An autonomous recognition framework based on reinforced adversarial open set algorithm for compound fault of mechanical equipment
How to automatically recognize compound fault of mechanical equipment based on data-driven algorithms, has always been a research focus in modern intelligent manufacturing. Nonetheless, owing to the intricate nature of intelligent models in comprehending unknown knowledge, existing methods for compo...
Saved in:
| Published in | Mechanical systems and signal processing Vol. 219; p. 111596 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0888-3270 1096-1216 |
| DOI | 10.1016/j.ymssp.2024.111596 |
Cover
| Abstract | How to automatically recognize compound fault of mechanical equipment based on data-driven algorithms, has always been a research focus in modern intelligent manufacturing. Nonetheless, owing to the intricate nature of intelligent models in comprehending unknown knowledge, existing methods for compound fault recognition necessitate a training dataset comprising enough known compound fault samples. In order to address this issue, this paper first proposes an autonomous recognition framework based on reinforced adversarial open set (RAOS) algorithm, which can accurately recognize compound faults by utilizing the label information from single fault samples. Firstly, single fault and compound fault are represented as the known class and unknown class, respectively. Subsequently, a feature sub-network and a policy sub-network with adversarial learning are devised to classify and align the features of samples of two classes. Additionally, a deep reinforcement learning (DRL) model is formulated following a question-and-answer paradigm. Ultimately, the DRL model undertakes a sequence decision-making task to optimize the feature sub-network and the policy sub-network. Through a laboratory experiment and an engineering application, the results robustly validate the effectiveness of the proposed ROSA framework in accurately recognizing compound fault samples, even when only single fault samples are known in the training dataset. |
|---|---|
| AbstractList | How to automatically recognize compound fault of mechanical equipment based on data-driven algorithms, has always been a research focus in modern intelligent manufacturing. Nonetheless, owing to the intricate nature of intelligent models in comprehending unknown knowledge, existing methods for compound fault recognition necessitate a training dataset comprising enough known compound fault samples. In order to address this issue, this paper first proposes an autonomous recognition framework based on reinforced adversarial open set (RAOS) algorithm, which can accurately recognize compound faults by utilizing the label information from single fault samples. Firstly, single fault and compound fault are represented as the known class and unknown class, respectively. Subsequently, a feature sub-network and a policy sub-network with adversarial learning are devised to classify and align the features of samples of two classes. Additionally, a deep reinforcement learning (DRL) model is formulated following a question-and-answer paradigm. Ultimately, the DRL model undertakes a sequence decision-making task to optimize the feature sub-network and the policy sub-network. Through a laboratory experiment and an engineering application, the results robustly validate the effectiveness of the proposed ROSA framework in accurately recognizing compound fault samples, even when only single fault samples are known in the training dataset. |
| ArticleNumber | 111596 |
| Author | Wang, Zisheng Xuan, Jianping Shi, Tielin |
| Author_xml | – sequence: 1 givenname: Zisheng orcidid: 0000-0003-1722-2454 surname: Wang fullname: Wang, Zisheng email: zisheng8@mail.tsinghua.edu.cn organization: Department of Industrial Engineering, Tsinghua University, Beijing 100084, China – sequence: 2 givenname: Jianping surname: Xuan fullname: Xuan, Jianping email: jpxuan@hust.edu.cn organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 3 givenname: Tielin surname: Shi fullname: Shi, Tielin email: tlshi@hust.edu.cn organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
| BookMark | eNqFkD1PHDEQhi1EJA7CL6DxH9iLvWt8dkFxQvlAOomG1NasPQs-du2N7SWizD-PL0dFQarRjN5npPc5J6chBiTkirM1Z1x-2a9fp5zndctaseacX2t5QlacadnwlstTsmJKqaZrN-yMnOe8Z4xpweSK_NkGCkuJIU5xyTShjY_BFx8DHRJM-DumZ9pDRkfrKaEPQ0y2buBeMGVIHkYaZww0Y6EwPsbky9NEa4raOM1xCY4OsIyFxoFOaJ8geFsZ_LX4ecJQPpNPA4wZL9_mBfn57evD7Y9md__97na7a2zbdaVRXAjoRa96dL2TnPV9q5l2Sm1crYKD6wYhu17Ja2lROCdFqxFggyi0At1dkO7416aYc8LBzMlPkF4NZ-Zg0ezNP4vmYNEcLVZKv6OsL3DwUxL48T_szZHFWuvFYzLZegzVnq-ei3HRf8j_BX-Wlho |
| CitedBy_id | crossref_primary_10_1016_j_aei_2024_102641 crossref_primary_10_3390_en18071616 crossref_primary_10_1016_j_aei_2025_103132 crossref_primary_10_3390_app142411771 crossref_primary_10_1016_j_eswa_2025_126680 crossref_primary_10_1016_j_eswa_2024_125594 crossref_primary_10_3390_en18051132 crossref_primary_10_1016_j_ress_2024_110638 |
| Cites_doi | 10.1016/j.knosys.2022.110070 10.1109/TII.2021.3070324 10.1016/j.ymssp.2021.108139 10.1016/j.aei.2022.101762 10.1016/j.measurement.2019.107417 10.1016/j.ymssp.2018.02.016 10.1016/j.ress.2022.108358 10.1016/j.aei.2021.101315 10.1016/j.ymssp.2021.108321 10.1016/j.knosys.2022.108443 10.1038/nature14539 10.1038/nature24270 10.1016/j.ymssp.2023.110098 10.1016/j.measurement.2022.111276 10.1016/j.measurement.2021.110377 10.1038/nature14236 10.1155/2021/2636302 10.1016/j.aei.2022.101773 10.1016/j.measurement.2022.110888 10.1016/j.aei.2019.100977 10.1109/TII.2023.3301058 10.1016/j.measurement.2020.108339 10.1016/j.measurement.2022.110752 10.1007/978-3-030-01228-1_10 10.1016/j.ymssp.2018.03.011 10.1016/j.ymssp.2023.110110 10.3390/en14165150 10.1016/j.engappai.2022.104741 10.1016/j.cirpj.2022.11.003 10.1007/s12206-022-0607-7 10.1016/j.knosys.2022.110203 10.1016/j.measurement.2021.109604 10.1109/TII.2021.3054651 10.1016/j.knosys.2022.109439 10.1016/j.asoc.2022.109959 10.1016/j.ress.2023.109518 10.1016/j.isatra.2022.02.032 10.1038/nature16961 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ymssp.2024.111596 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1096-1216 |
| ExternalDocumentID | 10_1016_j_ymssp_2024_111596 S0888327024004941 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ ~HD |
| ID | FETCH-LOGICAL-c233t-8144ab4b8bedbd610bb2909d887d940efd3f463b8656ce4dd6429eaa7ee498a93 |
| IEDL.DBID | .~1 |
| ISSN | 0888-3270 |
| IngestDate | Wed Oct 01 05:09:12 EDT 2025 Thu Apr 24 23:01:02 EDT 2025 Sat Jul 27 15:42:31 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Autonomous compound fault recognition Deep reinforcement learning Open set recognition Deep adversarial neural network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c233t-8144ab4b8bedbd610bb2909d887d940efd3f463b8656ce4dd6429eaa7ee498a93 |
| ORCID | 0000-0003-1722-2454 |
| ParticipantIDs | crossref_primary_10_1016_j_ymssp_2024_111596 crossref_citationtrail_10_1016_j_ymssp_2024_111596 elsevier_sciencedirect_doi_10_1016_j_ymssp_2024_111596 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 2024-10-00 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Mechanical systems and signal processing |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wu, Jiang, Zhu, Wang (b24) 2023; 189 Cao, Ma, Huang, Yu (b34) 2022; 188 Liu, Yang, Zio, Chen (b11) 2018; 108 Wang, Jiang, Li, Liu (b19) 2020; 154 Gupta, Wadhvani, Rasool (b22) 2023; 259 Mei, Zhu, Liu, Fu, Tang (b28) 2024; 20 Wu, Jiang, Liu, Wang (b21) 2022; 129 Liu, Jiang, Liu, Yang, Sun (b15) 2022; 252 Yu, Zhao, Zhang, Zhang, Liu, Sun, Chen (b27) 2022; 18 Schulman, Wolski, Dhariwal, Radford, Klimov (b39) 2017 Wang, Xuan (b40) 2021; 49 Wan, Li, Chen, Gong, Li (b42) 2022; 191 Li, Zheng, Yin, Wang, Wang (b33) 2023; 40 Zhang, Liu, He, Wang, Chen (b9) 2022; 110 Zhang, Li, Ma, Luo, Li (b43) 2021; 17 LeCun, Bengio, Hinton (b14) 2015; 521 Wang, Xuan, Shi (b38) 2022; 54 Ma, Hu, Wang, Li, Wang (b3) 2021; 70 Miao, Li, Shi, Han (b25) 2023; 189 Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, Baker, Lai, Bolton (b36) 2017; 550 Pang, Nazari, Tang (b5) 2022; 165 Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, Tatsuya Harada, Open Set Domain Adaptation by Backpropagation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018. Zhang, Zhao, Yu, Ma, Wang, Chen (b30) 2023; 239 Sutton, Barto (b20) 2018 Guo, Si, Xiang (b10) 2022; 196 Liu, Jiang, Wang, Wu, Liu (b16) 2022; 192 Liu, Jiang, Wu, Liu, Zhu (b13) 2022; 54 Zhao, Shen (b29) 2022; 221 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (b37) 2015; 518 Li, Jiang, Wang, Yang, Wang, Shen, Zhu (b17) 2022; 243 Mushtaq, Islam, Sohaib (b45) 2021; 14 Ma, Liang, Du, Chen, Chen (b2) 2021; 2021 Ding, Ma, Ma, Suo, Tao, Cheng, Lu (b32) 2019; 42 Meng, Wang, Zhao, Yan (b8) 2021; 181 Liu, Jiang, Wu, Li (b12) 2022; 163 Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b31) 2016; 17 Xiao, Yu (b4) 2023; 72 Huang, Xue, Pang (b6) 2022; 36 Chen, Yang, Xue, Huang, Ferrero, Wang (b1) 2023; 72 Zhao, Jia, Shao (b23) 2023; 262 Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot (b35) 2016; 529 Haidong, Hongkai, Ke, Dongdong, Xingqiu (b18) 2018; 110 Qin, Jin, Zhang, He (b7) 2021; 70 Guo, Li, Zhou, Li, Lin (b26) 2023; 133 Li, Tang, Tang, He (b41) 2021; 169 Zhang (10.1016/j.ymssp.2024.111596_b30) 2023; 239 Qin (10.1016/j.ymssp.2024.111596_b7) 2021; 70 Wang (10.1016/j.ymssp.2024.111596_b19) 2020; 154 Silver (10.1016/j.ymssp.2024.111596_b36) 2017; 550 Ganin (10.1016/j.ymssp.2024.111596_b31) 2016; 17 Wu (10.1016/j.ymssp.2024.111596_b21) 2022; 129 Liu (10.1016/j.ymssp.2024.111596_b11) 2018; 108 Schulman (10.1016/j.ymssp.2024.111596_b39) 2017 Liu (10.1016/j.ymssp.2024.111596_b12) 2022; 163 Liu (10.1016/j.ymssp.2024.111596_b16) 2022; 192 Zhao (10.1016/j.ymssp.2024.111596_b23) 2023; 262 Zhang (10.1016/j.ymssp.2024.111596_b43) 2021; 17 Pang (10.1016/j.ymssp.2024.111596_b5) 2022; 165 Wang (10.1016/j.ymssp.2024.111596_b40) 2021; 49 Li (10.1016/j.ymssp.2024.111596_b33) 2023; 40 Ma (10.1016/j.ymssp.2024.111596_b2) 2021; 2021 10.1016/j.ymssp.2024.111596_b44 Mei (10.1016/j.ymssp.2024.111596_b28) 2024; 20 Ding (10.1016/j.ymssp.2024.111596_b32) 2019; 42 Liu (10.1016/j.ymssp.2024.111596_b13) 2022; 54 Zhao (10.1016/j.ymssp.2024.111596_b29) 2022; 221 Ma (10.1016/j.ymssp.2024.111596_b3) 2021; 70 Huang (10.1016/j.ymssp.2024.111596_b6) 2022; 36 Li (10.1016/j.ymssp.2024.111596_b41) 2021; 169 Miao (10.1016/j.ymssp.2024.111596_b25) 2023; 189 Silver (10.1016/j.ymssp.2024.111596_b35) 2016; 529 Gupta (10.1016/j.ymssp.2024.111596_b22) 2023; 259 Xiao (10.1016/j.ymssp.2024.111596_b4) 2023; 72 Li (10.1016/j.ymssp.2024.111596_b17) 2022; 243 Sutton (10.1016/j.ymssp.2024.111596_b20) 2018 Meng (10.1016/j.ymssp.2024.111596_b8) 2021; 181 Wu (10.1016/j.ymssp.2024.111596_b24) 2023; 189 Mnih (10.1016/j.ymssp.2024.111596_b37) 2015; 518 Chen (10.1016/j.ymssp.2024.111596_b1) 2023; 72 Wang (10.1016/j.ymssp.2024.111596_b38) 2022; 54 Guo (10.1016/j.ymssp.2024.111596_b10) 2022; 196 LeCun (10.1016/j.ymssp.2024.111596_b14) 2015; 521 Guo (10.1016/j.ymssp.2024.111596_b26) 2023; 133 Cao (10.1016/j.ymssp.2024.111596_b34) 2022; 188 Yu (10.1016/j.ymssp.2024.111596_b27) 2022; 18 Mushtaq (10.1016/j.ymssp.2024.111596_b45) 2021; 14 Zhang (10.1016/j.ymssp.2024.111596_b9) 2022; 110 Wan (10.1016/j.ymssp.2024.111596_b42) 2022; 191 Haidong (10.1016/j.ymssp.2024.111596_b18) 2018; 110 Liu (10.1016/j.ymssp.2024.111596_b15) 2022; 252 |
| References_xml | – volume: 72 start-page: 1 year: 2023 end-page: 21 ident: b1 article-title: Deep transfer learning for bearing fault diagnosis: A systematic review since 2016 publication-title: IEEE Trans. Instrum. Meas. – volume: 163 year: 2022 ident: b12 article-title: Data synthesis using deep feature enhanced generative adversarial networks for rolling bearing imbalanced fault diagnosis publication-title: Mech. Syst. Signal Process. – volume: 196 year: 2022 ident: b10 article-title: A compound fault diagnosis method of rolling bearing based on wavelet scattering transform and improved soft threshold denoising algorithm publication-title: Measurement – volume: 221 year: 2022 ident: b29 article-title: Dual adversarial network for cross-domain open set fault diagnosis publication-title: Reliab. Eng. Syst. Saf. – volume: 54 year: 2022 ident: b13 article-title: Machine fault diagnosis with small sample based on variational information constrained generative adversarial network publication-title: Adv. Eng. Inform. – volume: 154 year: 2020 ident: b19 article-title: A reinforcement neural architecture search method for rolling bearing fault diagnosis publication-title: Measurement – year: 2017 ident: b39 article-title: Proximal policy optimization algorithms, CoRR abs/1707.06347 – volume: 259 year: 2023 ident: b22 article-title: A real-time adaptive model for bearing fault classification and remaining useful life estimation using deep neural network publication-title: Knowl.-Based Syst. – volume: 18 start-page: 185 year: 2022 end-page: 196 ident: b27 article-title: Deep-learning-based open set fault diagnosis by extreme value theory publication-title: IEEE Trans. Ind. Inform. – volume: 70 start-page: 1 year: 2021 end-page: 11 ident: b3 article-title: Degradation state partition and compound fault diagnosis of rolling bearing based on personalized multilabel learning publication-title: IEEE Trans. Instrum. Meas. – volume: 262 year: 2023 ident: b23 article-title: A novel conditional weighting transfer wasserstein auto-encoder for rolling bearing fault diagnosis with multi-source domains publication-title: Knowl.-Based Syst. – volume: 181 year: 2021 ident: b8 article-title: Compound fault diagnosis of rolling bearing using PWK-sparse denoising and periodicity filtering publication-title: Measurement – volume: 129 start-page: 505 year: 2022 end-page: 524 ident: b21 article-title: A deep reinforcement transfer convolutional neural network for rolling bearing fault diagnosis publication-title: ISA Trans. – volume: 20 start-page: 3038 year: 2024 end-page: 3049 ident: b28 article-title: Conditional variational encoder classifier for open set fault classification of rotating machinery vibration signals publication-title: IEEE Trans. Ind. Inform. – volume: 14 year: 2021 ident: b45 article-title: Deep learning aided data-driven fault diagnosis of rotatory machine: A comprehensive review publication-title: Energies – volume: 188 year: 2022 ident: b34 article-title: Finding the optimal multilayer network structure through reinforcement learning in fault diagnosis publication-title: Measurement – volume: 169 year: 2021 ident: b41 article-title: Deep convolution domain-adversarial transfer learning for fault diagnosis of rolling bearings publication-title: Measurement – volume: 110 start-page: 193 year: 2018 end-page: 209 ident: b18 article-title: A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings publication-title: Mech. Syst. Signal Process. – volume: 2021 year: 2021 ident: b2 article-title: Compound fault diagnosis of rolling bearing based on ALIF-KELM publication-title: Math. Probl. Eng. – volume: 550 start-page: 354 year: 2017 end-page: 359 ident: b36 article-title: Mastering the game of go without human knowledge publication-title: Nature – volume: 36 start-page: 3263 year: 2022 end-page: 3276 ident: b6 article-title: Separation method of rolling bearing compound fault characteristics based on improved harmonic wavelet packet decomposition and fast ICA publication-title: J. Mech. Sci. Technol. – volume: 192 year: 2022 ident: b16 article-title: A conditional variational autoencoding generative adversarial networks with self-modulation for rolling bearing fault diagnosis publication-title: Measurement – volume: 70 start-page: 1 year: 2021 end-page: 12 ident: b7 article-title: Rolling bearing fault diagnosis with adaptive harmonic kurtosis and improved bat algorithm publication-title: IEEE Trans. Instrum. Meas. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b14 article-title: Deep learning publication-title: Nature – volume: 189 year: 2023 ident: b24 article-title: A knowledge dynamic matching unit-guided multi-source domain adaptation network with attention mechanism for rolling bearing fault diagnosis publication-title: Mech. Syst. Signal Process. – volume: 133 year: 2023 ident: b26 article-title: An open-set fault diagnosis framework for MMCs based on optimized temporal convolutional network publication-title: Appl. Soft Comput. – volume: 110 year: 2022 ident: b9 article-title: Improved double TQWT sparse representation using the MQGA algorithm and new norm for aviation bearing compound fault detection publication-title: Eng. Appl. Artif. Intell. – volume: 189 year: 2023 ident: b25 article-title: Deep network-based maximum correlated kurtosis deconvolution: A novel deep deconvolution for bearing fault diagnosis publication-title: Mech. Syst. Signal Process. – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: b37 article-title: Human-level control through deep reinforcement learning publication-title: Nature – volume: 40 start-page: 75 year: 2023 end-page: 101 ident: b33 article-title: Deep reinforcement learning in smart manufacturing: A review and prospects publication-title: CIRP J. Manuf. Sci. Technol. – year: 2018 ident: b20 article-title: Reinforcement learning: An introduction – volume: 239 year: 2023 ident: b30 article-title: Weighted domain separation based open set fault diagnosis publication-title: Reliab. Eng. Syst. Saf. – volume: 243 year: 2022 ident: b17 article-title: Multi-perspective deep transfer learning model: A promising tool for bearing intelligent fault diagnosis under varying working conditions publication-title: Knowl.-Based Syst. – volume: 165 year: 2022 ident: b5 article-title: Recursive variational mode extraction and its application in rolling bearing fault diagnosis publication-title: Mech. Syst. Signal Process. – volume: 17 start-page: 1 year: 2016 end-page: 35 ident: b31 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – volume: 42 year: 2019 ident: b32 article-title: Intelligent fault diagnosis for rotating machinery using deep Q-network based health state classification: A deep reinforcement learning approach publication-title: Adv. Eng. Inform. – volume: 108 start-page: 33 year: 2018 end-page: 47 ident: b11 article-title: Artificial intelligence for fault diagnosis of rotating machinery: A review publication-title: Mech. Syst. Signal Process. – volume: 529 start-page: 484 year: 2016 end-page: 489 ident: b35 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature – volume: 54 year: 2022 ident: b38 article-title: Multi-label fault recognition framework using deep reinforcement learning and curriculum learning mechanism publication-title: Adv. Eng. Inform. – volume: 72 start-page: 1 year: 2023 end-page: 14 ident: b4 article-title: Adaptive swarm decomposition algorithm for compound fault diagnosis of rolling bearings publication-title: IEEE Trans. Instrum. Meas. – volume: 191 year: 2022 ident: b42 article-title: A novel deep convolution multi-adversarial domain adaptation model for rolling bearing fault diagnosis publication-title: Measurement – volume: 17 start-page: 7445 year: 2021 end-page: 7455 ident: b43 article-title: Open-set domain adaptation in machinery fault diagnostics using instance-level weighted adversarial learning publication-title: IEEE Trans. Ind. Inform. – volume: 252 year: 2022 ident: b15 article-title: Data-augmented wavelet capsule generative adversarial network for rolling bearing fault diagnosis publication-title: Knowl.-Based Syst. – volume: 49 year: 2021 ident: b40 article-title: Intelligent fault recognition framework by using deep reinforcement learning with one dimension convolution and improved actor-critic algorithm publication-title: Adv. Eng. Inform. – reference: Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, Tatsuya Harada, Open Set Domain Adaptation by Backpropagation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018. – volume: 259 year: 2023 ident: 10.1016/j.ymssp.2024.111596_b22 article-title: A real-time adaptive model for bearing fault classification and remaining useful life estimation using deep neural network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.110070 – volume: 17 start-page: 1 issue: 59 year: 2016 ident: 10.1016/j.ymssp.2024.111596_b31 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – volume: 18 start-page: 185 issue: 1 year: 2022 ident: 10.1016/j.ymssp.2024.111596_b27 article-title: Deep-learning-based open set fault diagnosis by extreme value theory publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3070324 – volume: 163 year: 2022 ident: 10.1016/j.ymssp.2024.111596_b12 article-title: Data synthesis using deep feature enhanced generative adversarial networks for rolling bearing imbalanced fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108139 – volume: 54 year: 2022 ident: 10.1016/j.ymssp.2024.111596_b13 article-title: Machine fault diagnosis with small sample based on variational information constrained generative adversarial network publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2022.101762 – volume: 154 year: 2020 ident: 10.1016/j.ymssp.2024.111596_b19 article-title: A reinforcement neural architecture search method for rolling bearing fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2019.107417 – volume: 108 start-page: 33 year: 2018 ident: 10.1016/j.ymssp.2024.111596_b11 article-title: Artificial intelligence for fault diagnosis of rotating machinery: A review publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.02.016 – volume: 221 year: 2022 ident: 10.1016/j.ymssp.2024.111596_b29 article-title: Dual adversarial network for cross-domain open set fault diagnosis publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108358 – volume: 49 year: 2021 ident: 10.1016/j.ymssp.2024.111596_b40 article-title: Intelligent fault recognition framework by using deep reinforcement learning with one dimension convolution and improved actor-critic algorithm publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2021.101315 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.ymssp.2024.111596_b1 article-title: Deep transfer learning for bearing fault diagnosis: A systematic review since 2016 publication-title: IEEE Trans. Instrum. Meas. – volume: 165 year: 2022 ident: 10.1016/j.ymssp.2024.111596_b5 article-title: Recursive variational mode extraction and its application in rolling bearing fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108321 – year: 2018 ident: 10.1016/j.ymssp.2024.111596_b20 – volume: 243 year: 2022 ident: 10.1016/j.ymssp.2024.111596_b17 article-title: Multi-perspective deep transfer learning model: A promising tool for bearing intelligent fault diagnosis under varying working conditions publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108443 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.ymssp.2024.111596_b14 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 550 start-page: 354 issue: 7676 year: 2017 ident: 10.1016/j.ymssp.2024.111596_b36 article-title: Mastering the game of go without human knowledge publication-title: Nature doi: 10.1038/nature24270 – volume: 189 year: 2023 ident: 10.1016/j.ymssp.2024.111596_b24 article-title: A knowledge dynamic matching unit-guided multi-source domain adaptation network with attention mechanism for rolling bearing fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2023.110098 – volume: 196 year: 2022 ident: 10.1016/j.ymssp.2024.111596_b10 article-title: A compound fault diagnosis method of rolling bearing based on wavelet scattering transform and improved soft threshold denoising algorithm publication-title: Measurement doi: 10.1016/j.measurement.2022.111276 – volume: 188 year: 2022 ident: 10.1016/j.ymssp.2024.111596_b34 article-title: Finding the optimal multilayer network structure through reinforcement learning in fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2021.110377 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 10.1016/j.ymssp.2024.111596_b37 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.ymssp.2024.111596_b3 article-title: Degradation state partition and compound fault diagnosis of rolling bearing based on personalized multilabel learning publication-title: IEEE Trans. Instrum. Meas. – volume: 2021 year: 2021 ident: 10.1016/j.ymssp.2024.111596_b2 article-title: Compound fault diagnosis of rolling bearing based on ALIF-KELM publication-title: Math. Probl. Eng. doi: 10.1155/2021/2636302 – volume: 54 year: 2022 ident: 10.1016/j.ymssp.2024.111596_b38 article-title: Multi-label fault recognition framework using deep reinforcement learning and curriculum learning mechanism publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2022.101773 – volume: 192 year: 2022 ident: 10.1016/j.ymssp.2024.111596_b16 article-title: A conditional variational autoencoding generative adversarial networks with self-modulation for rolling bearing fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2022.110888 – volume: 42 year: 2019 ident: 10.1016/j.ymssp.2024.111596_b32 article-title: Intelligent fault diagnosis for rotating machinery using deep Q-network based health state classification: A deep reinforcement learning approach publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2019.100977 – volume: 20 start-page: 3038 issue: 3 year: 2024 ident: 10.1016/j.ymssp.2024.111596_b28 article-title: Conditional variational encoder classifier for open set fault classification of rotating machinery vibration signals publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2023.3301058 – volume: 169 year: 2021 ident: 10.1016/j.ymssp.2024.111596_b41 article-title: Deep convolution domain-adversarial transfer learning for fault diagnosis of rolling bearings publication-title: Measurement doi: 10.1016/j.measurement.2020.108339 – volume: 191 year: 2022 ident: 10.1016/j.ymssp.2024.111596_b42 article-title: A novel deep convolution multi-adversarial domain adaptation model for rolling bearing fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2022.110752 – ident: 10.1016/j.ymssp.2024.111596_b44 doi: 10.1007/978-3-030-01228-1_10 – volume: 110 start-page: 193 year: 2018 ident: 10.1016/j.ymssp.2024.111596_b18 article-title: A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.03.011 – volume: 189 year: 2023 ident: 10.1016/j.ymssp.2024.111596_b25 article-title: Deep network-based maximum correlated kurtosis deconvolution: A novel deep deconvolution for bearing fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2023.110110 – year: 2017 ident: 10.1016/j.ymssp.2024.111596_b39 – volume: 14 issue: 16 year: 2021 ident: 10.1016/j.ymssp.2024.111596_b45 article-title: Deep learning aided data-driven fault diagnosis of rotatory machine: A comprehensive review publication-title: Energies doi: 10.3390/en14165150 – volume: 110 year: 2022 ident: 10.1016/j.ymssp.2024.111596_b9 article-title: Improved double TQWT sparse representation using the MQGA algorithm and new norm for aviation bearing compound fault detection publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.104741 – volume: 40 start-page: 75 year: 2023 ident: 10.1016/j.ymssp.2024.111596_b33 article-title: Deep reinforcement learning in smart manufacturing: A review and prospects publication-title: CIRP J. Manuf. Sci. Technol. doi: 10.1016/j.cirpj.2022.11.003 – volume: 36 start-page: 3263 issue: 7 year: 2022 ident: 10.1016/j.ymssp.2024.111596_b6 article-title: Separation method of rolling bearing compound fault characteristics based on improved harmonic wavelet packet decomposition and fast ICA publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-022-0607-7 – volume: 262 year: 2023 ident: 10.1016/j.ymssp.2024.111596_b23 article-title: A novel conditional weighting transfer wasserstein auto-encoder for rolling bearing fault diagnosis with multi-source domains publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.110203 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.ymssp.2024.111596_b4 article-title: Adaptive swarm decomposition algorithm for compound fault diagnosis of rolling bearings publication-title: IEEE Trans. Instrum. Meas. – volume: 181 year: 2021 ident: 10.1016/j.ymssp.2024.111596_b8 article-title: Compound fault diagnosis of rolling bearing using PWK-sparse denoising and periodicity filtering publication-title: Measurement doi: 10.1016/j.measurement.2021.109604 – volume: 17 start-page: 7445 issue: 11 year: 2021 ident: 10.1016/j.ymssp.2024.111596_b43 article-title: Open-set domain adaptation in machinery fault diagnostics using instance-level weighted adversarial learning publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3054651 – volume: 252 year: 2022 ident: 10.1016/j.ymssp.2024.111596_b15 article-title: Data-augmented wavelet capsule generative adversarial network for rolling bearing fault diagnosis publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109439 – volume: 133 year: 2023 ident: 10.1016/j.ymssp.2024.111596_b26 article-title: An open-set fault diagnosis framework for MMCs based on optimized temporal convolutional network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109959 – volume: 239 year: 2023 ident: 10.1016/j.ymssp.2024.111596_b30 article-title: Weighted domain separation based open set fault diagnosis publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2023.109518 – volume: 129 start-page: 505 year: 2022 ident: 10.1016/j.ymssp.2024.111596_b21 article-title: A deep reinforcement transfer convolutional neural network for rolling bearing fault diagnosis publication-title: ISA Trans. doi: 10.1016/j.isatra.2022.02.032 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.ymssp.2024.111596_b7 article-title: Rolling bearing fault diagnosis with adaptive harmonic kurtosis and improved bat algorithm publication-title: IEEE Trans. Instrum. Meas. – volume: 529 start-page: 484 issue: 7587 year: 2016 ident: 10.1016/j.ymssp.2024.111596_b35 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 |
| SSID | ssj0009406 |
| Score | 2.519515 |
| Snippet | How to automatically recognize compound fault of mechanical equipment based on data-driven algorithms, has always been a research focus in modern intelligent... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 111596 |
| SubjectTerms | Autonomous compound fault recognition Deep adversarial neural network Deep reinforcement learning Open set recognition |
| Title | An autonomous recognition framework based on reinforced adversarial open set algorithm for compound fault of mechanical equipment |
| URI | https://dx.doi.org/10.1016/j.ymssp.2024.111596 |
| Volume | 219 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AKRWK dateStart: 19870101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8NADD4hWGBAPMWz8sBIaEiuaW-sKqoCggWQ2KK7nA-K2rQ06cCCxD_HzqOAhBgYc_JJydmxnejz9wlxoiI8l1ZJT2Lb9yj7hV7Hhc7TSRCiiyKXIM8739xGgwd59dh6XBK9ehaGYZVV7i9zepGtq5VmdZrN6XDYvKP3g8KxzSRdTHJSTLDLNqsYnL1_wTyULPQ12dhj65p5qMB4vY2zjEkrA8mpo8XM_b9Vp28Vp78h1qtWEbrl3WyKJUy3xNo3AsFt8dFNQc9zHkygL3hYoIEmKbgadQVcqCzQ0gwLmlR6ZtCsw5xpjj5gAS3IMAc9eprMhvnzGMgKGGzOmkvg9HyUw8TBGHlMmL0K-DofFkijHfHQv7jvDbxKVMGj0w9z_uUntZGmY9AaS82TMYHylaVkQy7z0dnQySg0HWr0EpTW0geKQq3biFJ1tAp3xXI6SXFPgG_9wKGygaGuS58nGjFxLtJOWT-h1mxfBPVhxknFOM7CF6O4hpa9xIUHYvZAXHpgX5wuNk1Lwo2_zaPaS_GPuImpJPy18eC_Gw_FKl-VgL4jsZzP5nhMjUluGkXkNcRK9_J6cPsJMK3n3g |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDMCAeIryvIGR0JC4aT0iBCrPBSp1i-z4DEVtCm06sCDxz7nLo4CEOrA6Zynxne8RffedEEcqwlNplfQkNn2PvF_otVzoPJ0EIboocglyv_PdfdTuyOtuozsnzqteGIZVlr6_8Om5ty5X6uVp1l97vfoD3Q8yxyaTdDHJCZVAC7IRNLkCO_n4xnkomQ_YZGmPxSvqoRzk9T4Yj5m1MpDsOxpM3f9XePoRci5XxUqZK8JZ8TprYg7TdbH8g0FwQ3yepaAnGXcmUAkPUzjQMAVXwa6AI5UFWhphzpNKHw2aBzGPNZsf8AQtGGMGuv80HPWy5wGQFDDanIcugdOTfgZDBwPkPmFWK-DbpJdDjTZF5_Li8bztlVMVPDr-MON_flIbaVoGrbGUPRkTKF9Z8jakMx-dDZ2MQtOiTC9BaS1VKAq1biJK1dIq3BLz6TDFbQG-9QOHygaG0i59mmjExLlIO2X9hHKzmgiqw4yTknKcJ1_04wpb9hLnGohZA3GhgZo4nm56LRg3ZotHlZbiX4YTU0yYtXHnvxsPxWL78e42vr26v9kVS_ykQPftiflsNMF9ylIyc5Bb4RebqOlz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+autonomous+recognition+framework+based+on+reinforced+adversarial+open+set+algorithm+for+compound+fault+of+mechanical+equipment&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Wang%2C+Zisheng&rft.au=Xuan%2C+Jianping&rft.au=Shi%2C+Tielin&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=219&rft_id=info:doi/10.1016%2Fj.ymssp.2024.111596&rft.externalDocID=S0888327024004941 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |