An autonomous recognition framework based on reinforced adversarial open set algorithm for compound fault of mechanical equipment

How to automatically recognize compound fault of mechanical equipment based on data-driven algorithms, has always been a research focus in modern intelligent manufacturing. Nonetheless, owing to the intricate nature of intelligent models in comprehending unknown knowledge, existing methods for compo...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 219; p. 111596
Main Authors Wang, Zisheng, Xuan, Jianping, Shi, Tielin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2024
Subjects
Online AccessGet full text
ISSN0888-3270
1096-1216
DOI10.1016/j.ymssp.2024.111596

Cover

Abstract How to automatically recognize compound fault of mechanical equipment based on data-driven algorithms, has always been a research focus in modern intelligent manufacturing. Nonetheless, owing to the intricate nature of intelligent models in comprehending unknown knowledge, existing methods for compound fault recognition necessitate a training dataset comprising enough known compound fault samples. In order to address this issue, this paper first proposes an autonomous recognition framework based on reinforced adversarial open set (RAOS) algorithm, which can accurately recognize compound faults by utilizing the label information from single fault samples. Firstly, single fault and compound fault are represented as the known class and unknown class, respectively. Subsequently, a feature sub-network and a policy sub-network with adversarial learning are devised to classify and align the features of samples of two classes. Additionally, a deep reinforcement learning (DRL) model is formulated following a question-and-answer paradigm. Ultimately, the DRL model undertakes a sequence decision-making task to optimize the feature sub-network and the policy sub-network. Through a laboratory experiment and an engineering application, the results robustly validate the effectiveness of the proposed ROSA framework in accurately recognizing compound fault samples, even when only single fault samples are known in the training dataset.
AbstractList How to automatically recognize compound fault of mechanical equipment based on data-driven algorithms, has always been a research focus in modern intelligent manufacturing. Nonetheless, owing to the intricate nature of intelligent models in comprehending unknown knowledge, existing methods for compound fault recognition necessitate a training dataset comprising enough known compound fault samples. In order to address this issue, this paper first proposes an autonomous recognition framework based on reinforced adversarial open set (RAOS) algorithm, which can accurately recognize compound faults by utilizing the label information from single fault samples. Firstly, single fault and compound fault are represented as the known class and unknown class, respectively. Subsequently, a feature sub-network and a policy sub-network with adversarial learning are devised to classify and align the features of samples of two classes. Additionally, a deep reinforcement learning (DRL) model is formulated following a question-and-answer paradigm. Ultimately, the DRL model undertakes a sequence decision-making task to optimize the feature sub-network and the policy sub-network. Through a laboratory experiment and an engineering application, the results robustly validate the effectiveness of the proposed ROSA framework in accurately recognizing compound fault samples, even when only single fault samples are known in the training dataset.
ArticleNumber 111596
Author Wang, Zisheng
Xuan, Jianping
Shi, Tielin
Author_xml – sequence: 1
  givenname: Zisheng
  orcidid: 0000-0003-1722-2454
  surname: Wang
  fullname: Wang, Zisheng
  email: zisheng8@mail.tsinghua.edu.cn
  organization: Department of Industrial Engineering, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Jianping
  surname: Xuan
  fullname: Xuan, Jianping
  email: jpxuan@hust.edu.cn
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 3
  givenname: Tielin
  surname: Shi
  fullname: Shi, Tielin
  email: tlshi@hust.edu.cn
  organization: School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
BookMark eNqFkD1PHDEQhi1EJA7CL6DxH9iLvWt8dkFxQvlAOomG1NasPQs-du2N7SWizD-PL0dFQarRjN5npPc5J6chBiTkirM1Z1x-2a9fp5zndctaseacX2t5QlacadnwlstTsmJKqaZrN-yMnOe8Z4xpweSK_NkGCkuJIU5xyTShjY_BFx8DHRJM-DumZ9pDRkfrKaEPQ0y2buBeMGVIHkYaZww0Y6EwPsbky9NEa4raOM1xCY4OsIyFxoFOaJ8geFsZ_LX4ecJQPpNPA4wZL9_mBfn57evD7Y9md__97na7a2zbdaVRXAjoRa96dL2TnPV9q5l2Sm1crYKD6wYhu17Ja2lROCdFqxFggyi0At1dkO7416aYc8LBzMlPkF4NZ-Zg0ezNP4vmYNEcLVZKv6OsL3DwUxL48T_szZHFWuvFYzLZegzVnq-ei3HRf8j_BX-Wlho
CitedBy_id crossref_primary_10_1016_j_aei_2024_102641
crossref_primary_10_3390_en18071616
crossref_primary_10_1016_j_aei_2025_103132
crossref_primary_10_3390_app142411771
crossref_primary_10_1016_j_eswa_2025_126680
crossref_primary_10_1016_j_eswa_2024_125594
crossref_primary_10_3390_en18051132
crossref_primary_10_1016_j_ress_2024_110638
Cites_doi 10.1016/j.knosys.2022.110070
10.1109/TII.2021.3070324
10.1016/j.ymssp.2021.108139
10.1016/j.aei.2022.101762
10.1016/j.measurement.2019.107417
10.1016/j.ymssp.2018.02.016
10.1016/j.ress.2022.108358
10.1016/j.aei.2021.101315
10.1016/j.ymssp.2021.108321
10.1016/j.knosys.2022.108443
10.1038/nature14539
10.1038/nature24270
10.1016/j.ymssp.2023.110098
10.1016/j.measurement.2022.111276
10.1016/j.measurement.2021.110377
10.1038/nature14236
10.1155/2021/2636302
10.1016/j.aei.2022.101773
10.1016/j.measurement.2022.110888
10.1016/j.aei.2019.100977
10.1109/TII.2023.3301058
10.1016/j.measurement.2020.108339
10.1016/j.measurement.2022.110752
10.1007/978-3-030-01228-1_10
10.1016/j.ymssp.2018.03.011
10.1016/j.ymssp.2023.110110
10.3390/en14165150
10.1016/j.engappai.2022.104741
10.1016/j.cirpj.2022.11.003
10.1007/s12206-022-0607-7
10.1016/j.knosys.2022.110203
10.1016/j.measurement.2021.109604
10.1109/TII.2021.3054651
10.1016/j.knosys.2022.109439
10.1016/j.asoc.2022.109959
10.1016/j.ress.2023.109518
10.1016/j.isatra.2022.02.032
10.1038/nature16961
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ymssp.2024.111596
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2024_111596
S0888327024004941
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
~HD
ID FETCH-LOGICAL-c233t-8144ab4b8bedbd610bb2909d887d940efd3f463b8656ce4dd6429eaa7ee498a93
IEDL.DBID .~1
ISSN 0888-3270
IngestDate Wed Oct 01 05:09:12 EDT 2025
Thu Apr 24 23:01:02 EDT 2025
Sat Jul 27 15:42:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Autonomous compound fault recognition
Deep reinforcement learning
Open set recognition
Deep adversarial neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c233t-8144ab4b8bedbd610bb2909d887d940efd3f463b8656ce4dd6429eaa7ee498a93
ORCID 0000-0003-1722-2454
ParticipantIDs crossref_primary_10_1016_j_ymssp_2024_111596
crossref_citationtrail_10_1016_j_ymssp_2024_111596
elsevier_sciencedirect_doi_10_1016_j_ymssp_2024_111596
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Mechanical systems and signal processing
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu, Jiang, Zhu, Wang (b24) 2023; 189
Cao, Ma, Huang, Yu (b34) 2022; 188
Liu, Yang, Zio, Chen (b11) 2018; 108
Wang, Jiang, Li, Liu (b19) 2020; 154
Gupta, Wadhvani, Rasool (b22) 2023; 259
Mei, Zhu, Liu, Fu, Tang (b28) 2024; 20
Wu, Jiang, Liu, Wang (b21) 2022; 129
Liu, Jiang, Liu, Yang, Sun (b15) 2022; 252
Yu, Zhao, Zhang, Zhang, Liu, Sun, Chen (b27) 2022; 18
Schulman, Wolski, Dhariwal, Radford, Klimov (b39) 2017
Wang, Xuan (b40) 2021; 49
Wan, Li, Chen, Gong, Li (b42) 2022; 191
Li, Zheng, Yin, Wang, Wang (b33) 2023; 40
Zhang, Liu, He, Wang, Chen (b9) 2022; 110
Zhang, Li, Ma, Luo, Li (b43) 2021; 17
LeCun, Bengio, Hinton (b14) 2015; 521
Wang, Xuan, Shi (b38) 2022; 54
Ma, Hu, Wang, Li, Wang (b3) 2021; 70
Miao, Li, Shi, Han (b25) 2023; 189
Silver, Schrittwieser, Simonyan, Antonoglou, Huang, Guez, Hubert, Baker, Lai, Bolton (b36) 2017; 550
Pang, Nazari, Tang (b5) 2022; 165
Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, Tatsuya Harada, Open Set Domain Adaptation by Backpropagation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018.
Zhang, Zhao, Yu, Ma, Wang, Chen (b30) 2023; 239
Sutton, Barto (b20) 2018
Guo, Si, Xiang (b10) 2022; 196
Liu, Jiang, Wang, Wu, Liu (b16) 2022; 192
Liu, Jiang, Wu, Liu, Zhu (b13) 2022; 54
Zhao, Shen (b29) 2022; 221
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (b37) 2015; 518
Li, Jiang, Wang, Yang, Wang, Shen, Zhu (b17) 2022; 243
Mushtaq, Islam, Sohaib (b45) 2021; 14
Ma, Liang, Du, Chen, Chen (b2) 2021; 2021
Ding, Ma, Ma, Suo, Tao, Cheng, Lu (b32) 2019; 42
Meng, Wang, Zhao, Yan (b8) 2021; 181
Liu, Jiang, Wu, Li (b12) 2022; 163
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b31) 2016; 17
Xiao, Yu (b4) 2023; 72
Huang, Xue, Pang (b6) 2022; 36
Chen, Yang, Xue, Huang, Ferrero, Wang (b1) 2023; 72
Zhao, Jia, Shao (b23) 2023; 262
Silver, Huang, Maddison, Guez, Sifre, Van Den Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot (b35) 2016; 529
Haidong, Hongkai, Ke, Dongdong, Xingqiu (b18) 2018; 110
Qin, Jin, Zhang, He (b7) 2021; 70
Guo, Li, Zhou, Li, Lin (b26) 2023; 133
Li, Tang, Tang, He (b41) 2021; 169
Zhang (10.1016/j.ymssp.2024.111596_b30) 2023; 239
Qin (10.1016/j.ymssp.2024.111596_b7) 2021; 70
Wang (10.1016/j.ymssp.2024.111596_b19) 2020; 154
Silver (10.1016/j.ymssp.2024.111596_b36) 2017; 550
Ganin (10.1016/j.ymssp.2024.111596_b31) 2016; 17
Wu (10.1016/j.ymssp.2024.111596_b21) 2022; 129
Liu (10.1016/j.ymssp.2024.111596_b11) 2018; 108
Schulman (10.1016/j.ymssp.2024.111596_b39) 2017
Liu (10.1016/j.ymssp.2024.111596_b12) 2022; 163
Liu (10.1016/j.ymssp.2024.111596_b16) 2022; 192
Zhao (10.1016/j.ymssp.2024.111596_b23) 2023; 262
Zhang (10.1016/j.ymssp.2024.111596_b43) 2021; 17
Pang (10.1016/j.ymssp.2024.111596_b5) 2022; 165
Wang (10.1016/j.ymssp.2024.111596_b40) 2021; 49
Li (10.1016/j.ymssp.2024.111596_b33) 2023; 40
Ma (10.1016/j.ymssp.2024.111596_b2) 2021; 2021
10.1016/j.ymssp.2024.111596_b44
Mei (10.1016/j.ymssp.2024.111596_b28) 2024; 20
Ding (10.1016/j.ymssp.2024.111596_b32) 2019; 42
Liu (10.1016/j.ymssp.2024.111596_b13) 2022; 54
Zhao (10.1016/j.ymssp.2024.111596_b29) 2022; 221
Ma (10.1016/j.ymssp.2024.111596_b3) 2021; 70
Huang (10.1016/j.ymssp.2024.111596_b6) 2022; 36
Li (10.1016/j.ymssp.2024.111596_b41) 2021; 169
Miao (10.1016/j.ymssp.2024.111596_b25) 2023; 189
Silver (10.1016/j.ymssp.2024.111596_b35) 2016; 529
Gupta (10.1016/j.ymssp.2024.111596_b22) 2023; 259
Xiao (10.1016/j.ymssp.2024.111596_b4) 2023; 72
Li (10.1016/j.ymssp.2024.111596_b17) 2022; 243
Sutton (10.1016/j.ymssp.2024.111596_b20) 2018
Meng (10.1016/j.ymssp.2024.111596_b8) 2021; 181
Wu (10.1016/j.ymssp.2024.111596_b24) 2023; 189
Mnih (10.1016/j.ymssp.2024.111596_b37) 2015; 518
Chen (10.1016/j.ymssp.2024.111596_b1) 2023; 72
Wang (10.1016/j.ymssp.2024.111596_b38) 2022; 54
Guo (10.1016/j.ymssp.2024.111596_b10) 2022; 196
LeCun (10.1016/j.ymssp.2024.111596_b14) 2015; 521
Guo (10.1016/j.ymssp.2024.111596_b26) 2023; 133
Cao (10.1016/j.ymssp.2024.111596_b34) 2022; 188
Yu (10.1016/j.ymssp.2024.111596_b27) 2022; 18
Mushtaq (10.1016/j.ymssp.2024.111596_b45) 2021; 14
Zhang (10.1016/j.ymssp.2024.111596_b9) 2022; 110
Wan (10.1016/j.ymssp.2024.111596_b42) 2022; 191
Haidong (10.1016/j.ymssp.2024.111596_b18) 2018; 110
Liu (10.1016/j.ymssp.2024.111596_b15) 2022; 252
References_xml – volume: 72
  start-page: 1
  year: 2023
  end-page: 21
  ident: b1
  article-title: Deep transfer learning for bearing fault diagnosis: A systematic review since 2016
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 163
  year: 2022
  ident: b12
  article-title: Data synthesis using deep feature enhanced generative adversarial networks for rolling bearing imbalanced fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 196
  year: 2022
  ident: b10
  article-title: A compound fault diagnosis method of rolling bearing based on wavelet scattering transform and improved soft threshold denoising algorithm
  publication-title: Measurement
– volume: 221
  year: 2022
  ident: b29
  article-title: Dual adversarial network for cross-domain open set fault diagnosis
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 54
  year: 2022
  ident: b13
  article-title: Machine fault diagnosis with small sample based on variational information constrained generative adversarial network
  publication-title: Adv. Eng. Inform.
– volume: 154
  year: 2020
  ident: b19
  article-title: A reinforcement neural architecture search method for rolling bearing fault diagnosis
  publication-title: Measurement
– year: 2017
  ident: b39
  article-title: Proximal policy optimization algorithms, CoRR abs/1707.06347
– volume: 259
  year: 2023
  ident: b22
  article-title: A real-time adaptive model for bearing fault classification and remaining useful life estimation using deep neural network
  publication-title: Knowl.-Based Syst.
– volume: 18
  start-page: 185
  year: 2022
  end-page: 196
  ident: b27
  article-title: Deep-learning-based open set fault diagnosis by extreme value theory
  publication-title: IEEE Trans. Ind. Inform.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 11
  ident: b3
  article-title: Degradation state partition and compound fault diagnosis of rolling bearing based on personalized multilabel learning
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 262
  year: 2023
  ident: b23
  article-title: A novel conditional weighting transfer wasserstein auto-encoder for rolling bearing fault diagnosis with multi-source domains
  publication-title: Knowl.-Based Syst.
– volume: 181
  year: 2021
  ident: b8
  article-title: Compound fault diagnosis of rolling bearing using PWK-sparse denoising and periodicity filtering
  publication-title: Measurement
– volume: 129
  start-page: 505
  year: 2022
  end-page: 524
  ident: b21
  article-title: A deep reinforcement transfer convolutional neural network for rolling bearing fault diagnosis
  publication-title: ISA Trans.
– volume: 20
  start-page: 3038
  year: 2024
  end-page: 3049
  ident: b28
  article-title: Conditional variational encoder classifier for open set fault classification of rotating machinery vibration signals
  publication-title: IEEE Trans. Ind. Inform.
– volume: 14
  year: 2021
  ident: b45
  article-title: Deep learning aided data-driven fault diagnosis of rotatory machine: A comprehensive review
  publication-title: Energies
– volume: 188
  year: 2022
  ident: b34
  article-title: Finding the optimal multilayer network structure through reinforcement learning in fault diagnosis
  publication-title: Measurement
– volume: 169
  year: 2021
  ident: b41
  article-title: Deep convolution domain-adversarial transfer learning for fault diagnosis of rolling bearings
  publication-title: Measurement
– volume: 110
  start-page: 193
  year: 2018
  end-page: 209
  ident: b18
  article-title: A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings
  publication-title: Mech. Syst. Signal Process.
– volume: 2021
  year: 2021
  ident: b2
  article-title: Compound fault diagnosis of rolling bearing based on ALIF-KELM
  publication-title: Math. Probl. Eng.
– volume: 550
  start-page: 354
  year: 2017
  end-page: 359
  ident: b36
  article-title: Mastering the game of go without human knowledge
  publication-title: Nature
– volume: 36
  start-page: 3263
  year: 2022
  end-page: 3276
  ident: b6
  article-title: Separation method of rolling bearing compound fault characteristics based on improved harmonic wavelet packet decomposition and fast ICA
  publication-title: J. Mech. Sci. Technol.
– volume: 192
  year: 2022
  ident: b16
  article-title: A conditional variational autoencoding generative adversarial networks with self-modulation for rolling bearing fault diagnosis
  publication-title: Measurement
– volume: 70
  start-page: 1
  year: 2021
  end-page: 12
  ident: b7
  article-title: Rolling bearing fault diagnosis with adaptive harmonic kurtosis and improved bat algorithm
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b14
  article-title: Deep learning
  publication-title: Nature
– volume: 189
  year: 2023
  ident: b24
  article-title: A knowledge dynamic matching unit-guided multi-source domain adaptation network with attention mechanism for rolling bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 133
  year: 2023
  ident: b26
  article-title: An open-set fault diagnosis framework for MMCs based on optimized temporal convolutional network
  publication-title: Appl. Soft Comput.
– volume: 110
  year: 2022
  ident: b9
  article-title: Improved double TQWT sparse representation using the MQGA algorithm and new norm for aviation bearing compound fault detection
  publication-title: Eng. Appl. Artif. Intell.
– volume: 189
  year: 2023
  ident: b25
  article-title: Deep network-based maximum correlated kurtosis deconvolution: A novel deep deconvolution for bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: b37
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– volume: 40
  start-page: 75
  year: 2023
  end-page: 101
  ident: b33
  article-title: Deep reinforcement learning in smart manufacturing: A review and prospects
  publication-title: CIRP J. Manuf. Sci. Technol.
– year: 2018
  ident: b20
  article-title: Reinforcement learning: An introduction
– volume: 239
  year: 2023
  ident: b30
  article-title: Weighted domain separation based open set fault diagnosis
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 243
  year: 2022
  ident: b17
  article-title: Multi-perspective deep transfer learning model: A promising tool for bearing intelligent fault diagnosis under varying working conditions
  publication-title: Knowl.-Based Syst.
– volume: 165
  year: 2022
  ident: b5
  article-title: Recursive variational mode extraction and its application in rolling bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 17
  start-page: 1
  year: 2016
  end-page: 35
  ident: b31
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 42
  year: 2019
  ident: b32
  article-title: Intelligent fault diagnosis for rotating machinery using deep Q-network based health state classification: A deep reinforcement learning approach
  publication-title: Adv. Eng. Inform.
– volume: 108
  start-page: 33
  year: 2018
  end-page: 47
  ident: b11
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: A review
  publication-title: Mech. Syst. Signal Process.
– volume: 529
  start-page: 484
  year: 2016
  end-page: 489
  ident: b35
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
– volume: 54
  year: 2022
  ident: b38
  article-title: Multi-label fault recognition framework using deep reinforcement learning and curriculum learning mechanism
  publication-title: Adv. Eng. Inform.
– volume: 72
  start-page: 1
  year: 2023
  end-page: 14
  ident: b4
  article-title: Adaptive swarm decomposition algorithm for compound fault diagnosis of rolling bearings
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 191
  year: 2022
  ident: b42
  article-title: A novel deep convolution multi-adversarial domain adaptation model for rolling bearing fault diagnosis
  publication-title: Measurement
– volume: 17
  start-page: 7445
  year: 2021
  end-page: 7455
  ident: b43
  article-title: Open-set domain adaptation in machinery fault diagnostics using instance-level weighted adversarial learning
  publication-title: IEEE Trans. Ind. Inform.
– volume: 252
  year: 2022
  ident: b15
  article-title: Data-augmented wavelet capsule generative adversarial network for rolling bearing fault diagnosis
  publication-title: Knowl.-Based Syst.
– volume: 49
  year: 2021
  ident: b40
  article-title: Intelligent fault recognition framework by using deep reinforcement learning with one dimension convolution and improved actor-critic algorithm
  publication-title: Adv. Eng. Inform.
– reference: Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, Tatsuya Harada, Open Set Domain Adaptation by Backpropagation, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018.
– volume: 259
  year: 2023
  ident: 10.1016/j.ymssp.2024.111596_b22
  article-title: A real-time adaptive model for bearing fault classification and remaining useful life estimation using deep neural network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.110070
– volume: 17
  start-page: 1
  issue: 59
  year: 2016
  ident: 10.1016/j.ymssp.2024.111596_b31
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 185
  issue: 1
  year: 2022
  ident: 10.1016/j.ymssp.2024.111596_b27
  article-title: Deep-learning-based open set fault diagnosis by extreme value theory
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3070324
– volume: 163
  year: 2022
  ident: 10.1016/j.ymssp.2024.111596_b12
  article-title: Data synthesis using deep feature enhanced generative adversarial networks for rolling bearing imbalanced fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108139
– volume: 54
  year: 2022
  ident: 10.1016/j.ymssp.2024.111596_b13
  article-title: Machine fault diagnosis with small sample based on variational information constrained generative adversarial network
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2022.101762
– volume: 154
  year: 2020
  ident: 10.1016/j.ymssp.2024.111596_b19
  article-title: A reinforcement neural architecture search method for rolling bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107417
– volume: 108
  start-page: 33
  year: 2018
  ident: 10.1016/j.ymssp.2024.111596_b11
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: A review
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.02.016
– volume: 221
  year: 2022
  ident: 10.1016/j.ymssp.2024.111596_b29
  article-title: Dual adversarial network for cross-domain open set fault diagnosis
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108358
– volume: 49
  year: 2021
  ident: 10.1016/j.ymssp.2024.111596_b40
  article-title: Intelligent fault recognition framework by using deep reinforcement learning with one dimension convolution and improved actor-critic algorithm
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2021.101315
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.ymssp.2024.111596_b1
  article-title: Deep transfer learning for bearing fault diagnosis: A systematic review since 2016
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 165
  year: 2022
  ident: 10.1016/j.ymssp.2024.111596_b5
  article-title: Recursive variational mode extraction and its application in rolling bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108321
– year: 2018
  ident: 10.1016/j.ymssp.2024.111596_b20
– volume: 243
  year: 2022
  ident: 10.1016/j.ymssp.2024.111596_b17
  article-title: Multi-perspective deep transfer learning model: A promising tool for bearing intelligent fault diagnosis under varying working conditions
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108443
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.ymssp.2024.111596_b14
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 550
  start-page: 354
  issue: 7676
  year: 2017
  ident: 10.1016/j.ymssp.2024.111596_b36
  article-title: Mastering the game of go without human knowledge
  publication-title: Nature
  doi: 10.1038/nature24270
– volume: 189
  year: 2023
  ident: 10.1016/j.ymssp.2024.111596_b24
  article-title: A knowledge dynamic matching unit-guided multi-source domain adaptation network with attention mechanism for rolling bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2023.110098
– volume: 196
  year: 2022
  ident: 10.1016/j.ymssp.2024.111596_b10
  article-title: A compound fault diagnosis method of rolling bearing based on wavelet scattering transform and improved soft threshold denoising algorithm
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111276
– volume: 188
  year: 2022
  ident: 10.1016/j.ymssp.2024.111596_b34
  article-title: Finding the optimal multilayer network structure through reinforcement learning in fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110377
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.ymssp.2024.111596_b37
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.ymssp.2024.111596_b3
  article-title: Degradation state partition and compound fault diagnosis of rolling bearing based on personalized multilabel learning
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 2021
  year: 2021
  ident: 10.1016/j.ymssp.2024.111596_b2
  article-title: Compound fault diagnosis of rolling bearing based on ALIF-KELM
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/2636302
– volume: 54
  year: 2022
  ident: 10.1016/j.ymssp.2024.111596_b38
  article-title: Multi-label fault recognition framework using deep reinforcement learning and curriculum learning mechanism
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2022.101773
– volume: 192
  year: 2022
  ident: 10.1016/j.ymssp.2024.111596_b16
  article-title: A conditional variational autoencoding generative adversarial networks with self-modulation for rolling bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110888
– volume: 42
  year: 2019
  ident: 10.1016/j.ymssp.2024.111596_b32
  article-title: Intelligent fault diagnosis for rotating machinery using deep Q-network based health state classification: A deep reinforcement learning approach
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2019.100977
– volume: 20
  start-page: 3038
  issue: 3
  year: 2024
  ident: 10.1016/j.ymssp.2024.111596_b28
  article-title: Conditional variational encoder classifier for open set fault classification of rotating machinery vibration signals
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2023.3301058
– volume: 169
  year: 2021
  ident: 10.1016/j.ymssp.2024.111596_b41
  article-title: Deep convolution domain-adversarial transfer learning for fault diagnosis of rolling bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108339
– volume: 191
  year: 2022
  ident: 10.1016/j.ymssp.2024.111596_b42
  article-title: A novel deep convolution multi-adversarial domain adaptation model for rolling bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110752
– ident: 10.1016/j.ymssp.2024.111596_b44
  doi: 10.1007/978-3-030-01228-1_10
– volume: 110
  start-page: 193
  year: 2018
  ident: 10.1016/j.ymssp.2024.111596_b18
  article-title: A novel tracking deep wavelet auto-encoder method for intelligent fault diagnosis of electric locomotive bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.03.011
– volume: 189
  year: 2023
  ident: 10.1016/j.ymssp.2024.111596_b25
  article-title: Deep network-based maximum correlated kurtosis deconvolution: A novel deep deconvolution for bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2023.110110
– year: 2017
  ident: 10.1016/j.ymssp.2024.111596_b39
– volume: 14
  issue: 16
  year: 2021
  ident: 10.1016/j.ymssp.2024.111596_b45
  article-title: Deep learning aided data-driven fault diagnosis of rotatory machine: A comprehensive review
  publication-title: Energies
  doi: 10.3390/en14165150
– volume: 110
  year: 2022
  ident: 10.1016/j.ymssp.2024.111596_b9
  article-title: Improved double TQWT sparse representation using the MQGA algorithm and new norm for aviation bearing compound fault detection
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.104741
– volume: 40
  start-page: 75
  year: 2023
  ident: 10.1016/j.ymssp.2024.111596_b33
  article-title: Deep reinforcement learning in smart manufacturing: A review and prospects
  publication-title: CIRP J. Manuf. Sci. Technol.
  doi: 10.1016/j.cirpj.2022.11.003
– volume: 36
  start-page: 3263
  issue: 7
  year: 2022
  ident: 10.1016/j.ymssp.2024.111596_b6
  article-title: Separation method of rolling bearing compound fault characteristics based on improved harmonic wavelet packet decomposition and fast ICA
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-022-0607-7
– volume: 262
  year: 2023
  ident: 10.1016/j.ymssp.2024.111596_b23
  article-title: A novel conditional weighting transfer wasserstein auto-encoder for rolling bearing fault diagnosis with multi-source domains
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.110203
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.ymssp.2024.111596_b4
  article-title: Adaptive swarm decomposition algorithm for compound fault diagnosis of rolling bearings
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 181
  year: 2021
  ident: 10.1016/j.ymssp.2024.111596_b8
  article-title: Compound fault diagnosis of rolling bearing using PWK-sparse denoising and periodicity filtering
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109604
– volume: 17
  start-page: 7445
  issue: 11
  year: 2021
  ident: 10.1016/j.ymssp.2024.111596_b43
  article-title: Open-set domain adaptation in machinery fault diagnostics using instance-level weighted adversarial learning
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3054651
– volume: 252
  year: 2022
  ident: 10.1016/j.ymssp.2024.111596_b15
  article-title: Data-augmented wavelet capsule generative adversarial network for rolling bearing fault diagnosis
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109439
– volume: 133
  year: 2023
  ident: 10.1016/j.ymssp.2024.111596_b26
  article-title: An open-set fault diagnosis framework for MMCs based on optimized temporal convolutional network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109959
– volume: 239
  year: 2023
  ident: 10.1016/j.ymssp.2024.111596_b30
  article-title: Weighted domain separation based open set fault diagnosis
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109518
– volume: 129
  start-page: 505
  year: 2022
  ident: 10.1016/j.ymssp.2024.111596_b21
  article-title: A deep reinforcement transfer convolutional neural network for rolling bearing fault diagnosis
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2022.02.032
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.ymssp.2024.111596_b7
  article-title: Rolling bearing fault diagnosis with adaptive harmonic kurtosis and improved bat algorithm
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 529
  start-page: 484
  issue: 7587
  year: 2016
  ident: 10.1016/j.ymssp.2024.111596_b35
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
SSID ssj0009406
Score 2.519515
Snippet How to automatically recognize compound fault of mechanical equipment based on data-driven algorithms, has always been a research focus in modern intelligent...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111596
SubjectTerms Autonomous compound fault recognition
Deep adversarial neural network
Deep reinforcement learning
Open set recognition
Title An autonomous recognition framework based on reinforced adversarial open set algorithm for compound fault of mechanical equipment
URI https://dx.doi.org/10.1016/j.ymssp.2024.111596
Volume 219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AKRWK
  dateStart: 19870101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8NADD4hWGBAPMWz8sBIaEiuaW-sKqoCggWQ2KK7nA-K2rQ06cCCxD_HzqOAhBgYc_JJydmxnejz9wlxoiI8l1ZJT2Lb9yj7hV7Hhc7TSRCiiyKXIM8739xGgwd59dh6XBK9ehaGYZVV7i9zepGtq5VmdZrN6XDYvKP3g8KxzSRdTHJSTLDLNqsYnL1_wTyULPQ12dhj65p5qMB4vY2zjEkrA8mpo8XM_b9Vp28Vp78h1qtWEbrl3WyKJUy3xNo3AsFt8dFNQc9zHkygL3hYoIEmKbgadQVcqCzQ0gwLmlR6ZtCsw5xpjj5gAS3IMAc9eprMhvnzGMgKGGzOmkvg9HyUw8TBGHlMmL0K-DofFkijHfHQv7jvDbxKVMGj0w9z_uUntZGmY9AaS82TMYHylaVkQy7z0dnQySg0HWr0EpTW0geKQq3biFJ1tAp3xXI6SXFPgG_9wKGygaGuS58nGjFxLtJOWT-h1mxfBPVhxknFOM7CF6O4hpa9xIUHYvZAXHpgX5wuNk1Lwo2_zaPaS_GPuImpJPy18eC_Gw_FKl-VgL4jsZzP5nhMjUluGkXkNcRK9_J6cPsJMK3n3g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQDMCAeIryvIGR0JC4aT0iBCrPBSp1i-z4DEVtCm06sCDxz7nLo4CEOrA6Zynxne8RffedEEcqwlNplfQkNn2PvF_otVzoPJ0EIboocglyv_PdfdTuyOtuozsnzqteGIZVlr6_8Om5ty5X6uVp1l97vfoD3Q8yxyaTdDHJCZVAC7IRNLkCO_n4xnkomQ_YZGmPxSvqoRzk9T4Yj5m1MpDsOxpM3f9XePoRci5XxUqZK8JZ8TprYg7TdbH8g0FwQ3yepaAnGXcmUAkPUzjQMAVXwa6AI5UFWhphzpNKHw2aBzGPNZsf8AQtGGMGuv80HPWy5wGQFDDanIcugdOTfgZDBwPkPmFWK-DbpJdDjTZF5_Li8bztlVMVPDr-MON_flIbaVoGrbGUPRkTKF9Z8jakMx-dDZ2MQtOiTC9BaS1VKAq1biJK1dIq3BLz6TDFbQG-9QOHygaG0i59mmjExLlIO2X9hHKzmgiqw4yTknKcJ1_04wpb9hLnGohZA3GhgZo4nm56LRg3ZotHlZbiX4YTU0yYtXHnvxsPxWL78e42vr26v9kVS_ykQPftiflsNMF9ylIyc5Bb4RebqOlz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+autonomous+recognition+framework+based+on+reinforced+adversarial+open+set+algorithm+for+compound+fault+of+mechanical+equipment&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Wang%2C+Zisheng&rft.au=Xuan%2C+Jianping&rft.au=Shi%2C+Tielin&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=219&rft_id=info:doi/10.1016%2Fj.ymssp.2024.111596&rft.externalDocID=S0888327024004941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon