Development of stacking algorithm for bias-correcting the precipitation projections using a multi-model ensemble of CMIP6 GCMs in a semi-arid basin, India
Climate change affects the hydrological cycle, leading to extreme events such as droughts and floods. Projection of climate change is necessary to understand the variability of future climate parameters for mitigating the impacts of climate change. The research aims to project the future precipitati...
        Saved in:
      
    
          | Published in | Theoretical and applied climatology Vol. 156; no. 2; p. 129 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Vienna
          Springer Vienna
    
        01.02.2025
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0177-798X 1434-4483  | 
| DOI | 10.1007/s00704-024-05321-x | 
Cover
| Abstract | Climate change affects the hydrological cycle, leading to extreme events such as droughts and floods. Projection of climate change is necessary to understand the variability of future climate parameters for mitigating the impacts of climate change. The research aims to project the future precipitation over Amaravathi River Basin (ARB), Tamil Nadu, India considering as MME (Multi-Model Ensemble) CMIP6 (Coupled Model Inter comparison Project Phase-6) GCMs (General Circulation Models). The uncertainties and biases in the MME CMIP6 GCM precipitation were corrected and projected using the Empirical Quantile Mapping (EQM) employing the individual multiple Machine Learning (ML) and integrating algorithms through Stacking Regression (SR). Multiple machine learning algorithms used for bias-correction are Linear Regression (LR), Decision-Tree (DT) Regression, Random Forest (RF) Regression, Support-Vector Machine (SVM) Regression and Multi-Layer Perceptron (MLP) Regression with HyperParameter Tuning (HPT). Each machine learning algorithm with optimized hyperparameter was integrated into the SR to improve the model performance. The proposed SR showed better than the individual algorithms, with a RMSE (Root Mean Square Error) ranging from 37.14 to 66.28. The SR-based precipitation projection changes were analyzed as three periods: 2025–2050 (2040, near-future year), 2051–2075 (2065, mid-future year) and 2076–2100 (2090, far-future year) under SSP (Shared Socioeconomic Pathway) 1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 emission scenarios. The projected annual precipitation variations are in the range of 0.81–67.33% under the SSP1, followed by -4.51–72.13% (SSP2), -1.62–60.84% (SSP3) and − 0.71–65.75% under the SSP5 over the ARB. The precipitation was projected to be higher in magnitude in the southeast and lesser magnitude in the top northern part of ARB. The projection findings will be helpful in formulating strategies for addressing the climate impact and achieving the Sustainable Development Goal (SDG 13: Climate Action). | 
    
|---|---|
| AbstractList | Climate change affects the hydrological cycle, leading to extreme events such as droughts and floods. Projection of climate change is necessary to understand the variability of future climate parameters for mitigating the impacts of climate change. The research aims to project the future precipitation over Amaravathi River Basin (ARB), Tamil Nadu, India considering as MME (Multi-Model Ensemble) CMIP6 (Coupled Model Inter comparison Project Phase-6) GCMs (General Circulation Models). The uncertainties and biases in the MME CMIP6 GCM precipitation were corrected and projected using the Empirical Quantile Mapping (EQM) employing the individual multiple Machine Learning (ML) and integrating algorithms through Stacking Regression (SR). Multiple machine learning algorithms used for bias-correction are Linear Regression (LR), Decision-Tree (DT) Regression, Random Forest (RF) Regression, Support-Vector Machine (SVM) Regression and Multi-Layer Perceptron (MLP) Regression with HyperParameter Tuning (HPT). Each machine learning algorithm with optimized hyperparameter was integrated into the SR to improve the model performance. The proposed SR showed better than the individual algorithms, with a RMSE (Root Mean Square Error) ranging from 37.14 to 66.28. The SR-based precipitation projection changes were analyzed as three periods: 2025–2050 (2040, near-future year), 2051–2075 (2065, mid-future year) and 2076–2100 (2090, far-future year) under SSP (Shared Socioeconomic Pathway) 1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 emission scenarios. The projected annual precipitation variations are in the range of 0.81–67.33% under the SSP1, followed by -4.51–72.13% (SSP2), -1.62–60.84% (SSP3) and − 0.71–65.75% under the SSP5 over the ARB. The precipitation was projected to be higher in magnitude in the southeast and lesser magnitude in the top northern part of ARB. The projection findings will be helpful in formulating strategies for addressing the climate impact and achieving the Sustainable Development Goal (SDG 13: Climate Action). Climate change affects the hydrological cycle, leading to extreme events such as droughts and floods. Projection of climate change is necessary to understand the variability of future climate parameters for mitigating the impacts of climate change. The research aims to project the future precipitation over Amaravathi River Basin (ARB), Tamil Nadu, India considering as MME (Multi-Model Ensemble) CMIP6 (Coupled Model Inter comparison Project Phase-6) GCMs (General Circulation Models). The uncertainties and biases in the MME CMIP6 GCM precipitation were corrected and projected using the Empirical Quantile Mapping (EQM) employing the individual multiple Machine Learning (ML) and integrating algorithms through Stacking Regression (SR). Multiple machine learning algorithms used for bias-correction are Linear Regression (LR), Decision-Tree (DT) Regression, Random Forest (RF) Regression, Support-Vector Machine (SVM) Regression and Multi-Layer Perceptron (MLP) Regression with HyperParameter Tuning (HPT). Each machine learning algorithm with optimized hyperparameter was integrated into the SR to improve the model performance. The proposed SR showed better than the individual algorithms, with a RMSE (Root Mean Square Error) ranging from 37.14 to 66.28. The SR-based precipitation projection changes were analyzed as three periods: 2025–2050 (2040, near-future year), 2051–2075 (2065, mid-future year) and 2076–2100 (2090, far-future year) under SSP (Shared Socioeconomic Pathway) 1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 emission scenarios. The projected annual precipitation variations are in the range of 0.81–67.33% under the SSP1, followed by -4.51–72.13% (SSP2), -1.62–60.84% (SSP3) and − 0.71–65.75% under the SSP5 over the ARB. The precipitation was projected to be higher in magnitude in the southeast and lesser magnitude in the top northern part of ARB. The projection findings will be helpful in formulating strategies for addressing the climate impact and achieving the Sustainable Development Goal (SDG 13: Climate Action).  | 
    
| ArticleNumber | 129 | 
    
| Author | Lakshmanan, Vignesh Rajkumar Shanmugam, Hemanandhini  | 
    
| Author_xml | – sequence: 1 givenname: Hemanandhini surname: Shanmugam fullname: Shanmugam, Hemanandhini organization: Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology – sequence: 2 givenname: Vignesh Rajkumar surname: Lakshmanan fullname: Lakshmanan, Vignesh Rajkumar email: vigneshrajkumar.l@vit.ac.in organization: Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology  | 
    
| BookMark | eNp9Uc1u1DAQtlArsS28ACdLXDjg4r_EyREtpV2pFT20ErfIG0-2XhJ7sR1U3oVDn6VPxmwXCYkDB9sz_n7s0XdCjkIMQMgbwc8E5-ZDxo1rxiWuSknBHl6QhdBKM60bdUQWXBjDTNt8fUlOct5yzmVdmwX59Ql-wBh3E4RC40Bzsf03HzbUjpuYfLmf6BATXXubWR9Tgr7s0XIPdIeN3_lii48Bu7jdgzFkOudnh6fHaR6LZ1N0MFIIGab1CPjK0-PyenVT04vldaY-UEsR8swm7-jaovg9XQXn7StyPNgxw-s_5ym5-3x-u7xkV18uVsuPV6yXShVm5CA1h0qDXnPbCtH0Gi9UhYVVqq2rSigD2uHQ1g2mbrjSznInuTMtOHVK3h18cYjvM-TSTT73MI42QJxzp0RdNbWopUHq23-o2zingL9DVtVyqUSrkSUPrD7FnBMM3S75yaafneDdPrDuEFiHgXXPgXUPKFIHUUZy2ED6a_0f1W-ps50r | 
    
| Cites_doi | 10.3390/informatics8040079 10.3390/ATMOS11050508 10.1007/s13762-021-03752-x 10.1016/j.jhydrol.2024.131424 10.1038/s41597-019-0038-1 10.1007/s10661-023-11454-9 10.1016/j.atmosres.2022.106440 10.1007/s00703-021-00817-x 10.5194/gmd-9-1937-2016 10.1016/J.ENVRES.2022.113070 10.1016/J.JHYDROL.2012.05.052 10.1016/J.ENVRES.2023.116615 10.1029/2022JD036659 10.1016/J.ATMOSRES.2023.106880 10.1108/ECAM-02-2020-0128 10.1007/s11269-021-02844-0 10.2166/wcc.2023.115 10.1002/met.2144 10.2166/wcc.2022.195 10.1007/s00704-018-2674-3 10.1007/s00382-022-06236-x 10.1007/s00704-018-2686-z 10.1007/s11229-020-02865-z 10.1038/s41597-020-00681-1 10.1038/s41597-021-01079-3 10.1016/J.ATMOSRES.2024.107470 10.3390/RS12183013 10.1016/j.wace.2015.09.004 10.1080/1206212X.2021.1974663 10.1007/s40899-020-00436-1 10.1002/asl.1087 10.1029/2021EA001981 10.1007/s00382-013-1942-2 10.12944/CWE.12.1.22 10.1007/s00382-023-06713-x 10.1080/10106049.2023.2285342 10.3390/atmos13060898 10.1016/J.ENVRES.2024.118403 10.1007/s00704-024-05087-2 10.1016/j.mlwa.2022.100251 10.1029/2000JD900719 10.1007/s11356-023-28649-9 10.2166/wcc.2024.152 10.1007/s00704-022-04274-3 10.1002/met.1575 10.1007/s00704-024-05066-7 10.2166/wcc.2020.128 10.3390/w15071265 10.1016/S1364-8152(01)00060-3 10.1007/s10113-020-01597-7 10.3390/su15129668 10.1007/978-3-319-13425-3_26 10.1038/s41598-022-08786-w 10.3390/hydrology9090161 10.1007/S00382-020-05462-5/METRICS 10.3390/sym14050927 10.3390/RS12081342 10.1016/j.wace.2021.100328 10.1029/2019EF001461 10.1038/s41598-022-27357-7 10.1038/s41597-023-02337-2 10.3354/cr00953 10.1007/s00704-022-04073-w 10.1088/1748-9326/ab702c 10.1038/s41597-023-01956-z 10.2166/hydro.2021.091 10.1002/joc.7100 10.1002/joc.5705  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Feb 2025  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Feb 2025  | 
    
| DBID | AAYXX CITATION 7QH 7TG 7TN 7UA C1K F1W H96 KL. L.G 7S9 L.6  | 
    
| DOI | 10.1007/s00704-024-05321-x | 
    
| DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Meteorology & Climatology | 
    
| EISSN | 1434-4483 | 
    
| EndPage | 129 | 
    
| ExternalDocumentID | 10_1007_s00704_024_05321_x | 
    
| GeographicLocations | India | 
    
| GeographicLocations_xml | – name: India | 
    
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 199 1N0 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBS EDH EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IEP IFM IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L6V LAS LK5 LLZTM M2P M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 XXG Y6R YLTOR Z45 Z5O Z7R Z7U Z7Y Z7Z Z83 Z86 Z88 Z8M Z8O Z8S Z8T Z8W Z8Z Z92 ZMTXR ZY4 ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7QH 7TG 7TN 7UA C1K F1W H96 KL. L.G 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c233t-72f240e54e4b0a9118c42403518ca339655137e4d002adf768034da0d20d79ed3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0177-798X | 
    
| IngestDate | Fri Aug 22 20:36:40 EDT 2025 Sat Aug 16 19:41:59 EDT 2025 Wed Oct 01 06:55:24 EDT 2025 Tue Feb 25 01:11:36 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c233t-72f240e54e4b0a9118c42403518ca339655137e4d002adf768034da0d20d79ed3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 3159023194 | 
    
| PQPubID | 48318 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | proquest_miscellaneous_3165861627 proquest_journals_3159023194 crossref_primary_10_1007_s00704_024_05321_x springer_journals_10_1007_s00704_024_05321_x  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20250200 2025-02-00 20250201  | 
    
| PublicationDateYYYYMMDD | 2025-02-01 | 
    
| PublicationDate_xml | – month: 2 year: 2025 text: 20250200  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Vienna | 
    
| PublicationPlace_xml | – name: Vienna – name: Wien  | 
    
| PublicationTitle | Theoretical and applied climatology | 
    
| PublicationTitleAbbrev | Theor Appl Climatol | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer Vienna Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V  | 
    
| References | SH Gebrechorkos (5321_CR18) 2019; 6 AS Ballarin (5321_CR5) 2023; 10 RL Wilby (5321_CR70) 2002; 17 V Eyring (5321_CR16) 2016; 9 V Mishra (5321_CR38) 2020; 7 5321_CR59 5321_CR13 MG Meharie (5321_CR36) 2022; 29 5321_CR55 C Teutschbein (5321_CR63) 2012; 456–457 S Jain (5321_CR24) 2019; 137 KS Raju (5321_CR49) 2020; 11 N Acharya (5321_CR1) 2014; 43 M Velpuri (5321_CR66) 2023; 235 DM Belete (5321_CR6) 2022; 44 5321_CR52 B Wang (5321_CR67) 2018; 38 5321_CR53 D Guven (5321_CR21) 2023; 30 5321_CR47 BI Cook (5321_CR10) 2020; 8 V Gumus (5321_CR19) 2023; 292 B Deepthi (5321_CR12) 2023; 61 H Daniel (5321_CR11) 2023; 14 Z Xu (5321_CR72) 2021; 8 X Fan (5321_CR17) 2021; 32 E Mesgari (5321_CR37) 2022; 13 R Rahimi (5321_CR48) 2021; 35 P Kossieris (5321_CR32) 2024; 637 JT Schoof (5321_CR54) 2016; 11 FM Rettie (5321_CR51) 2023; 10 5321_CR42 5321_CR40 S Alsalal (5321_CR2) 2024 M Shahhosseini (5321_CR56) 2022; 7 KE Trenberth (5321_CR65) 2011; 47 P Kumari (5321_CR33) 2024; 00 BG Buhay Bucton (5321_CR9) 2022; 211 Y Kim (5321_CR28) 2020; 55 A Hernanz (5321_CR23) 2022; 23 SA Shahriar (5321_CR57) 2021; 133 5321_CR34 U Okkan (5321_CR45) 2016; 23 M Niazkar (5321_CR43) 2023; 151 S Kokilavani (5321_CR29) 2017; 12 O Me (5321_CR35) 2022; 59 V Kolluru (5321_CR30) 2021; 41 E Elgeldawi (5321_CR14) 2021; 8 NM Reddy (5321_CR50) 2024; 250 MA Gurara (5321_CR20) 2022; 19 5321_CR31 DM Jose (5321_CR27) 2022; 12 J Jebeile (5321_CR26) 2021; 199 G Elkiran (5321_CR15) 2021; 23 5321_CR71 5321_CR25 5321_CR69 B Yılmaz (5321_CR73) 2024 RAH Mukheef (5321_CR39) 2024; 306 5321_CR22 D Wang (5321_CR68) 2023; 30 B Nagaraja (5321_CR41) 2021; 40 P Thirunavukkarasu (5321_CR64) 2020; 49 5321_CR8 5321_CR7 5321_CR3 V Nourani (5321_CR44) 2019; 137 S Peng (5321_CR46) 2023; 13 5321_CR61 5321_CR62 SG Shrestha (5321_CR58) 2022; 149 5321_CR60  | 
    
| References_xml | – volume: 8 start-page: 1 issue: 4 year: 2021 ident: 5321_CR14 publication-title: Informatics doi: 10.3390/informatics8040079 – ident: 5321_CR71 doi: 10.3390/ATMOS11050508 – volume: 19 start-page: 8885 issue: 9 year: 2022 ident: 5321_CR20 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-021-03752-x – volume: 637 start-page: 131424 issue: May year: 2024 ident: 5321_CR32 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2024.131424 – volume: 6 start-page: 2 issue: 1 year: 2019 ident: 5321_CR18 publication-title: Sci Data doi: 10.1038/s41597-019-0038-1 – ident: 5321_CR22 doi: 10.1007/s10661-023-11454-9 – ident: 5321_CR60 – ident: 5321_CR55 doi: 10.1016/j.atmosres.2022.106440 – volume: 133 start-page: 1409 issue: 4 year: 2021 ident: 5321_CR57 publication-title: Meteorol Atmos Phys doi: 10.1007/s00703-021-00817-x – volume: 9 start-page: 1937 issue: 5 year: 2016 ident: 5321_CR16 publication-title: Geosci Model Dev doi: 10.5194/gmd-9-1937-2016 – volume: 211 start-page: 113070 year: 2022 ident: 5321_CR9 publication-title: Environ Res doi: 10.1016/J.ENVRES.2022.113070 – volume: 456–457 start-page: 12 year: 2012 ident: 5321_CR63 publication-title: J Hydrol doi: 10.1016/J.JHYDROL.2012.05.052 – volume: 235 start-page: 116615 year: 2023 ident: 5321_CR66 publication-title: Environ Res doi: 10.1016/J.ENVRES.2023.116615 – ident: 5321_CR3 doi: 10.1029/2022JD036659 – volume: 292 start-page: 106880 year: 2023 ident: 5321_CR19 publication-title: Atmos Res doi: 10.1016/J.ATMOSRES.2023.106880 – volume: 29 start-page: 2836 issue: 7 year: 2022 ident: 5321_CR36 publication-title: Eng Constr Architectural Manage doi: 10.1108/ECAM-02-2020-0128 – volume: 35 start-page: 2503 issue: 8 year: 2021 ident: 5321_CR48 publication-title: Water Resour Manage doi: 10.1007/s11269-021-02844-0 – volume: 14 start-page: 2007 issue: 6 year: 2023 ident: 5321_CR11 publication-title: J Water Clim Change doi: 10.2166/wcc.2023.115 – volume: 30 start-page: 1 issue: 5 year: 2023 ident: 5321_CR68 publication-title: Meteorol Appl doi: 10.1002/met.2144 – volume: 13 start-page: 3607 issue: 10 year: 2022 ident: 5321_CR37 publication-title: J Water Clim Change doi: 10.2166/wcc.2022.195 – volume: 137 start-page: 1429 issue: 1–2 year: 2019 ident: 5321_CR24 publication-title: Theoret Appl Climatol doi: 10.1007/s00704-018-2674-3 – volume: 59 start-page: 3051 issue: 9–10 year: 2022 ident: 5321_CR35 publication-title: Clim Dyn doi: 10.1007/s00382-022-06236-x – volume: 137 start-page: 1729 issue: 3–4 year: 2019 ident: 5321_CR44 publication-title: Theoret Appl Climatol doi: 10.1007/s00704-018-2686-z – volume: 199 start-page: 1877 issue: 1–2 year: 2021 ident: 5321_CR26 publication-title: Synthese doi: 10.1007/s11229-020-02865-z – volume: 7 start-page: 1 issue: 1 year: 2020 ident: 5321_CR38 publication-title: Sci Data doi: 10.1038/s41597-020-00681-1 – volume: 8 start-page: 1 issue: 1 year: 2021 ident: 5321_CR72 publication-title: Sci Data doi: 10.1038/s41597-021-01079-3 – volume: 306 start-page: 107470 year: 2024 ident: 5321_CR39 publication-title: Atmos Res doi: 10.1016/J.ATMOSRES.2024.107470 – ident: 5321_CR31 doi: 10.3390/RS12183013 – volume: 11 start-page: 28 year: 2016 ident: 5321_CR54 publication-title: Weather Clim Extremes doi: 10.1016/j.wace.2015.09.004 – volume: 44 start-page: 875 issue: 9 year: 2022 ident: 5321_CR6 publication-title: Int J Comput Appl doi: 10.1080/1206212X.2021.1974663 – ident: 5321_CR8 doi: 10.1007/s40899-020-00436-1 – volume: 23 start-page: 1 issue: 6 year: 2022 ident: 5321_CR23 publication-title: Atmospheric Sci Lett doi: 10.1002/asl.1087 – ident: 5321_CR25 doi: 10.1029/2021EA001981 – volume: 43 start-page: 1303 issue: 5–6 year: 2014 ident: 5321_CR1 publication-title: Clim Dyn doi: 10.1007/s00382-013-1942-2 – volume: 12 start-page: 181 issue: 1 year: 2017 ident: 5321_CR29 publication-title: Curr World Environ doi: 10.12944/CWE.12.1.22 – volume: 40 start-page: 281 issue: 1 year: 2021 ident: 5321_CR41 publication-title: Poll Res – volume: 61 start-page: 3009 issue: 5–6 year: 2023 ident: 5321_CR12 publication-title: Clim Dyn doi: 10.1007/s00382-023-06713-x – ident: 5321_CR7 doi: 10.1080/10106049.2023.2285342 – ident: 5321_CR40 doi: 10.3390/atmos13060898 – volume: 250 start-page: 118403 year: 2024 ident: 5321_CR50 publication-title: Environ Res doi: 10.1016/J.ENVRES.2024.118403 – year: 2024 ident: 5321_CR2 publication-title: Theoret Appl Climatol doi: 10.1007/s00704-024-05087-2 – volume: 7 start-page: 100251 issue: December 2021 year: 2022 ident: 5321_CR56 publication-title: Mach Learn Appl doi: 10.1016/j.mlwa.2022.100251 – ident: 5321_CR62 doi: 10.1029/2000JD900719 – volume: 30 start-page: 87314 issue: 37 year: 2023 ident: 5321_CR21 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-023-28649-9 – volume: 00 start-page: 1 issue: 0 year: 2024 ident: 5321_CR33 publication-title: J Water Clim Change doi: 10.2166/wcc.2024.152 – volume: 151 start-page: 153 issue: 1–2 year: 2023 ident: 5321_CR43 publication-title: Theoret Appl Climatol doi: 10.1007/s00704-022-04274-3 – volume: 23 start-page: 514 issue: 3 year: 2016 ident: 5321_CR45 publication-title: Meteorol Appl doi: 10.1002/met.1575 – year: 2024 ident: 5321_CR73 publication-title: Theoret Appl Climatol doi: 10.1007/s00704-024-05066-7 – volume: 11 start-page: 577 issue: 3 year: 2020 ident: 5321_CR49 publication-title: J Water Clim Change doi: 10.2166/wcc.2020.128 – ident: 5321_CR34 doi: 10.3390/w15071265 – volume: 17 start-page: 145 issue: 2 year: 2002 ident: 5321_CR70 publication-title: Environ Model Softw doi: 10.1016/S1364-8152(01)00060-3 – ident: 5321_CR53 doi: 10.1007/s10113-020-01597-7 – ident: 5321_CR47 doi: 10.3390/su15129668 – ident: 5321_CR42 doi: 10.1007/978-3-319-13425-3_26 – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 5321_CR27 publication-title: Sci Rep doi: 10.1038/s41598-022-08786-w – ident: 5321_CR52 doi: 10.3390/hydrology9090161 – volume: 55 start-page: 3507 issue: 11–12 year: 2020 ident: 5321_CR28 publication-title: Clim Dyn doi: 10.1007/S00382-020-05462-5/METRICS – ident: 5321_CR59 doi: 10.3390/sym14050927 – ident: 5321_CR69 doi: 10.3390/RS12081342 – volume: 32 start-page: 100328 year: 2021 ident: 5321_CR17 publication-title: Weather Clim Extremes doi: 10.1016/j.wace.2021.100328 – volume: 8 start-page: 1 issue: 6 year: 2020 ident: 5321_CR10 publication-title: Earth’s Future doi: 10.1029/2019EF001461 – volume: 49 start-page: 1686 issue: 10 year: 2020 ident: 5321_CR64 publication-title: Indian J Geo-Mar Sci – volume: 13 start-page: 0 issue: 1 year: 2023 ident: 5321_CR46 publication-title: Sci Rep doi: 10.1038/s41598-022-27357-7 – volume: 10 start-page: 1 issue: 1 year: 2023 ident: 5321_CR51 publication-title: Sci Data doi: 10.1038/s41597-023-02337-2 – ident: 5321_CR13 – volume: 47 start-page: 123 issue: 1–2 year: 2011 ident: 5321_CR65 publication-title: Climate Res doi: 10.3354/cr00953 – volume: 149 start-page: 695 issue: 1–2 year: 2022 ident: 5321_CR58 publication-title: Theoret Appl Climatol doi: 10.1007/s00704-022-04073-w – ident: 5321_CR61 doi: 10.1088/1748-9326/ab702c – volume: 10 start-page: 1 issue: 1 year: 2023 ident: 5321_CR5 publication-title: Sci Data doi: 10.1038/s41597-023-01956-z – volume: 23 start-page: 1395 issue: 6 year: 2021 ident: 5321_CR15 publication-title: J Hydroinformatics doi: 10.2166/hydro.2021.091 – volume: 41 start-page: 4804 issue: 10 year: 2021 ident: 5321_CR30 publication-title: Int J Climatol doi: 10.1002/joc.7100 – volume: 38 start-page: 4891 issue: 13 year: 2018 ident: 5321_CR67 publication-title: Int J Climatol doi: 10.1002/joc.5705  | 
    
| SSID | ssj0002667 | 
    
| Score | 2.4247653 | 
    
| Snippet | Climate change affects the hydrological cycle, leading to extreme events such as droughts and floods. Projection of climate change is necessary to understand... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 129 | 
    
| SubjectTerms | Algorithms Annual precipitation Aquatic Pollution atmospheric precipitation Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences basins Bias climate Climate action Climate change Climatology decision support systems Decision trees Drought Earth and Environmental Science Earth Sciences Environmental impact Future climates Future precipitation General circulation models Hydrologic cycle Hydrological cycle India Learning algorithms Machine learning model validation Multilayer perceptrons Multilayers Precipitation Precipitation variations regression analysis Regression models River basins Root-mean-square errors Support vector machines Sustainable development Sustainable Development Goals Waste Water Technology Water Management Water Pollution Control watersheds  | 
    
| Title | Development of stacking algorithm for bias-correcting the precipitation projections using a multi-model ensemble of CMIP6 GCMs in a semi-arid basin, India | 
    
| URI | https://link.springer.com/article/10.1007/s00704-024-05321-x https://www.proquest.com/docview/3159023194 https://www.proquest.com/docview/3165861627  | 
    
| Volume | 156 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1434-4483 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1434-4483 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1434-4483 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTuMwELYQXLgg2AUR_jRIKy5gqUmcuDlWFX-7KuJApXKKHNuBSG1StUXah9lDn6VPxoyblAXBgVuiWLaUGc989sx8w9gvE6swj_KcJ4iWORo8n1Owh7e1ymKhhZYZ3UP27uKbvvg9iAZ1Udi0yXZvQpLOUq-K3YiZRnD0KZy6GfgckeNGRHReqMX9oLOyv-hylkXSUnKZtAd1qcznc7x3R28Y80NY1Hmbq222VcNE6CzlusPWbPmDeT1EuNXEXYTDGXSHBcJN9_aT_fsv-weqHBD0aboFBzV8qibF7HkECE8hK9SUa-rIoSnfGRD-wZgILsY1VzfUVzOkjUBJ8TjDYu7SDrnrmgN47rWjbGhxlcW827u9j-G625tCUYIC_FRwPH4bQPdYlBdwW6IC7rL-1eVD94bXnRe4DsJwxmWQo6e3kbAiaym0h20tiLgvwgcVhklMbWGkFQb_tjI5HllaoTCqZYKWkYk14R5bL6vS7jNQ2pdG2LbyiVYmTlQmtG8yCo_i4TJQHjtvBJCOlwQb6YpK2YkrRXGlTlzpX48dNTJK6802TUOfOGjQlgiPna4-4zah2IcqbfVCYxBqxX4cSI9dNLJ9m-LrFQ--N_yQbQbUIdjldR-x9dnkxR4jbJllJ2yjc_345_LEaesrZ-fohw | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF6h9AAX_hGGAoOEuNCtYnvjjY9V1DahdcWhkcLJ2j8Xi9SOEkdCPAuHPkufjJmNnUIFh95s7WrX1uzOfDsz-w1jH2yi4mJQFDxFtMxR4YWcgj18aJROhBFGavJDZmfJeCo-zwaz9lLYqst270KSXlNvL7sRM43gaFM4VTMIOSLHHYEHlKjHdg6Ov54cbjUwGp3NNWkpuUyHs_ayzL9H-dsg3aDMW4FRb2-OHrFp96WbNJPv--tG75uft0gc7_orj9nDFoDCwWbFPGH3XPWUBRli53rpXezwEUbzEoGsf3vGfv2RVwR1AQgnDfnXQc0v6mXZfLsEBL6gS7Xihmp9GMqkBgSWsCDqjEXLAg6t04fWOVC6PY5wfeUTGrmvxwN4onaXeu5wluurUTb5ksDxKFtBWYECbCo5HuwtoOEtqz2YVLi0n7Pp0eH5aMzbmg7cRHHccBkViCHcQDih-wo17dAIogQc4IOK4zShgjPSCYtSVLbAw1A_Flb1bdS3MnU2fsF6VV25lwyUCaUVbqhCIqxJUqWFCa2mwCutChWwT51g88WGuiPfkjR7CeQogdxLIP8RsN1O9nm7jVd5HBK7DWopEbD322bcgBRVUZWr19QHQVwSJpEM2F4n7psh_j_jq7t1f8fuj8-z0_x0cnbymj2IqA6xzx7fZb1muXZvEBw1-m27F34DoekHGg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PT9swFLdQkRAXNNgQ4c94kyYuw6JJ3Lg5Vt06CiviQKXeIsd2tkglqdog7cNw4LP0k-09N21hggO3RLFsKc_2-71_v8fYVxOpMGtlGY8RLXO88HxOwR7e1iqNhBZapuSHHNxEl0NxNWqNnlXxu2z3ZUhyUdNALE1FdTEx2cWq8I1YagRH_cKps4HPEUVuCiJKwB09DDqruxjVz6JgWkou4_aoLpt5fY6XqmmNN_8LkTrN0_vAdmrICJ2FjHfZhi32mDdAtFtOnVMczqA7zhF6ureP7PFZJhCUGSAA1OQRBzX-XU7z6s89IFSFNFczrqk7h6bcZ0AoCBMiu5jUvN1Qu2loZwIlyOMM8yeXgshdBx1AG9jep2OLq8yfuoP-bQQ_u4MZ5AUowE85R1PcAKrKvDiHfoGb8RMb9n7cdS953YWB6yAMKy6DDLW-bQkr0qbCu7GtBZH4tfBBhWEcUYsYaYXBv61MhuZLMxRGNU3QNDK2JtxnjaIs7AEDpX1phG0rnyhmolilQvsmpVApGpqB8ti3pQCSyYJsI1nRKjtxJSiuxIkr-eux46WMkvrgzZLQJz4avFeEx76sPuORoTiIKmz5QGMQdkV-FEiPnS9lu57i7RUP3zf8lG3dfu8lv_o310dsO6DGwS7d-5g1qumDPUE0U6Wf3Yb9B3ak7hs | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+stacking+algorithm+for+bias-correcting+the+precipitation+projections+using+a%C2%A0multi-model+ensemble+of%C2%A0CMIP6+GCMs+in+a+semi-arid+basin%2C+India&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Shanmugam%2C+Hemanandhini&rft.au=Lakshmanan%2C+Vignesh+Rajkumar&rft.date=2025-02-01&rft.pub=Springer+Vienna&rft.issn=0177-798X&rft.eissn=1434-4483&rft.volume=156&rft.issue=2&rft_id=info:doi/10.1007%2Fs00704-024-05321-x&rft.externalDocID=10_1007_s00704_024_05321_x | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon |