Development of stacking algorithm for bias-correcting the precipitation projections using a multi-model ensemble of CMIP6 GCMs in a semi-arid basin, India

Climate change affects the hydrological cycle, leading to extreme events such as droughts and floods. Projection of climate change is necessary to understand the variability of future climate parameters for mitigating the impacts of climate change. The research aims to project the future precipitati...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied climatology Vol. 156; no. 2; p. 129
Main Authors Shanmugam, Hemanandhini, Lakshmanan, Vignesh Rajkumar
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.02.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0177-798X
1434-4483
DOI10.1007/s00704-024-05321-x

Cover

Abstract Climate change affects the hydrological cycle, leading to extreme events such as droughts and floods. Projection of climate change is necessary to understand the variability of future climate parameters for mitigating the impacts of climate change. The research aims to project the future precipitation over Amaravathi River Basin (ARB), Tamil Nadu, India considering as MME (Multi-Model Ensemble) CMIP6 (Coupled Model Inter comparison Project Phase-6) GCMs (General Circulation Models). The uncertainties and biases in the MME CMIP6 GCM precipitation were corrected and projected using the Empirical Quantile Mapping (EQM) employing the individual multiple Machine Learning (ML) and integrating algorithms through Stacking Regression (SR). Multiple machine learning algorithms used for bias-correction are Linear Regression (LR), Decision-Tree (DT) Regression, Random Forest (RF) Regression, Support-Vector Machine (SVM) Regression and Multi-Layer Perceptron (MLP) Regression with HyperParameter Tuning (HPT). Each machine learning algorithm with optimized hyperparameter was integrated into the SR to improve the model performance. The proposed SR showed better than the individual algorithms, with a RMSE (Root Mean Square Error) ranging from 37.14 to 66.28. The SR-based precipitation projection changes were analyzed as three periods: 2025–2050 (2040, near-future year), 2051–2075 (2065, mid-future year) and 2076–2100 (2090, far-future year) under SSP (Shared Socioeconomic Pathway) 1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 emission scenarios. The projected annual precipitation variations are in the range of 0.81–67.33% under the SSP1, followed by -4.51–72.13% (SSP2), -1.62–60.84% (SSP3) and − 0.71–65.75% under the SSP5 over the ARB. The precipitation was projected to be higher in magnitude in the southeast and lesser magnitude in the top northern part of ARB. The projection findings will be helpful in formulating strategies for addressing the climate impact and achieving the Sustainable Development Goal (SDG 13: Climate Action).
AbstractList Climate change affects the hydrological cycle, leading to extreme events such as droughts and floods. Projection of climate change is necessary to understand the variability of future climate parameters for mitigating the impacts of climate change. The research aims to project the future precipitation over Amaravathi River Basin (ARB), Tamil Nadu, India considering as MME (Multi-Model Ensemble) CMIP6 (Coupled Model Inter comparison Project Phase-6) GCMs (General Circulation Models). The uncertainties and biases in the MME CMIP6 GCM precipitation were corrected and projected using the Empirical Quantile Mapping (EQM) employing the individual multiple Machine Learning (ML) and integrating algorithms through Stacking Regression (SR). Multiple machine learning algorithms used for bias-correction are Linear Regression (LR), Decision-Tree (DT) Regression, Random Forest (RF) Regression, Support-Vector Machine (SVM) Regression and Multi-Layer Perceptron (MLP) Regression with HyperParameter Tuning (HPT). Each machine learning algorithm with optimized hyperparameter was integrated into the SR to improve the model performance. The proposed SR showed better than the individual algorithms, with a RMSE (Root Mean Square Error) ranging from 37.14 to 66.28. The SR-based precipitation projection changes were analyzed as three periods: 2025–2050 (2040, near-future year), 2051–2075 (2065, mid-future year) and 2076–2100 (2090, far-future year) under SSP (Shared Socioeconomic Pathway) 1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 emission scenarios. The projected annual precipitation variations are in the range of 0.81–67.33% under the SSP1, followed by -4.51–72.13% (SSP2), -1.62–60.84% (SSP3) and − 0.71–65.75% under the SSP5 over the ARB. The precipitation was projected to be higher in magnitude in the southeast and lesser magnitude in the top northern part of ARB. The projection findings will be helpful in formulating strategies for addressing the climate impact and achieving the Sustainable Development Goal (SDG 13: Climate Action).
Climate change affects the hydrological cycle, leading to extreme events such as droughts and floods. Projection of climate change is necessary to understand the variability of future climate parameters for mitigating the impacts of climate change. The research aims to project the future precipitation over Amaravathi River Basin (ARB), Tamil Nadu, India considering as MME (Multi-Model Ensemble) CMIP6 (Coupled Model Inter comparison Project Phase-6) GCMs (General Circulation Models). The uncertainties and biases in the MME CMIP6 GCM precipitation were corrected and projected using the Empirical Quantile Mapping (EQM) employing the individual multiple Machine Learning (ML) and integrating algorithms through Stacking Regression (SR). Multiple machine learning algorithms used for bias-correction are Linear Regression (LR), Decision-Tree (DT) Regression, Random Forest (RF) Regression, Support-Vector Machine (SVM) Regression and Multi-Layer Perceptron (MLP) Regression with HyperParameter Tuning (HPT). Each machine learning algorithm with optimized hyperparameter was integrated into the SR to improve the model performance. The proposed SR showed better than the individual algorithms, with a RMSE (Root Mean Square Error) ranging from 37.14 to 66.28. The SR-based precipitation projection changes were analyzed as three periods: 2025–2050 (2040, near-future year), 2051–2075 (2065, mid-future year) and 2076–2100 (2090, far-future year) under SSP (Shared Socioeconomic Pathway) 1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 emission scenarios. The projected annual precipitation variations are in the range of 0.81–67.33% under the SSP1, followed by -4.51–72.13% (SSP2), -1.62–60.84% (SSP3) and − 0.71–65.75% under the SSP5 over the ARB. The precipitation was projected to be higher in magnitude in the southeast and lesser magnitude in the top northern part of ARB. The projection findings will be helpful in formulating strategies for addressing the climate impact and achieving the Sustainable Development Goal (SDG 13: Climate Action).
ArticleNumber 129
Author Lakshmanan, Vignesh Rajkumar
Shanmugam, Hemanandhini
Author_xml – sequence: 1
  givenname: Hemanandhini
  surname: Shanmugam
  fullname: Shanmugam, Hemanandhini
  organization: Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology
– sequence: 2
  givenname: Vignesh Rajkumar
  surname: Lakshmanan
  fullname: Lakshmanan, Vignesh Rajkumar
  email: vigneshrajkumar.l@vit.ac.in
  organization: Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology
BookMark eNp9Uc1u1DAQtlArsS28ACdLXDjg4r_EyREtpV2pFT20ErfIG0-2XhJ7sR1U3oVDn6VPxmwXCYkDB9sz_n7s0XdCjkIMQMgbwc8E5-ZDxo1rxiWuSknBHl6QhdBKM60bdUQWXBjDTNt8fUlOct5yzmVdmwX59Ql-wBh3E4RC40Bzsf03HzbUjpuYfLmf6BATXXubWR9Tgr7s0XIPdIeN3_lii48Bu7jdgzFkOudnh6fHaR6LZ1N0MFIIGab1CPjK0-PyenVT04vldaY-UEsR8swm7-jaovg9XQXn7StyPNgxw-s_5ym5-3x-u7xkV18uVsuPV6yXShVm5CA1h0qDXnPbCtH0Gi9UhYVVqq2rSigD2uHQ1g2mbrjSznInuTMtOHVK3h18cYjvM-TSTT73MI42QJxzp0RdNbWopUHq23-o2zingL9DVtVyqUSrkSUPrD7FnBMM3S75yaafneDdPrDuEFiHgXXPgXUPKFIHUUZy2ED6a_0f1W-ps50r
Cites_doi 10.3390/informatics8040079
10.3390/ATMOS11050508
10.1007/s13762-021-03752-x
10.1016/j.jhydrol.2024.131424
10.1038/s41597-019-0038-1
10.1007/s10661-023-11454-9
10.1016/j.atmosres.2022.106440
10.1007/s00703-021-00817-x
10.5194/gmd-9-1937-2016
10.1016/J.ENVRES.2022.113070
10.1016/J.JHYDROL.2012.05.052
10.1016/J.ENVRES.2023.116615
10.1029/2022JD036659
10.1016/J.ATMOSRES.2023.106880
10.1108/ECAM-02-2020-0128
10.1007/s11269-021-02844-0
10.2166/wcc.2023.115
10.1002/met.2144
10.2166/wcc.2022.195
10.1007/s00704-018-2674-3
10.1007/s00382-022-06236-x
10.1007/s00704-018-2686-z
10.1007/s11229-020-02865-z
10.1038/s41597-020-00681-1
10.1038/s41597-021-01079-3
10.1016/J.ATMOSRES.2024.107470
10.3390/RS12183013
10.1016/j.wace.2015.09.004
10.1080/1206212X.2021.1974663
10.1007/s40899-020-00436-1
10.1002/asl.1087
10.1029/2021EA001981
10.1007/s00382-013-1942-2
10.12944/CWE.12.1.22
10.1007/s00382-023-06713-x
10.1080/10106049.2023.2285342
10.3390/atmos13060898
10.1016/J.ENVRES.2024.118403
10.1007/s00704-024-05087-2
10.1016/j.mlwa.2022.100251
10.1029/2000JD900719
10.1007/s11356-023-28649-9
10.2166/wcc.2024.152
10.1007/s00704-022-04274-3
10.1002/met.1575
10.1007/s00704-024-05066-7
10.2166/wcc.2020.128
10.3390/w15071265
10.1016/S1364-8152(01)00060-3
10.1007/s10113-020-01597-7
10.3390/su15129668
10.1007/978-3-319-13425-3_26
10.1038/s41598-022-08786-w
10.3390/hydrology9090161
10.1007/S00382-020-05462-5/METRICS
10.3390/sym14050927
10.3390/RS12081342
10.1016/j.wace.2021.100328
10.1029/2019EF001461
10.1038/s41598-022-27357-7
10.1038/s41597-023-02337-2
10.3354/cr00953
10.1007/s00704-022-04073-w
10.1088/1748-9326/ab702c
10.1038/s41597-023-01956-z
10.2166/hydro.2021.091
10.1002/joc.7100
10.1002/joc.5705
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Feb 2025
DBID AAYXX
CITATION
7QH
7TG
7TN
7UA
C1K
F1W
H96
KL.
L.G
7S9
L.6
DOI 10.1007/s00704-024-05321-x
DatabaseName CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1434-4483
EndPage 129
ExternalDocumentID 10_1007_s00704_024_05321_x
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
199
1N0
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBD
EBLON
EBS
EDH
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEP
IFM
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
L6V
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
XXG
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8O
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
ZY4
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7QH
7TG
7TN
7UA
C1K
F1W
H96
KL.
L.G
7S9
L.6
ID FETCH-LOGICAL-c233t-72f240e54e4b0a9118c42403518ca339655137e4d002adf768034da0d20d79ed3
IEDL.DBID U2A
ISSN 0177-798X
IngestDate Fri Aug 22 20:36:40 EDT 2025
Sat Aug 16 19:41:59 EDT 2025
Wed Oct 01 06:55:24 EDT 2025
Tue Feb 25 01:11:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c233t-72f240e54e4b0a9118c42403518ca339655137e4d002adf768034da0d20d79ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3159023194
PQPubID 48318
PageCount 1
ParticipantIDs proquest_miscellaneous_3165861627
proquest_journals_3159023194
crossref_primary_10_1007_s00704_024_05321_x
springer_journals_10_1007_s00704_024_05321_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250200
2025-02-00
20250201
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 2
  year: 2025
  text: 20250200
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Theoretical and applied climatology
PublicationTitleAbbrev Theor Appl Climatol
PublicationYear 2025
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References SH Gebrechorkos (5321_CR18) 2019; 6
AS Ballarin (5321_CR5) 2023; 10
RL Wilby (5321_CR70) 2002; 17
V Eyring (5321_CR16) 2016; 9
V Mishra (5321_CR38) 2020; 7
5321_CR59
5321_CR13
MG Meharie (5321_CR36) 2022; 29
5321_CR55
C Teutschbein (5321_CR63) 2012; 456–457
S Jain (5321_CR24) 2019; 137
KS Raju (5321_CR49) 2020; 11
N Acharya (5321_CR1) 2014; 43
M Velpuri (5321_CR66) 2023; 235
DM Belete (5321_CR6) 2022; 44
5321_CR52
B Wang (5321_CR67) 2018; 38
5321_CR53
D Guven (5321_CR21) 2023; 30
5321_CR47
BI Cook (5321_CR10) 2020; 8
V Gumus (5321_CR19) 2023; 292
B Deepthi (5321_CR12) 2023; 61
H Daniel (5321_CR11) 2023; 14
Z Xu (5321_CR72) 2021; 8
X Fan (5321_CR17) 2021; 32
E Mesgari (5321_CR37) 2022; 13
R Rahimi (5321_CR48) 2021; 35
P Kossieris (5321_CR32) 2024; 637
JT Schoof (5321_CR54) 2016; 11
FM Rettie (5321_CR51) 2023; 10
5321_CR42
5321_CR40
S Alsalal (5321_CR2) 2024
M Shahhosseini (5321_CR56) 2022; 7
KE Trenberth (5321_CR65) 2011; 47
P Kumari (5321_CR33) 2024; 00
BG Buhay Bucton (5321_CR9) 2022; 211
Y Kim (5321_CR28) 2020; 55
A Hernanz (5321_CR23) 2022; 23
SA Shahriar (5321_CR57) 2021; 133
5321_CR34
U Okkan (5321_CR45) 2016; 23
M Niazkar (5321_CR43) 2023; 151
S Kokilavani (5321_CR29) 2017; 12
O Me (5321_CR35) 2022; 59
V Kolluru (5321_CR30) 2021; 41
E Elgeldawi (5321_CR14) 2021; 8
NM Reddy (5321_CR50) 2024; 250
MA Gurara (5321_CR20) 2022; 19
5321_CR31
DM Jose (5321_CR27) 2022; 12
J Jebeile (5321_CR26) 2021; 199
G Elkiran (5321_CR15) 2021; 23
5321_CR71
5321_CR25
5321_CR69
B Yılmaz (5321_CR73) 2024
RAH Mukheef (5321_CR39) 2024; 306
5321_CR22
D Wang (5321_CR68) 2023; 30
B Nagaraja (5321_CR41) 2021; 40
P Thirunavukkarasu (5321_CR64) 2020; 49
5321_CR8
5321_CR7
5321_CR3
V Nourani (5321_CR44) 2019; 137
S Peng (5321_CR46) 2023; 13
5321_CR61
5321_CR62
SG Shrestha (5321_CR58) 2022; 149
5321_CR60
References_xml – volume: 8
  start-page: 1
  issue: 4
  year: 2021
  ident: 5321_CR14
  publication-title: Informatics
  doi: 10.3390/informatics8040079
– ident: 5321_CR71
  doi: 10.3390/ATMOS11050508
– volume: 19
  start-page: 8885
  issue: 9
  year: 2022
  ident: 5321_CR20
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-021-03752-x
– volume: 637
  start-page: 131424
  issue: May
  year: 2024
  ident: 5321_CR32
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2024.131424
– volume: 6
  start-page: 2
  issue: 1
  year: 2019
  ident: 5321_CR18
  publication-title: Sci Data
  doi: 10.1038/s41597-019-0038-1
– ident: 5321_CR22
  doi: 10.1007/s10661-023-11454-9
– ident: 5321_CR60
– ident: 5321_CR55
  doi: 10.1016/j.atmosres.2022.106440
– volume: 133
  start-page: 1409
  issue: 4
  year: 2021
  ident: 5321_CR57
  publication-title: Meteorol Atmos Phys
  doi: 10.1007/s00703-021-00817-x
– volume: 9
  start-page: 1937
  issue: 5
  year: 2016
  ident: 5321_CR16
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-9-1937-2016
– volume: 211
  start-page: 113070
  year: 2022
  ident: 5321_CR9
  publication-title: Environ Res
  doi: 10.1016/J.ENVRES.2022.113070
– volume: 456–457
  start-page: 12
  year: 2012
  ident: 5321_CR63
  publication-title: J Hydrol
  doi: 10.1016/J.JHYDROL.2012.05.052
– volume: 235
  start-page: 116615
  year: 2023
  ident: 5321_CR66
  publication-title: Environ Res
  doi: 10.1016/J.ENVRES.2023.116615
– ident: 5321_CR3
  doi: 10.1029/2022JD036659
– volume: 292
  start-page: 106880
  year: 2023
  ident: 5321_CR19
  publication-title: Atmos Res
  doi: 10.1016/J.ATMOSRES.2023.106880
– volume: 29
  start-page: 2836
  issue: 7
  year: 2022
  ident: 5321_CR36
  publication-title: Eng Constr Architectural Manage
  doi: 10.1108/ECAM-02-2020-0128
– volume: 35
  start-page: 2503
  issue: 8
  year: 2021
  ident: 5321_CR48
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-021-02844-0
– volume: 14
  start-page: 2007
  issue: 6
  year: 2023
  ident: 5321_CR11
  publication-title: J Water Clim Change
  doi: 10.2166/wcc.2023.115
– volume: 30
  start-page: 1
  issue: 5
  year: 2023
  ident: 5321_CR68
  publication-title: Meteorol Appl
  doi: 10.1002/met.2144
– volume: 13
  start-page: 3607
  issue: 10
  year: 2022
  ident: 5321_CR37
  publication-title: J Water Clim Change
  doi: 10.2166/wcc.2022.195
– volume: 137
  start-page: 1429
  issue: 1–2
  year: 2019
  ident: 5321_CR24
  publication-title: Theoret Appl Climatol
  doi: 10.1007/s00704-018-2674-3
– volume: 59
  start-page: 3051
  issue: 9–10
  year: 2022
  ident: 5321_CR35
  publication-title: Clim Dyn
  doi: 10.1007/s00382-022-06236-x
– volume: 137
  start-page: 1729
  issue: 3–4
  year: 2019
  ident: 5321_CR44
  publication-title: Theoret Appl Climatol
  doi: 10.1007/s00704-018-2686-z
– volume: 199
  start-page: 1877
  issue: 1–2
  year: 2021
  ident: 5321_CR26
  publication-title: Synthese
  doi: 10.1007/s11229-020-02865-z
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  ident: 5321_CR38
  publication-title: Sci Data
  doi: 10.1038/s41597-020-00681-1
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  ident: 5321_CR72
  publication-title: Sci Data
  doi: 10.1038/s41597-021-01079-3
– volume: 306
  start-page: 107470
  year: 2024
  ident: 5321_CR39
  publication-title: Atmos Res
  doi: 10.1016/J.ATMOSRES.2024.107470
– ident: 5321_CR31
  doi: 10.3390/RS12183013
– volume: 11
  start-page: 28
  year: 2016
  ident: 5321_CR54
  publication-title: Weather Clim Extremes
  doi: 10.1016/j.wace.2015.09.004
– volume: 44
  start-page: 875
  issue: 9
  year: 2022
  ident: 5321_CR6
  publication-title: Int J Comput Appl
  doi: 10.1080/1206212X.2021.1974663
– ident: 5321_CR8
  doi: 10.1007/s40899-020-00436-1
– volume: 23
  start-page: 1
  issue: 6
  year: 2022
  ident: 5321_CR23
  publication-title: Atmospheric Sci Lett
  doi: 10.1002/asl.1087
– ident: 5321_CR25
  doi: 10.1029/2021EA001981
– volume: 43
  start-page: 1303
  issue: 5–6
  year: 2014
  ident: 5321_CR1
  publication-title: Clim Dyn
  doi: 10.1007/s00382-013-1942-2
– volume: 12
  start-page: 181
  issue: 1
  year: 2017
  ident: 5321_CR29
  publication-title: Curr World Environ
  doi: 10.12944/CWE.12.1.22
– volume: 40
  start-page: 281
  issue: 1
  year: 2021
  ident: 5321_CR41
  publication-title: Poll Res
– volume: 61
  start-page: 3009
  issue: 5–6
  year: 2023
  ident: 5321_CR12
  publication-title: Clim Dyn
  doi: 10.1007/s00382-023-06713-x
– ident: 5321_CR7
  doi: 10.1080/10106049.2023.2285342
– ident: 5321_CR40
  doi: 10.3390/atmos13060898
– volume: 250
  start-page: 118403
  year: 2024
  ident: 5321_CR50
  publication-title: Environ Res
  doi: 10.1016/J.ENVRES.2024.118403
– year: 2024
  ident: 5321_CR2
  publication-title: Theoret Appl Climatol
  doi: 10.1007/s00704-024-05087-2
– volume: 7
  start-page: 100251
  issue: December 2021
  year: 2022
  ident: 5321_CR56
  publication-title: Mach Learn Appl
  doi: 10.1016/j.mlwa.2022.100251
– ident: 5321_CR62
  doi: 10.1029/2000JD900719
– volume: 30
  start-page: 87314
  issue: 37
  year: 2023
  ident: 5321_CR21
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-023-28649-9
– volume: 00
  start-page: 1
  issue: 0
  year: 2024
  ident: 5321_CR33
  publication-title: J Water Clim Change
  doi: 10.2166/wcc.2024.152
– volume: 151
  start-page: 153
  issue: 1–2
  year: 2023
  ident: 5321_CR43
  publication-title: Theoret Appl Climatol
  doi: 10.1007/s00704-022-04274-3
– volume: 23
  start-page: 514
  issue: 3
  year: 2016
  ident: 5321_CR45
  publication-title: Meteorol Appl
  doi: 10.1002/met.1575
– year: 2024
  ident: 5321_CR73
  publication-title: Theoret Appl Climatol
  doi: 10.1007/s00704-024-05066-7
– volume: 11
  start-page: 577
  issue: 3
  year: 2020
  ident: 5321_CR49
  publication-title: J Water Clim Change
  doi: 10.2166/wcc.2020.128
– ident: 5321_CR34
  doi: 10.3390/w15071265
– volume: 17
  start-page: 145
  issue: 2
  year: 2002
  ident: 5321_CR70
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(01)00060-3
– ident: 5321_CR53
  doi: 10.1007/s10113-020-01597-7
– ident: 5321_CR47
  doi: 10.3390/su15129668
– ident: 5321_CR42
  doi: 10.1007/978-3-319-13425-3_26
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 5321_CR27
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-08786-w
– ident: 5321_CR52
  doi: 10.3390/hydrology9090161
– volume: 55
  start-page: 3507
  issue: 11–12
  year: 2020
  ident: 5321_CR28
  publication-title: Clim Dyn
  doi: 10.1007/S00382-020-05462-5/METRICS
– ident: 5321_CR59
  doi: 10.3390/sym14050927
– ident: 5321_CR69
  doi: 10.3390/RS12081342
– volume: 32
  start-page: 100328
  year: 2021
  ident: 5321_CR17
  publication-title: Weather Clim Extremes
  doi: 10.1016/j.wace.2021.100328
– volume: 8
  start-page: 1
  issue: 6
  year: 2020
  ident: 5321_CR10
  publication-title: Earth’s Future
  doi: 10.1029/2019EF001461
– volume: 49
  start-page: 1686
  issue: 10
  year: 2020
  ident: 5321_CR64
  publication-title: Indian J Geo-Mar Sci
– volume: 13
  start-page: 0
  issue: 1
  year: 2023
  ident: 5321_CR46
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-27357-7
– volume: 10
  start-page: 1
  issue: 1
  year: 2023
  ident: 5321_CR51
  publication-title: Sci Data
  doi: 10.1038/s41597-023-02337-2
– ident: 5321_CR13
– volume: 47
  start-page: 123
  issue: 1–2
  year: 2011
  ident: 5321_CR65
  publication-title: Climate Res
  doi: 10.3354/cr00953
– volume: 149
  start-page: 695
  issue: 1–2
  year: 2022
  ident: 5321_CR58
  publication-title: Theoret Appl Climatol
  doi: 10.1007/s00704-022-04073-w
– ident: 5321_CR61
  doi: 10.1088/1748-9326/ab702c
– volume: 10
  start-page: 1
  issue: 1
  year: 2023
  ident: 5321_CR5
  publication-title: Sci Data
  doi: 10.1038/s41597-023-01956-z
– volume: 23
  start-page: 1395
  issue: 6
  year: 2021
  ident: 5321_CR15
  publication-title: J Hydroinformatics
  doi: 10.2166/hydro.2021.091
– volume: 41
  start-page: 4804
  issue: 10
  year: 2021
  ident: 5321_CR30
  publication-title: Int J Climatol
  doi: 10.1002/joc.7100
– volume: 38
  start-page: 4891
  issue: 13
  year: 2018
  ident: 5321_CR67
  publication-title: Int J Climatol
  doi: 10.1002/joc.5705
SSID ssj0002667
Score 2.4247653
Snippet Climate change affects the hydrological cycle, leading to extreme events such as droughts and floods. Projection of climate change is necessary to understand...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 129
SubjectTerms Algorithms
Annual precipitation
Aquatic Pollution
atmospheric precipitation
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
basins
Bias
climate
Climate action
Climate change
Climatology
decision support systems
Decision trees
Drought
Earth and Environmental Science
Earth Sciences
Environmental impact
Future climates
Future precipitation
General circulation models
Hydrologic cycle
Hydrological cycle
India
Learning algorithms
Machine learning
model validation
Multilayer perceptrons
Multilayers
Precipitation
Precipitation variations
regression analysis
Regression models
River basins
Root-mean-square errors
Support vector machines
Sustainable development
Sustainable Development Goals
Waste Water Technology
Water Management
Water Pollution Control
watersheds
Title Development of stacking algorithm for bias-correcting the precipitation projections using a multi-model ensemble of CMIP6 GCMs in a semi-arid basin, India
URI https://link.springer.com/article/10.1007/s00704-024-05321-x
https://www.proquest.com/docview/3159023194
https://www.proquest.com/docview/3165861627
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1434-4483
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTuMwELYQXLgg2AUR_jRIKy5gqUmcuDlWFX-7KuJApXKKHNuBSG1StUXah9lDn6VPxoyblAXBgVuiWLaUGc989sx8w9gvE6swj_KcJ4iWORo8n1Owh7e1ymKhhZYZ3UP27uKbvvg9iAZ1Udi0yXZvQpLOUq-K3YiZRnD0KZy6GfgckeNGRHReqMX9oLOyv-hylkXSUnKZtAd1qcznc7x3R28Y80NY1Hmbq222VcNE6CzlusPWbPmDeT1EuNXEXYTDGXSHBcJN9_aT_fsv-weqHBD0aboFBzV8qibF7HkECE8hK9SUa-rIoSnfGRD-wZgILsY1VzfUVzOkjUBJ8TjDYu7SDrnrmgN47rWjbGhxlcW827u9j-G625tCUYIC_FRwPH4bQPdYlBdwW6IC7rL-1eVD94bXnRe4DsJwxmWQo6e3kbAiaym0h20tiLgvwgcVhklMbWGkFQb_tjI5HllaoTCqZYKWkYk14R5bL6vS7jNQ2pdG2LbyiVYmTlQmtG8yCo_i4TJQHjtvBJCOlwQb6YpK2YkrRXGlTlzpX48dNTJK6802TUOfOGjQlgiPna4-4zah2IcqbfVCYxBqxX4cSI9dNLJ9m-LrFQ--N_yQbQbUIdjldR-x9dnkxR4jbJllJ2yjc_345_LEaesrZ-fohw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF6h9AAX_hGGAoOEuNCtYnvjjY9V1DahdcWhkcLJ2j8Xi9SOEkdCPAuHPkufjJmNnUIFh95s7WrX1uzOfDsz-w1jH2yi4mJQFDxFtMxR4YWcgj18aJROhBFGavJDZmfJeCo-zwaz9lLYqst270KSXlNvL7sRM43gaFM4VTMIOSLHHYEHlKjHdg6Ov54cbjUwGp3NNWkpuUyHs_ayzL9H-dsg3aDMW4FRb2-OHrFp96WbNJPv--tG75uft0gc7_orj9nDFoDCwWbFPGH3XPWUBRli53rpXezwEUbzEoGsf3vGfv2RVwR1AQgnDfnXQc0v6mXZfLsEBL6gS7Xihmp9GMqkBgSWsCDqjEXLAg6t04fWOVC6PY5wfeUTGrmvxwN4onaXeu5wluurUTb5ksDxKFtBWYECbCo5HuwtoOEtqz2YVLi0n7Pp0eH5aMzbmg7cRHHccBkViCHcQDih-wo17dAIogQc4IOK4zShgjPSCYtSVLbAw1A_Flb1bdS3MnU2fsF6VV25lwyUCaUVbqhCIqxJUqWFCa2mwCutChWwT51g88WGuiPfkjR7CeQogdxLIP8RsN1O9nm7jVd5HBK7DWopEbD322bcgBRVUZWr19QHQVwSJpEM2F4n7psh_j_jq7t1f8fuj8-z0_x0cnbymj2IqA6xzx7fZb1muXZvEBw1-m27F34DoekHGg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1PT9swFLdQkRAXNNgQ4c94kyYuw6JJ3Lg5Vt06CiviQKXeIsd2tkglqdog7cNw4LP0k-09N21hggO3RLFsKc_2-71_v8fYVxOpMGtlGY8RLXO88HxOwR7e1iqNhBZapuSHHNxEl0NxNWqNnlXxu2z3ZUhyUdNALE1FdTEx2cWq8I1YagRH_cKps4HPEUVuCiJKwB09DDqruxjVz6JgWkou4_aoLpt5fY6XqmmNN_8LkTrN0_vAdmrICJ2FjHfZhi32mDdAtFtOnVMczqA7zhF6ureP7PFZJhCUGSAA1OQRBzX-XU7z6s89IFSFNFczrqk7h6bcZ0AoCBMiu5jUvN1Qu2loZwIlyOMM8yeXgshdBx1AG9jep2OLq8yfuoP-bQQ_u4MZ5AUowE85R1PcAKrKvDiHfoGb8RMb9n7cdS953YWB6yAMKy6DDLW-bQkr0qbCu7GtBZH4tfBBhWEcUYsYaYXBv61MhuZLMxRGNU3QNDK2JtxnjaIs7AEDpX1phG0rnyhmolilQvsmpVApGpqB8ti3pQCSyYJsI1nRKjtxJSiuxIkr-eux46WMkvrgzZLQJz4avFeEx76sPuORoTiIKmz5QGMQdkV-FEiPnS9lu57i7RUP3zf8lG3dfu8lv_o310dsO6DGwS7d-5g1qumDPUE0U6Wf3Yb9B3ak7hs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+stacking+algorithm+for+bias-correcting+the+precipitation+projections+using+a%C2%A0multi-model+ensemble+of%C2%A0CMIP6+GCMs+in+a+semi-arid+basin%2C+India&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Shanmugam%2C+Hemanandhini&rft.au=Lakshmanan%2C+Vignesh+Rajkumar&rft.date=2025-02-01&rft.pub=Springer+Vienna&rft.issn=0177-798X&rft.eissn=1434-4483&rft.volume=156&rft.issue=2&rft_id=info:doi/10.1007%2Fs00704-024-05321-x&rft.externalDocID=10_1007_s00704_024_05321_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon