Coupling CO2 electrolysis and downstream processing via heat pump-based waste heat recovery

•Heat pumps can be used to upgrade the waste heat and drive the fluid separations.•CO2 emissions for the process with dilute streams are reduced by 29–84 % with a heat pump.•Heat pump COP increases by 32–44 % with electrolyzer operating at 70 °C from 50 °C base case.•Effective system performance ope...

Full description

Saved in:
Bibliographic Details
Published inComputers & chemical engineering Vol. 204; p. 109330
Main Authors Dal Mas, Riccardo, Carta, Andrea, Somoza-Tornos, Ana, Kiss, Anton A.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2026
Subjects
Online AccessGet full text
ISSN0098-1354
DOI10.1016/j.compchemeng.2025.109330

Cover

Abstract •Heat pumps can be used to upgrade the waste heat and drive the fluid separations.•CO2 emissions for the process with dilute streams are reduced by 29–84 % with a heat pump.•Heat pump COP increases by 32–44 % with electrolyzer operating at 70 °C from 50 °C base case.•Effective system performance operating with 40 % cell efficiency and heat integration. The electrification of chemical processes and CO2 utilization are key approaches to improving efficiency and reducing CO2 emissions in the process industry. The development of electrolyzers has gathered momentum, enabling the potential introduction of renewable electrons into the manufacture of CO2-based chemicals. While the performance of electrolyzers is subject to improvements driven by the experimental community, the generation of waste heat is unavoidable due to electrical resistances and process inefficiencies within the electrochemical cells. Nonetheless, reusing this waste heat has yet to be investigated for CO2 electrolyzers. This novel work shows the potential for upgrading the electrolyzer waste heat by means of a heat pump, enabling its utilization in the separation processes downstream of the carbon dioxide electrolyzer. The product chosen is formic acid (60 kt/y), and for our system, the waste heat represents approximately 60 % of the power input to the electrochemical cells, and it can be upgraded from 50 °C to 120 °C to drive the azeotropic distillation of formic acid and water. This integration results in the electrification of 76 % of the separation energy duty, yielding a decrease in CO2 emissions of 29–84 % compared to the conventional production, depending on the source of electricity. The results demonstrate that the use of traditional heating media in thermal separation processes can be offset and substituted with (renewable) electrical energy, allowing for an increased overall system efficiency. This approach can be readily extended to different productions based on carbon dioxide electroreduction, for example for methanol and ethanol manufacture. This eco-efficient process design leads to a deeper penetration of renewable energy into chemical manufacturing, as both reaction and separation are driven by electricity.
AbstractList •Heat pumps can be used to upgrade the waste heat and drive the fluid separations.•CO2 emissions for the process with dilute streams are reduced by 29–84 % with a heat pump.•Heat pump COP increases by 32–44 % with electrolyzer operating at 70 °C from 50 °C base case.•Effective system performance operating with 40 % cell efficiency and heat integration. The electrification of chemical processes and CO2 utilization are key approaches to improving efficiency and reducing CO2 emissions in the process industry. The development of electrolyzers has gathered momentum, enabling the potential introduction of renewable electrons into the manufacture of CO2-based chemicals. While the performance of electrolyzers is subject to improvements driven by the experimental community, the generation of waste heat is unavoidable due to electrical resistances and process inefficiencies within the electrochemical cells. Nonetheless, reusing this waste heat has yet to be investigated for CO2 electrolyzers. This novel work shows the potential for upgrading the electrolyzer waste heat by means of a heat pump, enabling its utilization in the separation processes downstream of the carbon dioxide electrolyzer. The product chosen is formic acid (60 kt/y), and for our system, the waste heat represents approximately 60 % of the power input to the electrochemical cells, and it can be upgraded from 50 °C to 120 °C to drive the azeotropic distillation of formic acid and water. This integration results in the electrification of 76 % of the separation energy duty, yielding a decrease in CO2 emissions of 29–84 % compared to the conventional production, depending on the source of electricity. The results demonstrate that the use of traditional heating media in thermal separation processes can be offset and substituted with (renewable) electrical energy, allowing for an increased overall system efficiency. This approach can be readily extended to different productions based on carbon dioxide electroreduction, for example for methanol and ethanol manufacture. This eco-efficient process design leads to a deeper penetration of renewable energy into chemical manufacturing, as both reaction and separation are driven by electricity.
ArticleNumber 109330
Author Somoza-Tornos, Ana
Kiss, Anton A.
Dal Mas, Riccardo
Carta, Andrea
Author_xml – sequence: 1
  givenname: Riccardo
  surname: Dal Mas
  fullname: Dal Mas, Riccardo
– sequence: 2
  givenname: Andrea
  surname: Carta
  fullname: Carta, Andrea
– sequence: 3
  givenname: Ana
  surname: Somoza-Tornos
  fullname: Somoza-Tornos, Ana
– sequence: 4
  givenname: Anton A.
  surname: Kiss
  fullname: Kiss, Anton A.
  email: A.A.Kiss@tudelft.nl
BookMark eNqNkM1qwzAQhHVIoUnbd1AfwOnKlmz5WEz_IJBLe-pByPI6UbAlIzkJefs6uIcee1oYdoaZb0UWzjsk5JHBmgHLnw5r4_vB7LFHt1unkIpJL7MMFmQJUMqEZYLfklWMBwBIuZRL8l3549BZt6PVNqXYoRmD7y7RRqpdQxt_dnEMqHs6BG8wxuvryWq6Rz3S4dgPSa0jNvSs44izGtD4E4bLPblpdRfx4ffeka_Xl8_qPdls3z6q501i0qlcojmKumUtYF0KaYq8EAJBNkzqQhd5rsscmAA-LdEcCi5qk3HZslpjmmcty-5IOeea4GMM2Koh2F6Hi2KgrmTUQf0ho65k1Exm8lazF6eCJ4tBRWPRGWzsNGNUjbf_SPkB2th3Kw
Cites_doi 10.1038/s41565-020-00823-x
10.1007/s11367-016-1087-8
10.1007/s11696-020-01329-5
10.1002/ente.201900994
10.1016/j.energy.2018.03.166
10.1126/science.aav3506
10.1039/D4EY00190G
10.1016/j.joule.2019.07.021
10.1016/j.rser.2022.112106
10.1021/acs.iecr.8b00883
10.1016/j.jcou.2017.04.011
10.1016/j.joule.2022.12.008
10.1016/j.applthermaleng.2019.01.034
10.1021/acsenergylett.9b02356
10.1016/j.cej.2015.08.101
10.1016/j.ijhydene.2016.05.199
10.1016/j.joule.2019.07.009
10.1016/j.coelec.2022.101012
10.1016/j.spc.2018.12.002
10.1021/acs.iecr.9b03970
10.1016/j.cep.2017.11.016
10.1021/acsenergylett.4c00955
10.1016/j.ijhydene.2023.03.374
10.1016/j.jcou.2020.101349
10.1016/j.cherd.2022.03.034
10.1016/j.apenergy.2023.121933
10.1021/acscatal.3c00706
10.1016/j.isci.2021.102813
10.1016/j.apenergy.2025.126367
10.1021/acsenergylett.3c00973
10.1002/admt.202300281
10.1039/D0GC02831B
10.1021/acsenergylett.3c00489
10.1039/D1GC04791D
10.1021/acsenergylett.3c00620
10.1016/j.joule.2024.01.003
10.1039/C8EE00097B
10.1021/acs.energyfuels.2c03616
10.1016/j.coelec.2023.101248
10.1016/j.enconman.2020.113164
10.1038/s41467-023-43409-6
10.2172/1220428
10.1002/cssc.201100780
10.1016/j.enconman.2023.117194
10.1016/j.renene.2022.03.128
10.1039/D0EE03011B
10.1016/j.jcou.2019.07.024
10.1039/C5GC01893E
10.1007/s11367-016-1246-y
10.1016/j.applthermaleng.2013.12.067
10.1016/j.fuel.2023.128913
10.1016/j.compchemeng.2022.108075
10.1016/j.apenergy.2024.124817
10.1021/acssuschemeng.3c04373
10.1016/j.coche.2022.100881
10.1016/j.energy.2020.117994
10.1016/j.pecs.2017.07.001
10.1016/j.energy.2004.07.004
10.1038/s41467-025-56540-3
10.1016/j.energy.2020.117788
10.1016/j.rser.2020.110219
10.1016/j.cherd.2024.09.001
10.1038/s41929-021-00694-y
10.1038/s44286-024-00076-8
10.1021/acs.chemrev.3c00206
10.1016/j.energy.2015.06.030
10.1088/1748-9326/abbd02
10.1016/j.apenergy.2020.116266
10.1038/s41560-021-00973-9
10.1021/acs.iecr.2c01427
10.1016/j.cep.2018.01.020
10.1002/anie.201803501
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.compchemeng.2025.109330
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compchemeng_2025_109330
S0098135425003321
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAFTH
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
VH1
WUQ
ZY4
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c2330-a4e5bf1f0eb958c76755e08d18a7a766a9601504933a40745bc348f1bae263f13
IEDL.DBID AIKHN
ISSN 0098-1354
IngestDate Thu Sep 25 00:52:46 EDT 2025
Sat Sep 27 17:13:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Heat pumps
CO2 electrolysis
Waste heat recovery
Downstream processing
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2330-a4e5bf1f0eb958c76755e08d18a7a766a9601504933a40745bc348f1bae263f13
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0098135425003321
ParticipantIDs crossref_primary_10_1016_j_compchemeng_2025_109330
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2025_109330
PublicationCentury 2000
PublicationDate January 2026
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: January 2026
PublicationDecade 2020
PublicationTitle Computers & chemical engineering
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Frate, Ferrari, Desideri (bib0026) 2019; 150
Kibria, Edwards, Gabardo (bib0042) 2019; 31
Zhu, Wang (bib0091) 2021; 4
Madeddu, Ueckerdt, Pehl (bib0051) 2020; 15
Wu, Sha, Yang, Zhang (bib0085) 2020; 221
Bains, Psarras, Wilcox (bib0011) 2017; 63
IEA. 2024.
U.S. Energy Information Administration. (2025, 04 28).
Kato, Kubota, Kobayashi, Suzuoki (bib0041) 2005; 30
Galvan-Cara, Bongartz (bib0028) 2025; 398
Berkelaar, Van Der Linde, Peper (bib0016) 2022; 182
Pérez-Fortes, Schöneberger, Boulamanti, Harrison, Tzimas (bib0062) 2016; 41
Zhang, Zhuo, Hao (bib0088) 2024; 5
Hu, Wrubel, Baez-Cotto (bib0033) 2023; 14
Retrieved from
.
Paris.
Pace, Hoyos, Castoldi, Domínguez de María, Alcántara (bib0061) 2012; 5
Mills, Wiser, Millstein (bib0058) 2021; 283
Eckl, Moita, Castro, Neto (bib0023) 2025; 378
Martín, Larrazábal, Pérez-Ramírez (bib0054) 2015; 17
Kiss, Pragt, Vos, Bargeman, De Groot (bib0046) 2016; 284
Wernet, Bauer, Steubing, Reinhard, Moreno-Ruiz, Weidema (bib0084) 2016; 21
Ge, Zhang, Liu, Liu, Liu (bib0029) 2023; 169
Salvatore, Berlinguette (bib0067) 2020; 5
Da Cunha, Rangaiah, Hidajat (bib0021) 2018; 57
Ramdin, Morrison, Groen (bib0064) 2019; 58
Sinnott, Towler (bib0070) 2020
Barecka, Dameni, Muhamad, Ager, Lapkin (bib0013) 2023; 8
Edwards, Alerte, O’Brien (bib0024) 2023; 8
Schlosser, Jesper, Vogelsang, Walmsley, Arpagaus, Hesselbach (bib0068) 2020; 133
Heat pump center.
Kraft, Dieter. 1988.
Thijs, Rongé, Martens (bib0074) 2022; 24
Zhao, Jia, Li (bib0090) 2023; 351
Kibria Nabil, McCoy, Kibria (bib0043) 2021; 23
Aspen Technology, Inc. 2013. “Aspen physical property System.” November.
Van De Bor, Infante Ferreira, Kiss (bib0077) 2015; 89
Kim, Park, Lee (bib0044) 2024; 8
Bonanno, Müller, Bensmann (bib0017) 2024; 9
Sharma, Patle, Gadhamsetti, Pandit, Manca, Nirmala (bib0069) 2018; 123
Belsa, Xia, Pelayo García De Arquer (bib0015) 2024; 9
O’Brien, Miao, Zeraati, Lee, Sargent, Sinton (bib0059) 2024; 124
IEA. 2022.
Fernández-Caso, Díaz-Sainz, Alvarez-Guerra, Irabien (bib0025) 2023; 8
Mahida, Benyounes, Shen (bib0052) 2021; 75
Orella, Brown, Leonard, Román-Leshkov, Brushett (bib0060) 2020; 8
Somoza-Tornos, Guerra, Crow, Smith, Hodge (bib0072) 2021; 24
Zhang, Xie, Wang (bib0089) 2022; 34
Lee, Kim, Hye Youn, Jeong, Park (bib0049) 2018; 57
Mallapragada, Dvorkin, Modestino (bib0053) 2023; 7
Retrieved from European Environment Agency
Arpagaus, Bless, Uhlmann, Schiffmann, Bertsch (bib0009) 2018; 152
Lemmon, E.W., Bell, I.H., Huber, M.L., & McLinden, M.O. (2018).
Mavrotas (bib0056) 2009; 213
Masel, Liu, Yang (bib0055) 2021; 16
Yang, Kaczur, Sajjad, Masel (bib0087) 2020; 42
Bangalore Ashok, Prasad Rahul, Oinas, Pekka, Forssell, Susanna, 2022. Techno-economic evaluation of a biorefinery to produce γ-valerolactone (GVL), 2-methyltetrahydrofuran (2-MTHF) and 5-hydroxymethylfurfural (5-HMF) from Spruce. Renew. Energy. 190, 396–407 May
Chatterjee, Dutta, Lum, Lai, Huang (bib0018) 2021; 14
Vannoni, Sorce, Traverso, Massardo (bib0079) 2023; 290
Spurgeon, Kumar (bib0073) 2018; 11
Walden, Wellig, Stathopoulos (bib0083) 2023; 352
Rumayor, Dominguez-Ramos, Irabien (bib0065) 2019; 18
Harrison, Remick, Martin, Hoskin (bib0031) 2010
Kiss, Infante Ferreira (bib0045) 2016
Pieper, Ommen, Jensen, Elmegaard, Brix Markussen (bib0063) 2020; 205
Yang, Kaczur, Sajjad, Masel (bib0086) 2017; 20
Luyben (bib0050) 2018; 126
Kiss, Smith (bib0047) 2020; 203
De Luna, Hahn, Higgins, Jaffer, Jaramillo, Sargent (bib0022) 2019; 364
Dioxide Materials. (2024, 07 24).
Zühlsdorf, Benjamin. 2024.
Crandall, Ko, Overa, Cherniack, Lee, Minnie, Jiao (bib0001) 2024; 1
Vos, Kolmeijer, Jacobs, Stam, Weckhuysen, Koper (bib0080) 2023; 13
Vos, Koper (bib0081) 2022; 9
Bauer, Tilsted, Pfister, Oberschelp, Kulionis (bib0014) 2023; 39
Chua, Cunha, Rangaiah, Hidajat (bib0019) 2019; 2
Smith, Burdyny, Vermaas, Geerlings (bib0071) 2019; 3
Huber, Lemmon, Bell, McLinden (bib0034) 2022; 61
Huijbregts, Steinmann, Elshout (bib0035) 2017; 22
Wakerley, Lamaison, Wicks (bib0082) 2022; 7
Van De Bor, Infante Ferreira, Kiss (bib0076) 2014; 65
Crandall, Brix, Weber, Jiao (bib0020) 2023; 37
European Environment Agency. (2025, 03 05).
Rumayor, Dominguez-Ramos, Perez, Irabien (bib0066) 2019; 34
Gabardo, O’Brien, Edwards (bib0027) 2019; 3
U.S. Department of Energy. 2015. Wind Vision: a new era for Wind power in the United States.
Van Der Roest, Bol, Fens, Wijk (bib0078) 2023; 48
Kalmoukidis, Barus, Staikos, Taube, Mousazadeh, Kiss (bib0040) 2024; 210
Hietala, Vuori, Johnsson, Pollari, Reutemann, Kieczka (bib0032) 2016
Alerte, Gaona, Edwards (bib0008) 2023; 11
Jiang, Hu, Wang, Deng, Cao, Wang (bib0039) 2022; 161
Retrieved from Dioxide Materials
DFVLR-FB 88-28. Deutsche Forschungs- und Versuchsanstalt für Luftund Raumfahrt.
Hurkmans, Pelzer, Burdyny, Peeters, Vermaas (bib0036) 2025
Mengesha, Roy (bib0057) 2025; 16
Goldman, Prajapati, Duoss, Baker, Hahn (bib0030) 2023; 39
Masel (10.1016/j.compchemeng.2025.109330_bib0055) 2021; 16
Wu (10.1016/j.compchemeng.2025.109330_bib0085) 2020; 221
Mills (10.1016/j.compchemeng.2025.109330_bib0058) 2021; 283
Sharma (10.1016/j.compchemeng.2025.109330_bib0069) 2018; 123
Hietala (10.1016/j.compchemeng.2025.109330_bib0032) 2016
Zhang (10.1016/j.compchemeng.2025.109330_bib0088) 2024; 5
Gabardo (10.1016/j.compchemeng.2025.109330_bib0027) 2019; 3
Jiang (10.1016/j.compchemeng.2025.109330_bib0039) 2022; 161
Kalmoukidis (10.1016/j.compchemeng.2025.109330_bib0040) 2024; 210
Fernández-Caso (10.1016/j.compchemeng.2025.109330_bib0025) 2023; 8
Hurkmans (10.1016/j.compchemeng.2025.109330_bib0036) 2025
Hu (10.1016/j.compchemeng.2025.109330_bib0033) 2023; 14
Ge (10.1016/j.compchemeng.2025.109330_bib0029) 2023; 169
10.1016/j.compchemeng.2025.109330_bib0075
Zhang (10.1016/j.compchemeng.2025.109330_bib0089) 2022; 34
Ramdin (10.1016/j.compchemeng.2025.109330_bib0064) 2019; 58
10.1016/j.compchemeng.2025.109330_bib0037
10.1016/j.compchemeng.2025.109330_bib0038
Crandall (10.1016/j.compchemeng.2025.109330_bib0020) 2023; 37
Pace (10.1016/j.compchemeng.2025.109330_bib0061) 2012; 5
Arpagaus (10.1016/j.compchemeng.2025.109330_bib0009) 2018; 152
Belsa (10.1016/j.compchemeng.2025.109330_bib0015) 2024; 9
Spurgeon (10.1016/j.compchemeng.2025.109330_bib0073) 2018; 11
Pieper (10.1016/j.compchemeng.2025.109330_bib0063) 2020; 205
Lee (10.1016/j.compchemeng.2025.109330_bib0049) 2018; 57
Eckl (10.1016/j.compchemeng.2025.109330_bib0023) 2025; 378
Wakerley (10.1016/j.compchemeng.2025.109330_bib0082) 2022; 7
Bains (10.1016/j.compchemeng.2025.109330_bib0011) 2017; 63
Rumayor (10.1016/j.compchemeng.2025.109330_bib0066) 2019; 34
Martín (10.1016/j.compchemeng.2025.109330_bib0054) 2015; 17
Kiss (10.1016/j.compchemeng.2025.109330_bib0047) 2020; 203
Alerte (10.1016/j.compchemeng.2025.109330_bib0008) 2023; 11
Goldman (10.1016/j.compchemeng.2025.109330_bib0030) 2023; 39
Madeddu (10.1016/j.compchemeng.2025.109330_bib0051) 2020; 15
Thijs (10.1016/j.compchemeng.2025.109330_bib0074) 2022; 24
Vannoni (10.1016/j.compchemeng.2025.109330_bib0079) 2023; 290
Huber (10.1016/j.compchemeng.2025.109330_bib0034) 2022; 61
Kibria Nabil (10.1016/j.compchemeng.2025.109330_bib0043) 2021; 23
Somoza-Tornos (10.1016/j.compchemeng.2025.109330_bib0072) 2021; 24
Yang (10.1016/j.compchemeng.2025.109330_bib0086) 2017; 20
Mavrotas (10.1016/j.compchemeng.2025.109330_bib0056) 2009; 213
Crandall (10.1016/j.compchemeng.2025.109330_bib0001) 2024; 1
Huijbregts (10.1016/j.compchemeng.2025.109330_bib0035) 2017; 22
Kato (10.1016/j.compchemeng.2025.109330_bib0041) 2005; 30
O’Brien (10.1016/j.compchemeng.2025.109330_bib0059) 2024; 124
Mallapragada (10.1016/j.compchemeng.2025.109330_bib0053) 2023; 7
Bonanno (10.1016/j.compchemeng.2025.109330_bib0017) 2024; 9
Salvatore (10.1016/j.compchemeng.2025.109330_bib0067) 2020; 5
Orella (10.1016/j.compchemeng.2025.109330_bib0060) 2020; 8
Vos (10.1016/j.compchemeng.2025.109330_bib0081) 2022; 9
10.1016/j.compchemeng.2025.109330_bib0092
Harrison (10.1016/j.compchemeng.2025.109330_bib0031) 2010
Edwards (10.1016/j.compchemeng.2025.109330_bib0024) 2023; 8
Pérez-Fortes (10.1016/j.compchemeng.2025.109330_bib0062) 2016; 41
10.1016/j.compchemeng.2025.109330_bib0010
Kibria (10.1016/j.compchemeng.2025.109330_bib0042) 2019; 31
10.1016/j.compchemeng.2025.109330_bib0012
Sinnott (10.1016/j.compchemeng.2025.109330_bib0070) 2020
De Luna (10.1016/j.compchemeng.2025.109330_bib0022) 2019; 364
Rumayor (10.1016/j.compchemeng.2025.109330_bib0065) 2019; 18
Van Der Roest (10.1016/j.compchemeng.2025.109330_bib0078) 2023; 48
Galvan-Cara (10.1016/j.compchemeng.2025.109330_bib0028) 2025; 398
Zhu (10.1016/j.compchemeng.2025.109330_bib0091) 2021; 4
Kim (10.1016/j.compchemeng.2025.109330_bib0044) 2024; 8
Mahida (10.1016/j.compchemeng.2025.109330_bib0052) 2021; 75
Smith (10.1016/j.compchemeng.2025.109330_bib0071) 2019; 3
Mengesha (10.1016/j.compchemeng.2025.109330_bib0057) 2025; 16
Yang (10.1016/j.compchemeng.2025.109330_bib0087) 2020; 42
Barecka (10.1016/j.compchemeng.2025.109330_bib0013) 2023; 8
Frate (10.1016/j.compchemeng.2025.109330_bib0026) 2019; 150
Da Cunha (10.1016/j.compchemeng.2025.109330_bib0021) 2018; 57
Van De Bor (10.1016/j.compchemeng.2025.109330_bib0077) 2015; 89
Chatterjee (10.1016/j.compchemeng.2025.109330_bib0018) 2021; 14
Wernet (10.1016/j.compchemeng.2025.109330_bib0084) 2016; 21
Chua (10.1016/j.compchemeng.2025.109330_bib0019) 2019; 2
Walden (10.1016/j.compchemeng.2025.109330_bib0083) 2023; 352
Luyben (10.1016/j.compchemeng.2025.109330_bib0050) 2018; 126
Schlosser (10.1016/j.compchemeng.2025.109330_bib0068) 2020; 133
Berkelaar (10.1016/j.compchemeng.2025.109330_bib0016) 2022; 182
10.1016/j.compchemeng.2025.109330_bib0002
10.1016/j.compchemeng.2025.109330_bib0003
Zhao (10.1016/j.compchemeng.2025.109330_bib0090) 2023; 351
10.1016/j.compchemeng.2025.109330_bib0048
Bauer (10.1016/j.compchemeng.2025.109330_bib0014) 2023; 39
Van De Bor (10.1016/j.compchemeng.2025.109330_bib0076) 2014; 65
Kiss (10.1016/j.compchemeng.2025.109330_bib0045) 2016
10.1016/j.compchemeng.2025.109330_bib0006
10.1016/j.compchemeng.2025.109330_bib0007
Kiss (10.1016/j.compchemeng.2025.109330_bib0046) 2016; 284
Vos (10.1016/j.compchemeng.2025.109330_bib0080) 2023; 13
References_xml – volume: 398
  year: 2025
  ident: bib0028
  article-title: Rethinking electrolyzer design for optimal waste-heat utilization
  publication-title: Appl. Energy.
– reference: U.S. Department of Energy. 2015. Wind Vision: a new era for Wind power in the United States.
– volume: 7
  start-page: 130
  year: 2022
  end-page: 143
  ident: bib0082
  article-title: Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers
  publication-title: Nat. Energy.
– reference: . Paris.
– reference: . Retrieved from Dioxide Materials:
– volume: 1
  start-page: 421
  year: 2024
  end-page: 429
  ident: bib0001
  article-title: Kilowatt-scale tandem CO2 electrolysis for enhanced acetate and ethylene production
  publication-title: Nat. Chemic. Eng.
– volume: 24
  year: 2021
  ident: bib0072
  article-title: Process modeling, techno-economic assessment, and life cycle assessment of the electrochemical reduction of CO2: a review
  publication-title: iScience
– volume: 8
  start-page: 693
  year: 2024
  end-page: 713
  ident: bib0044
  article-title: Accelerating the net-zero economy with CO2-hydrogenated formic acid production: process development and pilot plant demonstration
  publication-title: Joule
– volume: 126
  start-page: 206
  year: 2018
  end-page: 209
  ident: bib0050
  article-title: Capital cost of compressors for conceptual design
  publication-title: Chemic. Eng. Process. - Proc. Intensificat.
– volume: 89
  start-page: 864
  year: 2015
  end-page: 873
  ident: bib0077
  article-title: Low grade waste heat recovery using heat pumps and power cycles
  publication-title: Energy
– reference: . Retrieved from
– volume: 205
  year: 2020
  ident: bib0063
  article-title: Comparison of COP estimation methods for large-scale heat pumps used in energy planning
  publication-title: Energy
– volume: 5
  year: 2024
  ident: bib0088
  article-title: Flexible endothermic or exothermic operation for temperature-oriented alkaline water electrolysis
  publication-title: Cell Reports Physic. Science
– reference: Lemmon, E.W., Bell, I.H., Huber, M.L., & McLinden, M.O. (2018).
– reference: . Paris.
– volume: 378
  year: 2025
  ident: bib0023
  article-title: Valorization of the by-product oxygen from green hydrogen production: a review
  publication-title: Appl. Energy
– volume: 31
  year: 2019
  ident: bib0042
  article-title: Electrochemical CO
  publication-title: Advanc. Mater.
– year: 2025
  ident: bib0036
  article-title: Heating dictates the scalability of CO
  publication-title: EES Catal.
– reference: . Heat pump center.
– volume: 17
  start-page: 5114
  year: 2015
  end-page: 5130
  ident: bib0054
  article-title: Towards sustainable fuels and chemicals through the electrochemical reduction of CO
  publication-title: Green Chem.
– volume: 37
  start-page: 1441
  year: 2023
  end-page: 1450
  ident: bib0020
  article-title: Techno-economic assessment of green H
  publication-title: Energy Fuel.
– volume: 221
  year: 2020
  ident: bib0085
  article-title: Performance evaluation and working fluid selection of combined heat pump and power generation system (HP-PGs) using multi-objective optimization
  publication-title: Energy Convers. Manage.
– volume: 152
  start-page: 985
  year: 2018
  end-page: 1010
  ident: bib0009
  article-title: High temperature heat pumps: market overview, State of the art, research status, refrigerants, and application potentials
  publication-title: Energy
– volume: 30
  start-page: 2580
  year: 2005
  end-page: 2595
  ident: bib0041
  article-title: Effective utilization of by-product oxygen from electrolysis hydrogen production
  publication-title: Energy
– volume: 21
  start-page: 1218
  year: 2016
  end-page: 1230
  ident: bib0084
  article-title: The Ecoinvent Database version 3 (Part I): overview and methodology
  publication-title: Int. J. Life Cycle Assess.
– volume: 203
  year: 2020
  ident: bib0047
  article-title: Rethinking energy use in distillation processes for a more sustainable chemical industry
  publication-title: Energy
– volume: 8
  start-page: 1992
  year: 2023
  end-page: 2024
  ident: bib0025
  article-title: Electroreduction of CO
  publication-title: ACS Energy Lett.
– volume: 41
  start-page: 16444
  year: 2016
  end-page: 16462
  ident: bib0062
  article-title: Formic acid synthesis using CO2 as raw material: techno-economic and environmental evaluation and market potential
  publication-title: Int. J. Hydrogen Energy.
– volume: 16
  year: 2025
  ident: bib0057
  article-title: Carbon pricing drives critical transition to green growth
  publication-title: Nat. Commun.
– volume: 58
  start-page: 22718
  year: 2019
  end-page: 22740
  ident: bib0064
  article-title: High-pressure electrochemical reduction of CO
  publication-title: Ind. Eng. Chem. Res
– volume: 351
  year: 2023
  ident: bib0090
  article-title: Recent advances and future perspectives in carbon capture, transportation, utilization, and storage (CCTUS) technologies: a comprehensive review
  publication-title: Fuel
– volume: 39
  year: 2023
  ident: bib0030
  article-title: Bridging fundamental science and applied science to accelerate CO2 electrolyzer scale-up
  publication-title: Curr. Opinion Electrochem.
– volume: 2
  year: 2019
  ident: bib0019
  article-title: Design and optimization of Kemira-Leonard process for formic acid production
  publication-title: Chemic. Eng. Sci.
– volume: 42
  year: 2020
  ident: bib0087
  article-title: Performance and long-term stability of CO2 conversion to formic acid using a three-compartment electrolyzer design
  publication-title: J. CO2 Utiliz.
– volume: 364
  start-page: eaav3506
  year: 2019
  ident: bib0022
  article-title: What would it take for renewably powered electrosynthesis to displace petrochemical processes?
  publication-title: Science
– volume: 39
  year: 2023
  ident: bib0014
  article-title: Mapping GHG emissions and prospects for renewable energy in the chemical industry
  publication-title: Curr. Opin. Chem. Eng.
– reference: . DFVLR-FB 88-28. Deutsche Forschungs- und Versuchsanstalt für Luftund Raumfahrt.
– volume: 352
  year: 2023
  ident: bib0083
  article-title: Heat pump integration in non-continuous industrial processes by dynamic pinch analysis targeting
  publication-title: Appl. Energy.
– volume: 34
  year: 2022
  ident: bib0089
  article-title: What matters in the emerging application of CO2 electrolysis
  publication-title: Curr. Opinion Electrochem.
– volume: 9
  year: 2024
  ident: bib0017
  article-title: Review and prospects of PEM water electrolysis at elevated temperature operation
  publication-title: Adv. Mater. Technol.
– volume: 48
  start-page: 27872
  year: 2023
  end-page: 27891
  ident: bib0078
  article-title: Utilisation of waste heat from PEM electrolysers – Unlocking local optimisation
  publication-title: Int. J. Hydrogen Energy
– volume: 57
  start-page: 9554
  year: 2018
  end-page: 9570
  ident: bib0021
  article-title: Design, optimization, and retrofit of the Formic acid process I: base case Design and dividing-wall column retrofit
  publication-title: Ind. Eng. Chem. Res.
– volume: 213
  start-page: 455
  year: 2009
  end-page: 465
  ident: bib0056
  article-title: Effective implementation of the ε-constraint method in multi-objective mathematical programming problems
  publication-title: Appl. Math. Comput.
– volume: 24
  start-page: 2287
  year: 2022
  end-page: 2295
  ident: bib0074
  article-title: Matching emerging formic acid synthesis processes with application requirements
  publication-title: Green Chem.
– volume: 11
  start-page: 15651
  year: 2023
  end-page: 15662
  ident: bib0008
  article-title: Scale-dependent techno-economic analysis of CO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 61
  start-page: 15449
  year: 2022
  end-page: 15472
  ident: bib0034
  article-title: The NIST REFPROP Database for highly accurate properties of industrially important fluids
  publication-title: Ind. Eng. Chem. Res.
– reference: . Retrieved from European Environment Agency:
– volume: 123
  start-page: 204
  year: 2018
  end-page: 213
  ident: bib0069
  article-title: Intensification and performance assessment of the formic acid production process through a dividing wall reactive distillation column with vapor recompression
  publication-title: Chemic. Eng. Process. - Proc. Intensificat.
– volume: 150
  start-page: 628
  year: 2019
  end-page: 640
  ident: bib0026
  article-title: Analysis of suitability ranges of high temperature heat pump working fluids
  publication-title: Appl. Therm. Eng.
– volume: 22
  start-page: 138
  year: 2017
  end-page: 147
  ident: bib0035
  article-title: ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level
  publication-title: Int. J. Life Cycle Assess.
– volume: 5
  start-page: 1369
  year: 2012
  end-page: 1379
  ident: bib0061
  article-title: 2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry
  publication-title: Chem. Sus. Chem.
– year: 2016
  ident: bib0032
  article-title: Formic acid
  publication-title: Ullmann’s Encyclopedia of Industrial Chemistry
– reference: European Environment Agency. (2025, 03 05).
– volume: 3
  start-page: 1822
  year: 2019
  end-page: 1834
  ident: bib0071
  article-title: Pathways to industrial-scale fuel out of thin air from CO2 electrolysis
  publication-title: Joule
– volume: 57
  start-page: 6883
  year: 2018
  end-page: 6887
  ident: bib0049
  article-title: Catholyte-free electrocatalytic CO
  publication-title: Angewandte Chemie. Int. Edit.
– volume: 283
  year: 2021
  ident: bib0058
  article-title: The impact of wind, solar, and other factors on the decline in wholesale power prices in the United States
  publication-title: Appl. Energy.
– volume: 210
  start-page: 425
  year: 2024
  end-page: 436
  ident: bib0040
  article-title: Novel process design for eco-efficient production of green formic acid from CO2
  publication-title: Chemic. Eng. Res. Des.
– volume: 4
  start-page: 943
  year: 2021
  end-page: 951
  ident: bib0091
  article-title: High-purity and High-concentration liquid fuels through CO2 electroreduction
  publication-title: Nat. Catal.
– volume: 5
  start-page: 215
  year: 2020
  end-page: 220
  ident: bib0067
  article-title: Voltage matters when reducing CO
  publication-title: ACS Energy Lett.
– year: 2010
  ident: bib0031
  article-title: Hydrogen production: fundamentals and case study summaries
  publication-title: Paper presented at 18th World Hydrogen Energy Conference, Essen, Germany
– volume: 23
  start-page: 867
  year: 2021
  end-page: 880
  ident: bib0043
  article-title: Comparative life cycle assessment of electrochemical upgrading of CO
  publication-title: Green Chem.
– volume: 20
  start-page: 208
  year: 2017
  end-page: 217
  ident: bib0086
  article-title: Electrochemical conversion of CO2 to formic acid utilizing sustainion™ membranes
  publication-title: J. CO2 Utiliz.
– volume: 15
  year: 2020
  ident: bib0051
  article-title: The CO
  publication-title: Environment. Res. Lett.
– volume: 161
  year: 2022
  ident: bib0039
  article-title: A review and perspective on industry high-temperature heat pumps
  publication-title: Renew. Sustain. Energy Rev.
– volume: 14
  start-page: 7605
  year: 2023
  ident: bib0033
  article-title: A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid
  publication-title: Nat. Commun.
– reference: .
– volume: 11
  start-page: 1536
  year: 2018
  end-page: 1551
  ident: bib0073
  article-title: A comparative technoeconomic analysis of pathways for commercial electrochemical CO
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 8080
  year: 2023
  end-page: 8091
  ident: bib0080
  article-title: How temperature affects the selectivity of the electrochemical CO
  publication-title: ACS Catal.
– volume: 9
  year: 2022
  ident: bib0081
  article-title: The effect of temperature on the cation-promoted electrochemical CO
  publication-title: Chem. Electro. Chem.
– reference: IEA. 2022.
– volume: 65
  start-page: 219
  year: 2014
  end-page: 225
  ident: bib0076
  article-title: Optimal performance of compression–Resorption heat pump systems
  publication-title: Appl. Therm. Eng.
– volume: 9
  start-page: 4293
  year: 2024
  end-page: 4305
  ident: bib0015
  article-title: CO
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 2576
  year: 2023
  end-page: 2584
  ident: bib0024
  article-title: Pilot-scale CO
  publication-title: ACS Energy Lett.
– volume: 124
  start-page: 3648
  year: 2024
  end-page: 3693
  ident: bib0059
  article-title: CO
  publication-title: Chem. Rev.
– volume: 18
  start-page: 72
  year: 2019
  end-page: 82
  ident: bib0065
  article-title: Environmental and economic assessment of the formic acid electrochemical manufacture using carbon dioxide: influence of the electrode lifetime
  publication-title: Sustain. Product. Consumpt.
– volume: 3
  start-page: 2777
  year: 2019
  end-page: 2791
  ident: bib0027
  article-title: Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly
  publication-title: Joule
– volume: 63
  start-page: 146
  year: 2017
  end-page: 172
  ident: bib0011
  article-title: CO 2 capture from the industry sector
  publication-title: Prog Energy Combust. Sci.
– year: 2020
  ident: bib0070
  article-title: Chemical Engineering Design
– volume: 8
  start-page: 3214
  year: 2023
  end-page: 3220
  ident: bib0013
  article-title: Energy-efficient ethanol concentration method for scalable CO
  publication-title: ACS Energy Lett.
– volume: 133
  year: 2020
  ident: bib0068
  article-title: Large-scale heat pumps: applications, performance, economic feasibility and industrial integration
  publication-title: Renew. Sustain. Energy Rev.
– volume: 75
  start-page: 599
  year: 2021
  end-page: 609
  ident: bib0052
  article-title: Process analysis of pressure-swing distillation for the separation of formic acid–Water mixture
  publication-title: Chemic. Paper.
– volume: 14
  start-page: 1194
  year: 2021
  end-page: 1246
  ident: bib0018
  article-title: Enabling storage and utilization of low-carbon electricity: power to formic acid
  publication-title: Energy Environ. Sci.
– volume: 169
  year: 2023
  ident: bib0029
  article-title: Optimization and control of extractive distillation for formic acid-water separation with maximum-boiling azeotrope
  publication-title: Comput. Chem. Eng.
– reference: U.S. Energy Information Administration. (2025, 04 28).
– volume: 16
  start-page: 118
  year: 2021
  end-page: 128
  ident: bib0055
  article-title: An industrial perspective on catalysts for low-temperature CO2 electrolysis
  publication-title: Nat. Nanotechnol.
– volume: 290
  year: 2023
  ident: bib0079
  article-title: Techno-economic optimization of high-temperature heat pumps for waste heat recovery
  publication-title: Energy Conver. Manag.
– volume: 182
  start-page: 194
  year: 2022
  end-page: 206
  ident: bib0016
  article-title: Electrochemical conversion of carbon dioxide to ethylene: plant design, evaluation and prospects for the future
  publication-title: Chemic. Eng. Res. Des.
– volume: 8
  year: 2020
  ident: bib0060
  article-title: A general technoeconomic model for evaluating emerging electrolytic processes
  publication-title: Energy Technol.
– reference: Zühlsdorf, Benjamin. 2024.
– reference: IEA. 2024.
– volume: 7
  start-page: 23
  year: 2023
  end-page: 41
  ident: bib0053
  article-title: Decarbonization of the chemical industry through electrification: barriers and opportunities
  publication-title: Joule
– volume: 284
  start-page: 260
  year: 2016
  end-page: 269
  ident: bib0046
  article-title: Novel efficient process for methanol synthesis by CO 2 hydrogenation
  publication-title: Chemic. Eng. J.
– reference: Kraft, Dieter. 1988.
– reference: .
– year: 2016
  ident: bib0045
  article-title: Heat Pumps in Chemical Process Industry
– volume: 34
  start-page: 490
  year: 2019
  end-page: 499
  ident: bib0066
  article-title: A techno-economic evaluation approach to the electrochemical reduction of CO2 for formic acid manufacture
  publication-title: Journal of CO2 Utilization
– reference: Aspen Technology, Inc. 2013. “Aspen physical property System.” November.
– reference: Dioxide Materials. (2024, 07 24).
– reference: Bangalore Ashok, Prasad Rahul, Oinas, Pekka, Forssell, Susanna, 2022. Techno-economic evaluation of a biorefinery to produce γ-valerolactone (GVL), 2-methyltetrahydrofuran (2-MTHF) and 5-hydroxymethylfurfural (5-HMF) from Spruce. Renew. Energy. 190, 396–407 May
– volume: 16
  start-page: 118
  issue: 2
  year: 2021
  ident: 10.1016/j.compchemeng.2025.109330_bib0055
  article-title: An industrial perspective on catalysts for low-temperature CO2 electrolysis
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-00823-x
– volume: 21
  start-page: 1218
  issue: 9
  year: 2016
  ident: 10.1016/j.compchemeng.2025.109330_bib0084
  article-title: The Ecoinvent Database version 3 (Part I): overview and methodology
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-016-1087-8
– ident: 10.1016/j.compchemeng.2025.109330_bib0038
– year: 2010
  ident: 10.1016/j.compchemeng.2025.109330_bib0031
  article-title: Hydrogen production: fundamentals and case study summaries
– volume: 75
  start-page: 599
  issue: 2
  year: 2021
  ident: 10.1016/j.compchemeng.2025.109330_bib0052
  article-title: Process analysis of pressure-swing distillation for the separation of formic acid–Water mixture
  publication-title: Chemic. Paper.
  doi: 10.1007/s11696-020-01329-5
– volume: 8
  issue: 11
  year: 2020
  ident: 10.1016/j.compchemeng.2025.109330_bib0060
  article-title: A general technoeconomic model for evaluating emerging electrolytic processes
  publication-title: Energy Technol.
  doi: 10.1002/ente.201900994
– volume: 152
  start-page: 985
  year: 2018
  ident: 10.1016/j.compchemeng.2025.109330_bib0009
  article-title: High temperature heat pumps: market overview, State of the art, research status, refrigerants, and application potentials
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.166
– volume: 364
  start-page: eaav3506
  issue: 6438
  year: 2019
  ident: 10.1016/j.compchemeng.2025.109330_bib0022
  article-title: What would it take for renewably powered electrosynthesis to displace petrochemical processes?
  publication-title: Science
  doi: 10.1126/science.aav3506
– year: 2025
  ident: 10.1016/j.compchemeng.2025.109330_bib0036
  article-title: Heating dictates the scalability of CO2 electrolyzer types
  publication-title: EES Catal.
  doi: 10.1039/D4EY00190G
– volume: 3
  start-page: 2777
  issue: 11
  year: 2019
  ident: 10.1016/j.compchemeng.2025.109330_bib0027
  article-title: Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly
  publication-title: Joule
  doi: 10.1016/j.joule.2019.07.021
– volume: 213
  start-page: 455
  issue: 2
  year: 2009
  ident: 10.1016/j.compchemeng.2025.109330_bib0056
  article-title: Effective implementation of the ε-constraint method in multi-objective mathematical programming problems
  publication-title: Appl. Math. Comput.
– ident: 10.1016/j.compchemeng.2025.109330_bib0002
– volume: 161
  year: 2022
  ident: 10.1016/j.compchemeng.2025.109330_bib0039
  article-title: A review and perspective on industry high-temperature heat pumps
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2022.112106
– volume: 57
  start-page: 9554
  issue: 29
  year: 2018
  ident: 10.1016/j.compchemeng.2025.109330_bib0021
  article-title: Design, optimization, and retrofit of the Formic acid process I: base case Design and dividing-wall column retrofit
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b00883
– volume: 20
  start-page: 208
  year: 2017
  ident: 10.1016/j.compchemeng.2025.109330_bib0086
  article-title: Electrochemical conversion of CO2 to formic acid utilizing sustainion™ membranes
  publication-title: J. CO2 Utiliz.
  doi: 10.1016/j.jcou.2017.04.011
– volume: 7
  start-page: 23
  issue: 1
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109330_bib0053
  article-title: Decarbonization of the chemical industry through electrification: barriers and opportunities
  publication-title: Joule
  doi: 10.1016/j.joule.2022.12.008
– ident: 10.1016/j.compchemeng.2025.109330_bib0092
– volume: 150
  start-page: 628
  year: 2019
  ident: 10.1016/j.compchemeng.2025.109330_bib0026
  article-title: Analysis of suitability ranges of high temperature heat pump working fluids
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.01.034
– volume: 5
  start-page: 215
  issue: 1
  year: 2020
  ident: 10.1016/j.compchemeng.2025.109330_bib0067
  article-title: Voltage matters when reducing CO2 in an electrochemical flow cell
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02356
– volume: 284
  start-page: 260
  year: 2016
  ident: 10.1016/j.compchemeng.2025.109330_bib0046
  article-title: Novel efficient process for methanol synthesis by CO 2 hydrogenation
  publication-title: Chemic. Eng. J.
  doi: 10.1016/j.cej.2015.08.101
– volume: 41
  start-page: 16444
  issue: 37
  year: 2016
  ident: 10.1016/j.compchemeng.2025.109330_bib0062
  article-title: Formic acid synthesis using CO2 as raw material: techno-economic and environmental evaluation and market potential
  publication-title: Int. J. Hydrogen Energy.
  doi: 10.1016/j.ijhydene.2016.05.199
– volume: 3
  start-page: 1822
  issue: 8
  year: 2019
  ident: 10.1016/j.compchemeng.2025.109330_bib0071
  article-title: Pathways to industrial-scale fuel out of thin air from CO2 electrolysis
  publication-title: Joule
  doi: 10.1016/j.joule.2019.07.009
– volume: 34
  year: 2022
  ident: 10.1016/j.compchemeng.2025.109330_bib0089
  article-title: What matters in the emerging application of CO2 electrolysis
  publication-title: Curr. Opinion Electrochem.
  doi: 10.1016/j.coelec.2022.101012
– volume: 2
  year: 2019
  ident: 10.1016/j.compchemeng.2025.109330_bib0019
  article-title: Design and optimization of Kemira-Leonard process for formic acid production
  publication-title: Chemic. Eng. Sci.
– volume: 18
  start-page: 72
  year: 2019
  ident: 10.1016/j.compchemeng.2025.109330_bib0065
  article-title: Environmental and economic assessment of the formic acid electrochemical manufacture using carbon dioxide: influence of the electrode lifetime
  publication-title: Sustain. Product. Consumpt.
  doi: 10.1016/j.spc.2018.12.002
– volume: 58
  start-page: 22718
  issue: 51
  year: 2019
  ident: 10.1016/j.compchemeng.2025.109330_bib0064
  article-title: High-pressure electrochemical reduction of CO 2 to formic acid/formate: effect of pH on the downstream separation process and economics
  publication-title: Ind. Eng. Chem. Res
  doi: 10.1021/acs.iecr.9b03970
– volume: 123
  start-page: 204
  year: 2018
  ident: 10.1016/j.compchemeng.2025.109330_bib0069
  article-title: Intensification and performance assessment of the formic acid production process through a dividing wall reactive distillation column with vapor recompression
  publication-title: Chemic. Eng. Process. - Proc. Intensificat.
  doi: 10.1016/j.cep.2017.11.016
– year: 2016
  ident: 10.1016/j.compchemeng.2025.109330_bib0045
– volume: 9
  start-page: 4293
  issue: 9
  year: 2024
  ident: 10.1016/j.compchemeng.2025.109330_bib0015
  article-title: CO2 Electrolysis Technologies: bridging the gap toward scale-up and commercialization
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.4c00955
– volume: 48
  start-page: 27872
  issue: 72
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109330_bib0078
  article-title: Utilisation of waste heat from PEM electrolysers – Unlocking local optimisation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.03.374
– volume: 9
  issue: 13
  year: 2022
  ident: 10.1016/j.compchemeng.2025.109330_bib0081
  article-title: The effect of temperature on the cation-promoted electrochemical CO2 reduction on gold
  publication-title: Chem. Electro. Chem.
– volume: 42
  year: 2020
  ident: 10.1016/j.compchemeng.2025.109330_bib0087
  article-title: Performance and long-term stability of CO2 conversion to formic acid using a three-compartment electrolyzer design
  publication-title: J. CO2 Utiliz.
  doi: 10.1016/j.jcou.2020.101349
– volume: 182
  start-page: 194
  year: 2022
  ident: 10.1016/j.compchemeng.2025.109330_bib0016
  article-title: Electrochemical conversion of carbon dioxide to ethylene: plant design, evaluation and prospects for the future
  publication-title: Chemic. Eng. Res. Des.
  doi: 10.1016/j.cherd.2022.03.034
– volume: 352
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109330_bib0083
  article-title: Heat pump integration in non-continuous industrial processes by dynamic pinch analysis targeting
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2023.121933
– volume: 13
  start-page: 8080
  issue: 12
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109330_bib0080
  article-title: How temperature affects the selectivity of the electrochemical CO2 reduction on copper
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c00706
– volume: 24
  issue: 7
  year: 2021
  ident: 10.1016/j.compchemeng.2025.109330_bib0072
  article-title: Process modeling, techno-economic assessment, and life cycle assessment of the electrochemical reduction of CO2: a review
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102813
– volume: 398
  year: 2025
  ident: 10.1016/j.compchemeng.2025.109330_bib0028
  article-title: Rethinking electrolyzer design for optimal waste-heat utilization
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2025.126367
– volume: 8
  start-page: 3214
  issue: 7
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109330_bib0013
  article-title: Energy-efficient ethanol concentration method for scalable CO 2 electrolysis
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.3c00973
– volume: 9
  issue: 2
  year: 2024
  ident: 10.1016/j.compchemeng.2025.109330_bib0017
  article-title: Review and prospects of PEM water electrolysis at elevated temperature operation
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202300281
– volume: 23
  start-page: 867
  issue: 2
  year: 2021
  ident: 10.1016/j.compchemeng.2025.109330_bib0043
  article-title: Comparative life cycle assessment of electrochemical upgrading of CO 2 to fuels and feedstocks
  publication-title: Green Chem.
  doi: 10.1039/D0GC02831B
– volume: 8
  start-page: 1992
  issue: 4
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109330_bib0025
  article-title: Electroreduction of CO 2 : advances in the continuous production of formic acid and formate
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.3c00489
– volume: 24
  start-page: 2287
  issue: 6
  year: 2022
  ident: 10.1016/j.compchemeng.2025.109330_bib0074
  article-title: Matching emerging formic acid synthesis processes with application requirements
  publication-title: Green Chem.
  doi: 10.1039/D1GC04791D
– volume: 8
  start-page: 2576
  issue: 6
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109330_bib0024
  article-title: Pilot-scale CO2 electrolysis enables a semi-empirical electrolyzer model
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.3c00620
– volume: 8
  start-page: 693
  issue: 3
  year: 2024
  ident: 10.1016/j.compchemeng.2025.109330_bib0044
  article-title: Accelerating the net-zero economy with CO2-hydrogenated formic acid production: process development and pilot plant demonstration
  publication-title: Joule
  doi: 10.1016/j.joule.2024.01.003
– volume: 11
  start-page: 1536
  issue: 6
  year: 2018
  ident: 10.1016/j.compchemeng.2025.109330_bib0073
  article-title: A comparative technoeconomic analysis of pathways for commercial electrochemical CO 2 reduction to liquid products
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00097B
– volume: 37
  start-page: 1441
  issue: 2
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109330_bib0020
  article-title: Techno-economic assessment of green H 2 carrier supply chains
  publication-title: Energy Fuel.
  doi: 10.1021/acs.energyfuels.2c03616
– volume: 39
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109330_bib0030
  article-title: Bridging fundamental science and applied science to accelerate CO2 electrolyzer scale-up
  publication-title: Curr. Opinion Electrochem.
  doi: 10.1016/j.coelec.2023.101248
– volume: 221
  year: 2020
  ident: 10.1016/j.compchemeng.2025.109330_bib0085
  article-title: Performance evaluation and working fluid selection of combined heat pump and power generation system (HP-PGs) using multi-objective optimization
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113164
– volume: 14
  start-page: 7605
  issue: 1
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109330_bib0033
  article-title: A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-43409-6
– ident: 10.1016/j.compchemeng.2025.109330_bib0075
  doi: 10.2172/1220428
– ident: 10.1016/j.compchemeng.2025.109330_bib0003
– ident: 10.1016/j.compchemeng.2025.109330_bib0007
– volume: 5
  start-page: 1369
  issue: 8
  year: 2012
  ident: 10.1016/j.compchemeng.2025.109330_bib0061
  article-title: 2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry
  publication-title: Chem. Sus. Chem.
  doi: 10.1002/cssc.201100780
– volume: 290
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109330_bib0079
  article-title: Techno-economic optimization of high-temperature heat pumps for waste heat recovery
  publication-title: Energy Conver. Manag.
  doi: 10.1016/j.enconman.2023.117194
– ident: 10.1016/j.compchemeng.2025.109330_bib0010
– ident: 10.1016/j.compchemeng.2025.109330_bib0012
  doi: 10.1016/j.renene.2022.03.128
– volume: 14
  start-page: 1194
  issue: 3
  year: 2021
  ident: 10.1016/j.compchemeng.2025.109330_bib0018
  article-title: Enabling storage and utilization of low-carbon electricity: power to formic acid
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03011B
– volume: 34
  start-page: 490
  year: 2019
  ident: 10.1016/j.compchemeng.2025.109330_bib0066
  article-title: A techno-economic evaluation approach to the electrochemical reduction of CO2 for formic acid manufacture
  publication-title: Journal of CO2 Utilization
  doi: 10.1016/j.jcou.2019.07.024
– year: 2016
  ident: 10.1016/j.compchemeng.2025.109330_bib0032
  article-title: Formic acid
– ident: 10.1016/j.compchemeng.2025.109330_bib0037
– volume: 17
  start-page: 5114
  issue: 12
  year: 2015
  ident: 10.1016/j.compchemeng.2025.109330_bib0054
  article-title: Towards sustainable fuels and chemicals through the electrochemical reduction of CO 2 : lessons from water electrolysis
  publication-title: Green Chem.
  doi: 10.1039/C5GC01893E
– volume: 22
  start-page: 138
  issue: 2
  year: 2017
  ident: 10.1016/j.compchemeng.2025.109330_bib0035
  article-title: ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-016-1246-y
– volume: 65
  start-page: 219
  issue: 1–2
  year: 2014
  ident: 10.1016/j.compchemeng.2025.109330_bib0076
  article-title: Optimal performance of compression–Resorption heat pump systems
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.12.067
– volume: 5
  issue: 4
  year: 2024
  ident: 10.1016/j.compchemeng.2025.109330_bib0088
  article-title: Flexible endothermic or exothermic operation for temperature-oriented alkaline water electrolysis
  publication-title: Cell Reports Physic. Science
– volume: 351
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109330_bib0090
  article-title: Recent advances and future perspectives in carbon capture, transportation, utilization, and storage (CCTUS) technologies: a comprehensive review
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.128913
– volume: 169
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109330_bib0029
  article-title: Optimization and control of extractive distillation for formic acid-water separation with maximum-boiling azeotrope
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.108075
– volume: 378
  year: 2025
  ident: 10.1016/j.compchemeng.2025.109330_bib0023
  article-title: Valorization of the by-product oxygen from green hydrogen production: a review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.124817
– volume: 11
  start-page: 15651
  issue: 43
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109330_bib0008
  article-title: Scale-dependent techno-economic analysis of CO 2 capture and electroreduction to ethylene
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.3c04373
– volume: 39
  year: 2023
  ident: 10.1016/j.compchemeng.2025.109330_bib0014
  article-title: Mapping GHG emissions and prospects for renewable energy in the chemical industry
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2022.100881
– volume: 205
  year: 2020
  ident: 10.1016/j.compchemeng.2025.109330_bib0063
  article-title: Comparison of COP estimation methods for large-scale heat pumps used in energy planning
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117994
– volume: 63
  start-page: 146
  year: 2017
  ident: 10.1016/j.compchemeng.2025.109330_bib0011
  article-title: CO 2 capture from the industry sector
  publication-title: Prog Energy Combust. Sci.
  doi: 10.1016/j.pecs.2017.07.001
– volume: 30
  start-page: 2580
  issue: 14
  year: 2005
  ident: 10.1016/j.compchemeng.2025.109330_bib0041
  article-title: Effective utilization of by-product oxygen from electrolysis hydrogen production
  publication-title: Energy
  doi: 10.1016/j.energy.2004.07.004
– volume: 16
  issue: 1
  year: 2025
  ident: 10.1016/j.compchemeng.2025.109330_bib0057
  article-title: Carbon pricing drives critical transition to green growth
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-025-56540-3
– year: 2020
  ident: 10.1016/j.compchemeng.2025.109330_bib0070
– volume: 203
  year: 2020
  ident: 10.1016/j.compchemeng.2025.109330_bib0047
  article-title: Rethinking energy use in distillation processes for a more sustainable chemical industry
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117788
– volume: 133
  year: 2020
  ident: 10.1016/j.compchemeng.2025.109330_bib0068
  article-title: Large-scale heat pumps: applications, performance, economic feasibility and industrial integration
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110219
– ident: 10.1016/j.compchemeng.2025.109330_bib0006
– volume: 210
  start-page: 425
  year: 2024
  ident: 10.1016/j.compchemeng.2025.109330_bib0040
  article-title: Novel process design for eco-efficient production of green formic acid from CO2
  publication-title: Chemic. Eng. Res. Des.
  doi: 10.1016/j.cherd.2024.09.001
– ident: 10.1016/j.compchemeng.2025.109330_bib0048
– volume: 4
  start-page: 943
  issue: 11
  year: 2021
  ident: 10.1016/j.compchemeng.2025.109330_bib0091
  article-title: High-purity and High-concentration liquid fuels through CO2 electroreduction
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00694-y
– volume: 1
  start-page: 421
  year: 2024
  ident: 10.1016/j.compchemeng.2025.109330_bib0001
  article-title: Kilowatt-scale tandem CO2 electrolysis for enhanced acetate and ethylene production
  publication-title: Nat. Chemic. Eng.
  doi: 10.1038/s44286-024-00076-8
– volume: 124
  start-page: 3648
  issue: 7
  year: 2024
  ident: 10.1016/j.compchemeng.2025.109330_bib0059
  article-title: CO 2 electrolyzers
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00206
– volume: 89
  start-page: 864
  year: 2015
  ident: 10.1016/j.compchemeng.2025.109330_bib0077
  article-title: Low grade waste heat recovery using heat pumps and power cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2015.06.030
– volume: 15
  issue: 12
  year: 2020
  ident: 10.1016/j.compchemeng.2025.109330_bib0051
  article-title: The CO 2 reduction potential for the European industry via direct electrification of heat supply (Power-to-Heat)
  publication-title: Environment. Res. Lett.
  doi: 10.1088/1748-9326/abbd02
– volume: 283
  year: 2021
  ident: 10.1016/j.compchemeng.2025.109330_bib0058
  article-title: The impact of wind, solar, and other factors on the decline in wholesale power prices in the United States
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2020.116266
– volume: 7
  start-page: 130
  issue: 2
  year: 2022
  ident: 10.1016/j.compchemeng.2025.109330_bib0082
  article-title: Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers
  publication-title: Nat. Energy.
  doi: 10.1038/s41560-021-00973-9
– volume: 61
  start-page: 15449
  issue: 42
  year: 2022
  ident: 10.1016/j.compchemeng.2025.109330_bib0034
  article-title: The NIST REFPROP Database for highly accurate properties of industrially important fluids
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.2c01427
– volume: 31
  issue: 31
  year: 2019
  ident: 10.1016/j.compchemeng.2025.109330_bib0042
  article-title: Electrochemical CO 2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design
  publication-title: Advanc. Mater.
– volume: 126
  start-page: 206
  year: 2018
  ident: 10.1016/j.compchemeng.2025.109330_bib0050
  article-title: Capital cost of compressors for conceptual design
  publication-title: Chemic. Eng. Process. - Proc. Intensificat.
  doi: 10.1016/j.cep.2018.01.020
– volume: 57
  start-page: 6883
  issue: 23
  year: 2018
  ident: 10.1016/j.compchemeng.2025.109330_bib0049
  article-title: Catholyte-free electrocatalytic CO 2 reduction to formate
  publication-title: Angewandte Chemie. Int. Edit.
  doi: 10.1002/anie.201803501
SSID ssj0002488
Score 2.4748623
Snippet •Heat pumps can be used to upgrade the waste heat and drive the fluid separations.•CO2 emissions for the process with dilute streams are reduced by 29–84 %...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 109330
SubjectTerms CO2 electrolysis
Downstream processing
Heat pumps
Waste heat recovery
Title Coupling CO2 electrolysis and downstream processing via heat pump-based waste heat recovery
URI https://dx.doi.org/10.1016/j.compchemeng.2025.109330
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qC6IH8Yn1UVbwGpvHJtmAlxIsVaFeLBQ8hN1kUyo0DdIqXvztzjQbrSB48JglC5tvNvPY_WYG4DLlgQ7z3LMCJTKLa2lbygszy0XXWtlS0F9KbIthMBjxu7E_bkBc58IQrdLo_kqnr7S1GekaNLvldEo5vpFwPB83HTUko2TylovWXjSh1bu9Hwy_FLLLhahLZ9KETbj4pnkRcxvhmeligtGi66_qKxEn-jcztWZ6-ruwY3xG1quWtQcNXezD9lolwQN4iudLyq2dsPjBZaa3zaraCJNFxjI6QyZO-YyVVWYAvfo6lYx0MStRphbZs4y9SRR7NUqxMm7090MY9W8e44Fl-iZYqYtLtyTXvsqd3NYq8kVK5Vp8bYvMETKUYRBIjFrQD-T4nRLjOe6r1OMid5TUbuDljncEzWJe6GNgmcxTEUqMVtOIBzwVdLObRV4QOrmvw7ANbg1TUlblMZKaN_acrGGbELZJhW0brmtAkx-yTlCN_z395H_TT2ELn8wxyhk0Fy9LfY6OxUJ1YOPqw-mY7fMJFE_OGg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6MDbw8iFec1wi-lvWSNCn4Mopjc3O-bDDwoaRNOiasK7Ip_ntz1lYnCD74mjaQfic9l-Q75wDcJtTXPE09y4-FsqiWthV7XFmuca1jWwr8S5FtMfS7Y_owYZMahFUuDNIqS91f6PS1ti5HWiWarXw2wxzfQDgeM5sOG5JhMnmDYlPrOjTavX53-KWQXSpEVToTJ2zBzTfNC5nbBp65zqYmWnTZur4ScqJ_M1MbpqezD3ulz0jaxbIOoKazQ9jdqCR4BM_hYoW5tVMSPrmk7G2zrjZCZKaIwjNk5JTPSV5kBuCrbzNJUBeT3MjUQnumyLs0Yi9GMVY2G_3jGMad-1HYtcq-CVbimqVbkmoWp05q6zhgIsFyLUzbQjlCcsl9X5qoxfiB1HynNPEcZXHiUZE6sdSu76WOdwL1bJHpUyBKpong0kSrSUB9mgi82VWB53MnZZrzJrgVTFFelMeIKt7YS7SBbYTYRgW2TbirAI1-yDoyavzv6Wf_m34N293R4yAa9Ib9c9gxT8ojlQuoL19X-tI4Gcv4qtxEn_RZ0AA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+CO2+electrolysis+and+downstream+processing+via+heat+pump-based+waste+heat+recovery&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Dal+Mas%2C+Riccardo&rft.au=Carta%2C+Andrea&rft.au=Somoza-Tornos%2C+Ana&rft.au=Kiss%2C+Anton+A.&rft.date=2026-01-01&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.volume=204&rft_id=info:doi/10.1016%2Fj.compchemeng.2025.109330&rft.externalDocID=S0098135425003321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon