
| SSID | ssj0000602559 |
| Score | 2.2785006 |
| Snippet | This paper presents a study of various population partitioning techniques and their effect on the efficiency of swarm algorithms. Population partitioning... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 100672 |
| SubjectTerms | Global optimisation Multi-population Population partitioning Swarm algorithms |
| Title | Study of population partitioning techniques on efficiency of swarm algorithms |
| URI | https://dx.doi.org/10.1016/j.swevo.2020.100672 |
| Volume | 55 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 2210-6502 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000602559 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 2210-6502 databaseCode: AIKHN dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000602559 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 2210-6502 databaseCode: .~1 dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000602559 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 2210-6502 databaseCode: ACRLP dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000602559 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 2210-6502 databaseCode: AKRWK dateStart: 20110301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000602559 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MgGCbLvHjx2zg_Fg4erSu00HJcFpepcRddsltDC-jMPpq1unjxtwuUNpoYDx7b8jbtE3h5IA_PC8AlS7GQemrxfE6UFypMvJiw2JNcRr7wY4aUVfmO6WgS3k3JtAUG9VkYI6t0ub_K6TZbuzs9h2Yvn816j1ivVjS_0EPOulYZx88wjEwVg-tP1Oyz-NSyZlNjTrf3TEBtPmRlXsVGvptDgNgKBmiEf5-gvk06wz2w49gi7FcftA9acnkAdutKDNANzEPwYOSAH3ClYN4U5IK5-Q-33wobr9YC6kfSGkeYU5cmptjw9QLy-fNqPStfFsURmAxvngYjzxVK8DIcBKVBF2UpNVRKIs4ZEsbFLSZ-EKUBRyomUvOQMOJZoJcXXAmJlNQpUgmUIUlJcAzay9VSngBIQyoYYdgPmAgzJvTbNEcRVGRExoqmHYBrdJLMuYibYhbzpJaLvSYW0sRAmlSQdsBVE5RXJhp_N6c17MmPvpDoNP9X4Ol_A8_AtrmqJGDnoF2u3-SFJhtl2rW9qQu2-rf3o_EXbGvT-Q |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MgGCZzHvTit3F-cvBoXaGFtkezuEzddnFLdiO0gM7so1mrixd_u0DbRROzg9fSl7RP4OWBPDwvANdRjIXUS4vjcqIcX2HihCQKHcll4Ao3jJCyKt8-7Qz9xxEZ1UCrugtjZJVl7i9yus3W5ZNmiWYzHY-bz1jvVjS_0FPOulZ5G2DTJzgwO7DbL7Q6aHGppc2myJwOcExE5T5kdV7ZUn6YW4DYKgZogP9eoX6sOu09sFPSRXhXfNE-qMnZAditSjHAcmYegp7RA37CuYLpqiIXTM2PlAeucGXWmkHdJK1zhLl2aWKyJV9MIZ-8zBfj_HWaHYFh-37Q6jhlpQQnwZ6XG3hRElPDpSTiPELC2LiFxPWC2ONIhURqIuIHPPH0_oIrIZGSOkcqgRIkKfGOQX02n8kTAKlPRUQi7HqR8JNI6N40SRFUJESGisYNgCt0WFLaiJtqFhNW6cXemIWUGUhZAWkD3KyC0sJFY_3rtIKd_RoMTOf5dYGn_w28AludQa_Lug_9pzOwbVoKPdg5qOeLd3mhmUceX9qR9Q19i9WO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+population+partitioning+techniques+on+efficiency+of+swarm+algorithms&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Chaudhary%2C+Reshu&rft.au=Banati%2C+Hema&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=55&rft_id=info:doi/10.1016%2Fj.swevo.2020.100672&rft.externalDocID=S2210650219305553 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |