Coupling CO2 electrolysis and downstream processing via heat pump-based waste heat recovery
•Heat pumps can be used to upgrade the waste heat and drive the fluid separations.•CO2 emissions for the process with dilute streams are reduced by 29–84 % with a heat pump.•Heat pump COP increases by 32–44 % with electrolyzer operating at 70 °C from 50 °C base case.•Effective system performance ope...
Saved in:
Published in | Computers & chemical engineering Vol. 204; p. 109330 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2026
|
Subjects | |
Online Access | Get full text |
ISSN | 0098-1354 |
DOI | 10.1016/j.compchemeng.2025.109330 |
Cover
Abstract | •Heat pumps can be used to upgrade the waste heat and drive the fluid separations.•CO2 emissions for the process with dilute streams are reduced by 29–84 % with a heat pump.•Heat pump COP increases by 32–44 % with electrolyzer operating at 70 °C from 50 °C base case.•Effective system performance operating with 40 % cell efficiency and heat integration.
The electrification of chemical processes and CO2 utilization are key approaches to improving efficiency and reducing CO2 emissions in the process industry. The development of electrolyzers has gathered momentum, enabling the potential introduction of renewable electrons into the manufacture of CO2-based chemicals. While the performance of electrolyzers is subject to improvements driven by the experimental community, the generation of waste heat is unavoidable due to electrical resistances and process inefficiencies within the electrochemical cells. Nonetheless, reusing this waste heat has yet to be investigated for CO2 electrolyzers. This novel work shows the potential for upgrading the electrolyzer waste heat by means of a heat pump, enabling its utilization in the separation processes downstream of the carbon dioxide electrolyzer. The product chosen is formic acid (60 kt/y), and for our system, the waste heat represents approximately 60 % of the power input to the electrochemical cells, and it can be upgraded from 50 °C to 120 °C to drive the azeotropic distillation of formic acid and water. This integration results in the electrification of 76 % of the separation energy duty, yielding a decrease in CO2 emissions of 29–84 % compared to the conventional production, depending on the source of electricity. The results demonstrate that the use of traditional heating media in thermal separation processes can be offset and substituted with (renewable) electrical energy, allowing for an increased overall system efficiency. This approach can be readily extended to different productions based on carbon dioxide electroreduction, for example for methanol and ethanol manufacture. This eco-efficient process design leads to a deeper penetration of renewable energy into chemical manufacturing, as both reaction and separation are driven by electricity. |
---|---|
AbstractList | •Heat pumps can be used to upgrade the waste heat and drive the fluid separations.•CO2 emissions for the process with dilute streams are reduced by 29–84 % with a heat pump.•Heat pump COP increases by 32–44 % with electrolyzer operating at 70 °C from 50 °C base case.•Effective system performance operating with 40 % cell efficiency and heat integration.
The electrification of chemical processes and CO2 utilization are key approaches to improving efficiency and reducing CO2 emissions in the process industry. The development of electrolyzers has gathered momentum, enabling the potential introduction of renewable electrons into the manufacture of CO2-based chemicals. While the performance of electrolyzers is subject to improvements driven by the experimental community, the generation of waste heat is unavoidable due to electrical resistances and process inefficiencies within the electrochemical cells. Nonetheless, reusing this waste heat has yet to be investigated for CO2 electrolyzers. This novel work shows the potential for upgrading the electrolyzer waste heat by means of a heat pump, enabling its utilization in the separation processes downstream of the carbon dioxide electrolyzer. The product chosen is formic acid (60 kt/y), and for our system, the waste heat represents approximately 60 % of the power input to the electrochemical cells, and it can be upgraded from 50 °C to 120 °C to drive the azeotropic distillation of formic acid and water. This integration results in the electrification of 76 % of the separation energy duty, yielding a decrease in CO2 emissions of 29–84 % compared to the conventional production, depending on the source of electricity. The results demonstrate that the use of traditional heating media in thermal separation processes can be offset and substituted with (renewable) electrical energy, allowing for an increased overall system efficiency. This approach can be readily extended to different productions based on carbon dioxide electroreduction, for example for methanol and ethanol manufacture. This eco-efficient process design leads to a deeper penetration of renewable energy into chemical manufacturing, as both reaction and separation are driven by electricity. |
ArticleNumber | 109330 |
Author | Somoza-Tornos, Ana Kiss, Anton A. Dal Mas, Riccardo Carta, Andrea |
Author_xml | – sequence: 1 givenname: Riccardo surname: Dal Mas fullname: Dal Mas, Riccardo – sequence: 2 givenname: Andrea surname: Carta fullname: Carta, Andrea – sequence: 3 givenname: Ana surname: Somoza-Tornos fullname: Somoza-Tornos, Ana – sequence: 4 givenname: Anton A. surname: Kiss fullname: Kiss, Anton A. email: A.A.Kiss@tudelft.nl |
BookMark | eNqNkM1qwzAQhHVIoUnbd1AfwOnKlmz5WEz_IJBLe-pByPI6UbAlIzkJefs6uIcee1oYdoaZb0UWzjsk5JHBmgHLnw5r4_vB7LFHt1unkIpJL7MMFmQJUMqEZYLfklWMBwBIuZRL8l3549BZt6PVNqXYoRmD7y7RRqpdQxt_dnEMqHs6BG8wxuvryWq6Rz3S4dgPSa0jNvSs44izGtD4E4bLPblpdRfx4ffeka_Xl8_qPdls3z6q501i0qlcojmKumUtYF0KaYq8EAJBNkzqQhd5rsscmAA-LdEcCi5qk3HZslpjmmcty-5IOeea4GMM2Koh2F6Hi2KgrmTUQf0ho65k1Exm8lazF6eCJ4tBRWPRGWzsNGNUjbf_SPkB2th3Kw |
Cites_doi | 10.1038/s41565-020-00823-x 10.1007/s11367-016-1087-8 10.1007/s11696-020-01329-5 10.1002/ente.201900994 10.1016/j.energy.2018.03.166 10.1126/science.aav3506 10.1039/D4EY00190G 10.1016/j.joule.2019.07.021 10.1016/j.rser.2022.112106 10.1021/acs.iecr.8b00883 10.1016/j.jcou.2017.04.011 10.1016/j.joule.2022.12.008 10.1016/j.applthermaleng.2019.01.034 10.1021/acsenergylett.9b02356 10.1016/j.cej.2015.08.101 10.1016/j.ijhydene.2016.05.199 10.1016/j.joule.2019.07.009 10.1016/j.coelec.2022.101012 10.1016/j.spc.2018.12.002 10.1021/acs.iecr.9b03970 10.1016/j.cep.2017.11.016 10.1021/acsenergylett.4c00955 10.1016/j.ijhydene.2023.03.374 10.1016/j.jcou.2020.101349 10.1016/j.cherd.2022.03.034 10.1016/j.apenergy.2023.121933 10.1021/acscatal.3c00706 10.1016/j.isci.2021.102813 10.1016/j.apenergy.2025.126367 10.1021/acsenergylett.3c00973 10.1002/admt.202300281 10.1039/D0GC02831B 10.1021/acsenergylett.3c00489 10.1039/D1GC04791D 10.1021/acsenergylett.3c00620 10.1016/j.joule.2024.01.003 10.1039/C8EE00097B 10.1021/acs.energyfuels.2c03616 10.1016/j.coelec.2023.101248 10.1016/j.enconman.2020.113164 10.1038/s41467-023-43409-6 10.2172/1220428 10.1002/cssc.201100780 10.1016/j.enconman.2023.117194 10.1016/j.renene.2022.03.128 10.1039/D0EE03011B 10.1016/j.jcou.2019.07.024 10.1039/C5GC01893E 10.1007/s11367-016-1246-y 10.1016/j.applthermaleng.2013.12.067 10.1016/j.fuel.2023.128913 10.1016/j.compchemeng.2022.108075 10.1016/j.apenergy.2024.124817 10.1021/acssuschemeng.3c04373 10.1016/j.coche.2022.100881 10.1016/j.energy.2020.117994 10.1016/j.pecs.2017.07.001 10.1016/j.energy.2004.07.004 10.1038/s41467-025-56540-3 10.1016/j.energy.2020.117788 10.1016/j.rser.2020.110219 10.1016/j.cherd.2024.09.001 10.1038/s41929-021-00694-y 10.1038/s44286-024-00076-8 10.1021/acs.chemrev.3c00206 10.1016/j.energy.2015.06.030 10.1088/1748-9326/abbd02 10.1016/j.apenergy.2020.116266 10.1038/s41560-021-00973-9 10.1021/acs.iecr.2c01427 10.1016/j.cep.2018.01.020 10.1002/anie.201803501 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) |
Copyright_xml | – notice: 2025 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.compchemeng.2025.109330 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_compchemeng_2025_109330 S0098135425003321 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAFTH AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ABWVN ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SST SSZ T5K VH1 WUQ ZY4 ~G- ~HD AAYXX CITATION |
ID | FETCH-LOGICAL-c2330-a4e5bf1f0eb958c76755e08d18a7a766a9601504933a40745bc348f1bae263f13 |
IEDL.DBID | AIKHN |
ISSN | 0098-1354 |
IngestDate | Thu Sep 25 00:52:46 EDT 2025 Sat Sep 27 17:13:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heat pumps CO2 electrolysis Waste heat recovery Downstream processing |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2330-a4e5bf1f0eb958c76755e08d18a7a766a9601504933a40745bc348f1bae263f13 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0098135425003321 |
ParticipantIDs | crossref_primary_10_1016_j_compchemeng_2025_109330 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2025_109330 |
PublicationCentury | 2000 |
PublicationDate | January 2026 2026-01-00 |
PublicationDateYYYYMMDD | 2026-01-01 |
PublicationDate_xml | – month: 01 year: 2026 text: January 2026 |
PublicationDecade | 2020 |
PublicationTitle | Computers & chemical engineering |
PublicationYear | 2026 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Frate, Ferrari, Desideri (bib0026) 2019; 150 Kibria, Edwards, Gabardo (bib0042) 2019; 31 Zhu, Wang (bib0091) 2021; 4 Madeddu, Ueckerdt, Pehl (bib0051) 2020; 15 Wu, Sha, Yang, Zhang (bib0085) 2020; 221 Bains, Psarras, Wilcox (bib0011) 2017; 63 IEA. 2024. U.S. Energy Information Administration. (2025, 04 28). Kato, Kubota, Kobayashi, Suzuoki (bib0041) 2005; 30 Galvan-Cara, Bongartz (bib0028) 2025; 398 Berkelaar, Van Der Linde, Peper (bib0016) 2022; 182 Pérez-Fortes, Schöneberger, Boulamanti, Harrison, Tzimas (bib0062) 2016; 41 Zhang, Zhuo, Hao (bib0088) 2024; 5 Hu, Wrubel, Baez-Cotto (bib0033) 2023; 14 Retrieved from . Paris. Pace, Hoyos, Castoldi, Domínguez de María, Alcántara (bib0061) 2012; 5 Mills, Wiser, Millstein (bib0058) 2021; 283 Eckl, Moita, Castro, Neto (bib0023) 2025; 378 Martín, Larrazábal, Pérez-Ramírez (bib0054) 2015; 17 Kiss, Pragt, Vos, Bargeman, De Groot (bib0046) 2016; 284 Wernet, Bauer, Steubing, Reinhard, Moreno-Ruiz, Weidema (bib0084) 2016; 21 Ge, Zhang, Liu, Liu, Liu (bib0029) 2023; 169 Salvatore, Berlinguette (bib0067) 2020; 5 Da Cunha, Rangaiah, Hidajat (bib0021) 2018; 57 Ramdin, Morrison, Groen (bib0064) 2019; 58 Sinnott, Towler (bib0070) 2020 Barecka, Dameni, Muhamad, Ager, Lapkin (bib0013) 2023; 8 Edwards, Alerte, O’Brien (bib0024) 2023; 8 Schlosser, Jesper, Vogelsang, Walmsley, Arpagaus, Hesselbach (bib0068) 2020; 133 Heat pump center. Kraft, Dieter. 1988. Thijs, Rongé, Martens (bib0074) 2022; 24 Zhao, Jia, Li (bib0090) 2023; 351 Kibria Nabil, McCoy, Kibria (bib0043) 2021; 23 Aspen Technology, Inc. 2013. “Aspen physical property System.” November. Van De Bor, Infante Ferreira, Kiss (bib0077) 2015; 89 Kim, Park, Lee (bib0044) 2024; 8 Bonanno, Müller, Bensmann (bib0017) 2024; 9 Sharma, Patle, Gadhamsetti, Pandit, Manca, Nirmala (bib0069) 2018; 123 Belsa, Xia, Pelayo García De Arquer (bib0015) 2024; 9 O’Brien, Miao, Zeraati, Lee, Sargent, Sinton (bib0059) 2024; 124 IEA. 2022. Fernández-Caso, Díaz-Sainz, Alvarez-Guerra, Irabien (bib0025) 2023; 8 Mahida, Benyounes, Shen (bib0052) 2021; 75 Orella, Brown, Leonard, Román-Leshkov, Brushett (bib0060) 2020; 8 Somoza-Tornos, Guerra, Crow, Smith, Hodge (bib0072) 2021; 24 Zhang, Xie, Wang (bib0089) 2022; 34 Lee, Kim, Hye Youn, Jeong, Park (bib0049) 2018; 57 Mallapragada, Dvorkin, Modestino (bib0053) 2023; 7 Retrieved from European Environment Agency Arpagaus, Bless, Uhlmann, Schiffmann, Bertsch (bib0009) 2018; 152 Lemmon, E.W., Bell, I.H., Huber, M.L., & McLinden, M.O. (2018). Mavrotas (bib0056) 2009; 213 Masel, Liu, Yang (bib0055) 2021; 16 Yang, Kaczur, Sajjad, Masel (bib0087) 2020; 42 Bangalore Ashok, Prasad Rahul, Oinas, Pekka, Forssell, Susanna, 2022. Techno-economic evaluation of a biorefinery to produce γ-valerolactone (GVL), 2-methyltetrahydrofuran (2-MTHF) and 5-hydroxymethylfurfural (5-HMF) from Spruce. Renew. Energy. 190, 396–407 May Chatterjee, Dutta, Lum, Lai, Huang (bib0018) 2021; 14 Vannoni, Sorce, Traverso, Massardo (bib0079) 2023; 290 Spurgeon, Kumar (bib0073) 2018; 11 Walden, Wellig, Stathopoulos (bib0083) 2023; 352 Rumayor, Dominguez-Ramos, Irabien (bib0065) 2019; 18 Harrison, Remick, Martin, Hoskin (bib0031) 2010 Kiss, Infante Ferreira (bib0045) 2016 Pieper, Ommen, Jensen, Elmegaard, Brix Markussen (bib0063) 2020; 205 Yang, Kaczur, Sajjad, Masel (bib0086) 2017; 20 Luyben (bib0050) 2018; 126 Kiss, Smith (bib0047) 2020; 203 De Luna, Hahn, Higgins, Jaffer, Jaramillo, Sargent (bib0022) 2019; 364 Dioxide Materials. (2024, 07 24). Zühlsdorf, Benjamin. 2024. Crandall, Ko, Overa, Cherniack, Lee, Minnie, Jiao (bib0001) 2024; 1 Vos, Kolmeijer, Jacobs, Stam, Weckhuysen, Koper (bib0080) 2023; 13 Vos, Koper (bib0081) 2022; 9 Bauer, Tilsted, Pfister, Oberschelp, Kulionis (bib0014) 2023; 39 Chua, Cunha, Rangaiah, Hidajat (bib0019) 2019; 2 Smith, Burdyny, Vermaas, Geerlings (bib0071) 2019; 3 Huber, Lemmon, Bell, McLinden (bib0034) 2022; 61 Huijbregts, Steinmann, Elshout (bib0035) 2017; 22 Wakerley, Lamaison, Wicks (bib0082) 2022; 7 Van De Bor, Infante Ferreira, Kiss (bib0076) 2014; 65 Crandall, Brix, Weber, Jiao (bib0020) 2023; 37 European Environment Agency. (2025, 03 05). Rumayor, Dominguez-Ramos, Perez, Irabien (bib0066) 2019; 34 Gabardo, O’Brien, Edwards (bib0027) 2019; 3 U.S. Department of Energy. 2015. Wind Vision: a new era for Wind power in the United States. Van Der Roest, Bol, Fens, Wijk (bib0078) 2023; 48 Kalmoukidis, Barus, Staikos, Taube, Mousazadeh, Kiss (bib0040) 2024; 210 Hietala, Vuori, Johnsson, Pollari, Reutemann, Kieczka (bib0032) 2016 Alerte, Gaona, Edwards (bib0008) 2023; 11 Jiang, Hu, Wang, Deng, Cao, Wang (bib0039) 2022; 161 Retrieved from Dioxide Materials DFVLR-FB 88-28. Deutsche Forschungs- und Versuchsanstalt für Luftund Raumfahrt. Hurkmans, Pelzer, Burdyny, Peeters, Vermaas (bib0036) 2025 Mengesha, Roy (bib0057) 2025; 16 Goldman, Prajapati, Duoss, Baker, Hahn (bib0030) 2023; 39 Masel (10.1016/j.compchemeng.2025.109330_bib0055) 2021; 16 Wu (10.1016/j.compchemeng.2025.109330_bib0085) 2020; 221 Mills (10.1016/j.compchemeng.2025.109330_bib0058) 2021; 283 Sharma (10.1016/j.compchemeng.2025.109330_bib0069) 2018; 123 Hietala (10.1016/j.compchemeng.2025.109330_bib0032) 2016 Zhang (10.1016/j.compchemeng.2025.109330_bib0088) 2024; 5 Gabardo (10.1016/j.compchemeng.2025.109330_bib0027) 2019; 3 Jiang (10.1016/j.compchemeng.2025.109330_bib0039) 2022; 161 Kalmoukidis (10.1016/j.compchemeng.2025.109330_bib0040) 2024; 210 Fernández-Caso (10.1016/j.compchemeng.2025.109330_bib0025) 2023; 8 Hurkmans (10.1016/j.compchemeng.2025.109330_bib0036) 2025 Hu (10.1016/j.compchemeng.2025.109330_bib0033) 2023; 14 Ge (10.1016/j.compchemeng.2025.109330_bib0029) 2023; 169 10.1016/j.compchemeng.2025.109330_bib0075 Zhang (10.1016/j.compchemeng.2025.109330_bib0089) 2022; 34 Ramdin (10.1016/j.compchemeng.2025.109330_bib0064) 2019; 58 10.1016/j.compchemeng.2025.109330_bib0037 10.1016/j.compchemeng.2025.109330_bib0038 Crandall (10.1016/j.compchemeng.2025.109330_bib0020) 2023; 37 Pace (10.1016/j.compchemeng.2025.109330_bib0061) 2012; 5 Arpagaus (10.1016/j.compchemeng.2025.109330_bib0009) 2018; 152 Belsa (10.1016/j.compchemeng.2025.109330_bib0015) 2024; 9 Spurgeon (10.1016/j.compchemeng.2025.109330_bib0073) 2018; 11 Pieper (10.1016/j.compchemeng.2025.109330_bib0063) 2020; 205 Lee (10.1016/j.compchemeng.2025.109330_bib0049) 2018; 57 Eckl (10.1016/j.compchemeng.2025.109330_bib0023) 2025; 378 Wakerley (10.1016/j.compchemeng.2025.109330_bib0082) 2022; 7 Bains (10.1016/j.compchemeng.2025.109330_bib0011) 2017; 63 Rumayor (10.1016/j.compchemeng.2025.109330_bib0066) 2019; 34 Martín (10.1016/j.compchemeng.2025.109330_bib0054) 2015; 17 Kiss (10.1016/j.compchemeng.2025.109330_bib0047) 2020; 203 Alerte (10.1016/j.compchemeng.2025.109330_bib0008) 2023; 11 Goldman (10.1016/j.compchemeng.2025.109330_bib0030) 2023; 39 Madeddu (10.1016/j.compchemeng.2025.109330_bib0051) 2020; 15 Thijs (10.1016/j.compchemeng.2025.109330_bib0074) 2022; 24 Vannoni (10.1016/j.compchemeng.2025.109330_bib0079) 2023; 290 Huber (10.1016/j.compchemeng.2025.109330_bib0034) 2022; 61 Kibria Nabil (10.1016/j.compchemeng.2025.109330_bib0043) 2021; 23 Somoza-Tornos (10.1016/j.compchemeng.2025.109330_bib0072) 2021; 24 Yang (10.1016/j.compchemeng.2025.109330_bib0086) 2017; 20 Mavrotas (10.1016/j.compchemeng.2025.109330_bib0056) 2009; 213 Crandall (10.1016/j.compchemeng.2025.109330_bib0001) 2024; 1 Huijbregts (10.1016/j.compchemeng.2025.109330_bib0035) 2017; 22 Kato (10.1016/j.compchemeng.2025.109330_bib0041) 2005; 30 O’Brien (10.1016/j.compchemeng.2025.109330_bib0059) 2024; 124 Mallapragada (10.1016/j.compchemeng.2025.109330_bib0053) 2023; 7 Bonanno (10.1016/j.compchemeng.2025.109330_bib0017) 2024; 9 Salvatore (10.1016/j.compchemeng.2025.109330_bib0067) 2020; 5 Orella (10.1016/j.compchemeng.2025.109330_bib0060) 2020; 8 Vos (10.1016/j.compchemeng.2025.109330_bib0081) 2022; 9 10.1016/j.compchemeng.2025.109330_bib0092 Harrison (10.1016/j.compchemeng.2025.109330_bib0031) 2010 Edwards (10.1016/j.compchemeng.2025.109330_bib0024) 2023; 8 Pérez-Fortes (10.1016/j.compchemeng.2025.109330_bib0062) 2016; 41 10.1016/j.compchemeng.2025.109330_bib0010 Kibria (10.1016/j.compchemeng.2025.109330_bib0042) 2019; 31 10.1016/j.compchemeng.2025.109330_bib0012 Sinnott (10.1016/j.compchemeng.2025.109330_bib0070) 2020 De Luna (10.1016/j.compchemeng.2025.109330_bib0022) 2019; 364 Rumayor (10.1016/j.compchemeng.2025.109330_bib0065) 2019; 18 Van Der Roest (10.1016/j.compchemeng.2025.109330_bib0078) 2023; 48 Galvan-Cara (10.1016/j.compchemeng.2025.109330_bib0028) 2025; 398 Zhu (10.1016/j.compchemeng.2025.109330_bib0091) 2021; 4 Kim (10.1016/j.compchemeng.2025.109330_bib0044) 2024; 8 Mahida (10.1016/j.compchemeng.2025.109330_bib0052) 2021; 75 Smith (10.1016/j.compchemeng.2025.109330_bib0071) 2019; 3 Mengesha (10.1016/j.compchemeng.2025.109330_bib0057) 2025; 16 Yang (10.1016/j.compchemeng.2025.109330_bib0087) 2020; 42 Barecka (10.1016/j.compchemeng.2025.109330_bib0013) 2023; 8 Frate (10.1016/j.compchemeng.2025.109330_bib0026) 2019; 150 Da Cunha (10.1016/j.compchemeng.2025.109330_bib0021) 2018; 57 Van De Bor (10.1016/j.compchemeng.2025.109330_bib0077) 2015; 89 Chatterjee (10.1016/j.compchemeng.2025.109330_bib0018) 2021; 14 Wernet (10.1016/j.compchemeng.2025.109330_bib0084) 2016; 21 Chua (10.1016/j.compchemeng.2025.109330_bib0019) 2019; 2 Walden (10.1016/j.compchemeng.2025.109330_bib0083) 2023; 352 Luyben (10.1016/j.compchemeng.2025.109330_bib0050) 2018; 126 Schlosser (10.1016/j.compchemeng.2025.109330_bib0068) 2020; 133 Berkelaar (10.1016/j.compchemeng.2025.109330_bib0016) 2022; 182 10.1016/j.compchemeng.2025.109330_bib0002 10.1016/j.compchemeng.2025.109330_bib0003 Zhao (10.1016/j.compchemeng.2025.109330_bib0090) 2023; 351 10.1016/j.compchemeng.2025.109330_bib0048 Bauer (10.1016/j.compchemeng.2025.109330_bib0014) 2023; 39 Van De Bor (10.1016/j.compchemeng.2025.109330_bib0076) 2014; 65 Kiss (10.1016/j.compchemeng.2025.109330_bib0045) 2016 10.1016/j.compchemeng.2025.109330_bib0006 10.1016/j.compchemeng.2025.109330_bib0007 Kiss (10.1016/j.compchemeng.2025.109330_bib0046) 2016; 284 Vos (10.1016/j.compchemeng.2025.109330_bib0080) 2023; 13 |
References_xml | – volume: 398 year: 2025 ident: bib0028 article-title: Rethinking electrolyzer design for optimal waste-heat utilization publication-title: Appl. Energy. – reference: U.S. Department of Energy. 2015. Wind Vision: a new era for Wind power in the United States. – volume: 7 start-page: 130 year: 2022 end-page: 143 ident: bib0082 article-title: Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers publication-title: Nat. Energy. – reference: . Paris. – reference: . Retrieved from Dioxide Materials: – volume: 1 start-page: 421 year: 2024 end-page: 429 ident: bib0001 article-title: Kilowatt-scale tandem CO2 electrolysis for enhanced acetate and ethylene production publication-title: Nat. Chemic. Eng. – volume: 24 year: 2021 ident: bib0072 article-title: Process modeling, techno-economic assessment, and life cycle assessment of the electrochemical reduction of CO2: a review publication-title: iScience – volume: 8 start-page: 693 year: 2024 end-page: 713 ident: bib0044 article-title: Accelerating the net-zero economy with CO2-hydrogenated formic acid production: process development and pilot plant demonstration publication-title: Joule – volume: 126 start-page: 206 year: 2018 end-page: 209 ident: bib0050 article-title: Capital cost of compressors for conceptual design publication-title: Chemic. Eng. Process. - Proc. Intensificat. – volume: 89 start-page: 864 year: 2015 end-page: 873 ident: bib0077 article-title: Low grade waste heat recovery using heat pumps and power cycles publication-title: Energy – reference: . Retrieved from – volume: 205 year: 2020 ident: bib0063 article-title: Comparison of COP estimation methods for large-scale heat pumps used in energy planning publication-title: Energy – volume: 5 year: 2024 ident: bib0088 article-title: Flexible endothermic or exothermic operation for temperature-oriented alkaline water electrolysis publication-title: Cell Reports Physic. Science – reference: Lemmon, E.W., Bell, I.H., Huber, M.L., & McLinden, M.O. (2018). – reference: . Paris. – volume: 378 year: 2025 ident: bib0023 article-title: Valorization of the by-product oxygen from green hydrogen production: a review publication-title: Appl. Energy – volume: 31 year: 2019 ident: bib0042 article-title: Electrochemical CO publication-title: Advanc. Mater. – year: 2025 ident: bib0036 article-title: Heating dictates the scalability of CO publication-title: EES Catal. – reference: . Heat pump center. – volume: 17 start-page: 5114 year: 2015 end-page: 5130 ident: bib0054 article-title: Towards sustainable fuels and chemicals through the electrochemical reduction of CO publication-title: Green Chem. – volume: 37 start-page: 1441 year: 2023 end-page: 1450 ident: bib0020 article-title: Techno-economic assessment of green H publication-title: Energy Fuel. – volume: 221 year: 2020 ident: bib0085 article-title: Performance evaluation and working fluid selection of combined heat pump and power generation system (HP-PGs) using multi-objective optimization publication-title: Energy Convers. Manage. – volume: 152 start-page: 985 year: 2018 end-page: 1010 ident: bib0009 article-title: High temperature heat pumps: market overview, State of the art, research status, refrigerants, and application potentials publication-title: Energy – volume: 30 start-page: 2580 year: 2005 end-page: 2595 ident: bib0041 article-title: Effective utilization of by-product oxygen from electrolysis hydrogen production publication-title: Energy – volume: 21 start-page: 1218 year: 2016 end-page: 1230 ident: bib0084 article-title: The Ecoinvent Database version 3 (Part I): overview and methodology publication-title: Int. J. Life Cycle Assess. – volume: 203 year: 2020 ident: bib0047 article-title: Rethinking energy use in distillation processes for a more sustainable chemical industry publication-title: Energy – volume: 8 start-page: 1992 year: 2023 end-page: 2024 ident: bib0025 article-title: Electroreduction of CO publication-title: ACS Energy Lett. – volume: 41 start-page: 16444 year: 2016 end-page: 16462 ident: bib0062 article-title: Formic acid synthesis using CO2 as raw material: techno-economic and environmental evaluation and market potential publication-title: Int. J. Hydrogen Energy. – volume: 16 year: 2025 ident: bib0057 article-title: Carbon pricing drives critical transition to green growth publication-title: Nat. Commun. – volume: 58 start-page: 22718 year: 2019 end-page: 22740 ident: bib0064 article-title: High-pressure electrochemical reduction of CO publication-title: Ind. Eng. Chem. Res – volume: 351 year: 2023 ident: bib0090 article-title: Recent advances and future perspectives in carbon capture, transportation, utilization, and storage (CCTUS) technologies: a comprehensive review publication-title: Fuel – volume: 39 year: 2023 ident: bib0030 article-title: Bridging fundamental science and applied science to accelerate CO2 electrolyzer scale-up publication-title: Curr. Opinion Electrochem. – volume: 2 year: 2019 ident: bib0019 article-title: Design and optimization of Kemira-Leonard process for formic acid production publication-title: Chemic. Eng. Sci. – volume: 42 year: 2020 ident: bib0087 article-title: Performance and long-term stability of CO2 conversion to formic acid using a three-compartment electrolyzer design publication-title: J. CO2 Utiliz. – volume: 364 start-page: eaav3506 year: 2019 ident: bib0022 article-title: What would it take for renewably powered electrosynthesis to displace petrochemical processes? publication-title: Science – volume: 39 year: 2023 ident: bib0014 article-title: Mapping GHG emissions and prospects for renewable energy in the chemical industry publication-title: Curr. Opin. Chem. Eng. – reference: . DFVLR-FB 88-28. Deutsche Forschungs- und Versuchsanstalt für Luftund Raumfahrt. – volume: 352 year: 2023 ident: bib0083 article-title: Heat pump integration in non-continuous industrial processes by dynamic pinch analysis targeting publication-title: Appl. Energy. – volume: 34 year: 2022 ident: bib0089 article-title: What matters in the emerging application of CO2 electrolysis publication-title: Curr. Opinion Electrochem. – volume: 9 year: 2024 ident: bib0017 article-title: Review and prospects of PEM water electrolysis at elevated temperature operation publication-title: Adv. Mater. Technol. – volume: 48 start-page: 27872 year: 2023 end-page: 27891 ident: bib0078 article-title: Utilisation of waste heat from PEM electrolysers – Unlocking local optimisation publication-title: Int. J. Hydrogen Energy – volume: 57 start-page: 9554 year: 2018 end-page: 9570 ident: bib0021 article-title: Design, optimization, and retrofit of the Formic acid process I: base case Design and dividing-wall column retrofit publication-title: Ind. Eng. Chem. Res. – volume: 213 start-page: 455 year: 2009 end-page: 465 ident: bib0056 article-title: Effective implementation of the ε-constraint method in multi-objective mathematical programming problems publication-title: Appl. Math. Comput. – volume: 24 start-page: 2287 year: 2022 end-page: 2295 ident: bib0074 article-title: Matching emerging formic acid synthesis processes with application requirements publication-title: Green Chem. – volume: 11 start-page: 15651 year: 2023 end-page: 15662 ident: bib0008 article-title: Scale-dependent techno-economic analysis of CO publication-title: ACS Sustain. Chem. Eng. – volume: 61 start-page: 15449 year: 2022 end-page: 15472 ident: bib0034 article-title: The NIST REFPROP Database for highly accurate properties of industrially important fluids publication-title: Ind. Eng. Chem. Res. – reference: . Retrieved from European Environment Agency: – volume: 123 start-page: 204 year: 2018 end-page: 213 ident: bib0069 article-title: Intensification and performance assessment of the formic acid production process through a dividing wall reactive distillation column with vapor recompression publication-title: Chemic. Eng. Process. - Proc. Intensificat. – volume: 150 start-page: 628 year: 2019 end-page: 640 ident: bib0026 article-title: Analysis of suitability ranges of high temperature heat pump working fluids publication-title: Appl. Therm. Eng. – volume: 22 start-page: 138 year: 2017 end-page: 147 ident: bib0035 article-title: ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level publication-title: Int. J. Life Cycle Assess. – volume: 5 start-page: 1369 year: 2012 end-page: 1379 ident: bib0061 article-title: 2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry publication-title: Chem. Sus. Chem. – year: 2016 ident: bib0032 article-title: Formic acid publication-title: Ullmann’s Encyclopedia of Industrial Chemistry – reference: European Environment Agency. (2025, 03 05). – volume: 3 start-page: 1822 year: 2019 end-page: 1834 ident: bib0071 article-title: Pathways to industrial-scale fuel out of thin air from CO2 electrolysis publication-title: Joule – volume: 57 start-page: 6883 year: 2018 end-page: 6887 ident: bib0049 article-title: Catholyte-free electrocatalytic CO publication-title: Angewandte Chemie. Int. Edit. – volume: 283 year: 2021 ident: bib0058 article-title: The impact of wind, solar, and other factors on the decline in wholesale power prices in the United States publication-title: Appl. Energy. – volume: 210 start-page: 425 year: 2024 end-page: 436 ident: bib0040 article-title: Novel process design for eco-efficient production of green formic acid from CO2 publication-title: Chemic. Eng. Res. Des. – volume: 4 start-page: 943 year: 2021 end-page: 951 ident: bib0091 article-title: High-purity and High-concentration liquid fuels through CO2 electroreduction publication-title: Nat. Catal. – volume: 5 start-page: 215 year: 2020 end-page: 220 ident: bib0067 article-title: Voltage matters when reducing CO publication-title: ACS Energy Lett. – year: 2010 ident: bib0031 article-title: Hydrogen production: fundamentals and case study summaries publication-title: Paper presented at 18th World Hydrogen Energy Conference, Essen, Germany – volume: 23 start-page: 867 year: 2021 end-page: 880 ident: bib0043 article-title: Comparative life cycle assessment of electrochemical upgrading of CO publication-title: Green Chem. – volume: 20 start-page: 208 year: 2017 end-page: 217 ident: bib0086 article-title: Electrochemical conversion of CO2 to formic acid utilizing sustainion™ membranes publication-title: J. CO2 Utiliz. – volume: 15 year: 2020 ident: bib0051 article-title: The CO publication-title: Environment. Res. Lett. – volume: 161 year: 2022 ident: bib0039 article-title: A review and perspective on industry high-temperature heat pumps publication-title: Renew. Sustain. Energy Rev. – volume: 14 start-page: 7605 year: 2023 ident: bib0033 article-title: A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid publication-title: Nat. Commun. – reference: . – volume: 11 start-page: 1536 year: 2018 end-page: 1551 ident: bib0073 article-title: A comparative technoeconomic analysis of pathways for commercial electrochemical CO publication-title: Energy Environ. Sci. – volume: 13 start-page: 8080 year: 2023 end-page: 8091 ident: bib0080 article-title: How temperature affects the selectivity of the electrochemical CO publication-title: ACS Catal. – volume: 9 year: 2022 ident: bib0081 article-title: The effect of temperature on the cation-promoted electrochemical CO publication-title: Chem. Electro. Chem. – reference: IEA. 2022. – volume: 65 start-page: 219 year: 2014 end-page: 225 ident: bib0076 article-title: Optimal performance of compression–Resorption heat pump systems publication-title: Appl. Therm. Eng. – volume: 9 start-page: 4293 year: 2024 end-page: 4305 ident: bib0015 article-title: CO publication-title: ACS Energy Lett. – volume: 8 start-page: 2576 year: 2023 end-page: 2584 ident: bib0024 article-title: Pilot-scale CO publication-title: ACS Energy Lett. – volume: 124 start-page: 3648 year: 2024 end-page: 3693 ident: bib0059 article-title: CO publication-title: Chem. Rev. – volume: 18 start-page: 72 year: 2019 end-page: 82 ident: bib0065 article-title: Environmental and economic assessment of the formic acid electrochemical manufacture using carbon dioxide: influence of the electrode lifetime publication-title: Sustain. Product. Consumpt. – volume: 3 start-page: 2777 year: 2019 end-page: 2791 ident: bib0027 article-title: Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly publication-title: Joule – volume: 63 start-page: 146 year: 2017 end-page: 172 ident: bib0011 article-title: CO 2 capture from the industry sector publication-title: Prog Energy Combust. Sci. – year: 2020 ident: bib0070 article-title: Chemical Engineering Design – volume: 8 start-page: 3214 year: 2023 end-page: 3220 ident: bib0013 article-title: Energy-efficient ethanol concentration method for scalable CO publication-title: ACS Energy Lett. – volume: 133 year: 2020 ident: bib0068 article-title: Large-scale heat pumps: applications, performance, economic feasibility and industrial integration publication-title: Renew. Sustain. Energy Rev. – volume: 75 start-page: 599 year: 2021 end-page: 609 ident: bib0052 article-title: Process analysis of pressure-swing distillation for the separation of formic acid–Water mixture publication-title: Chemic. Paper. – volume: 14 start-page: 1194 year: 2021 end-page: 1246 ident: bib0018 article-title: Enabling storage and utilization of low-carbon electricity: power to formic acid publication-title: Energy Environ. Sci. – volume: 169 year: 2023 ident: bib0029 article-title: Optimization and control of extractive distillation for formic acid-water separation with maximum-boiling azeotrope publication-title: Comput. Chem. Eng. – reference: U.S. Energy Information Administration. (2025, 04 28). – volume: 16 start-page: 118 year: 2021 end-page: 128 ident: bib0055 article-title: An industrial perspective on catalysts for low-temperature CO2 electrolysis publication-title: Nat. Nanotechnol. – volume: 290 year: 2023 ident: bib0079 article-title: Techno-economic optimization of high-temperature heat pumps for waste heat recovery publication-title: Energy Conver. Manag. – volume: 182 start-page: 194 year: 2022 end-page: 206 ident: bib0016 article-title: Electrochemical conversion of carbon dioxide to ethylene: plant design, evaluation and prospects for the future publication-title: Chemic. Eng. Res. Des. – volume: 8 year: 2020 ident: bib0060 article-title: A general technoeconomic model for evaluating emerging electrolytic processes publication-title: Energy Technol. – reference: Zühlsdorf, Benjamin. 2024. – reference: IEA. 2024. – volume: 7 start-page: 23 year: 2023 end-page: 41 ident: bib0053 article-title: Decarbonization of the chemical industry through electrification: barriers and opportunities publication-title: Joule – volume: 284 start-page: 260 year: 2016 end-page: 269 ident: bib0046 article-title: Novel efficient process for methanol synthesis by CO 2 hydrogenation publication-title: Chemic. Eng. J. – reference: Kraft, Dieter. 1988. – reference: . – year: 2016 ident: bib0045 article-title: Heat Pumps in Chemical Process Industry – volume: 34 start-page: 490 year: 2019 end-page: 499 ident: bib0066 article-title: A techno-economic evaluation approach to the electrochemical reduction of CO2 for formic acid manufacture publication-title: Journal of CO2 Utilization – reference: Aspen Technology, Inc. 2013. “Aspen physical property System.” November. – reference: Dioxide Materials. (2024, 07 24). – reference: Bangalore Ashok, Prasad Rahul, Oinas, Pekka, Forssell, Susanna, 2022. Techno-economic evaluation of a biorefinery to produce γ-valerolactone (GVL), 2-methyltetrahydrofuran (2-MTHF) and 5-hydroxymethylfurfural (5-HMF) from Spruce. Renew. Energy. 190, 396–407 May – volume: 16 start-page: 118 issue: 2 year: 2021 ident: 10.1016/j.compchemeng.2025.109330_bib0055 article-title: An industrial perspective on catalysts for low-temperature CO2 electrolysis publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-00823-x – volume: 21 start-page: 1218 issue: 9 year: 2016 ident: 10.1016/j.compchemeng.2025.109330_bib0084 article-title: The Ecoinvent Database version 3 (Part I): overview and methodology publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-016-1087-8 – ident: 10.1016/j.compchemeng.2025.109330_bib0038 – year: 2010 ident: 10.1016/j.compchemeng.2025.109330_bib0031 article-title: Hydrogen production: fundamentals and case study summaries – volume: 75 start-page: 599 issue: 2 year: 2021 ident: 10.1016/j.compchemeng.2025.109330_bib0052 article-title: Process analysis of pressure-swing distillation for the separation of formic acid–Water mixture publication-title: Chemic. Paper. doi: 10.1007/s11696-020-01329-5 – volume: 8 issue: 11 year: 2020 ident: 10.1016/j.compchemeng.2025.109330_bib0060 article-title: A general technoeconomic model for evaluating emerging electrolytic processes publication-title: Energy Technol. doi: 10.1002/ente.201900994 – volume: 152 start-page: 985 year: 2018 ident: 10.1016/j.compchemeng.2025.109330_bib0009 article-title: High temperature heat pumps: market overview, State of the art, research status, refrigerants, and application potentials publication-title: Energy doi: 10.1016/j.energy.2018.03.166 – volume: 364 start-page: eaav3506 issue: 6438 year: 2019 ident: 10.1016/j.compchemeng.2025.109330_bib0022 article-title: What would it take for renewably powered electrosynthesis to displace petrochemical processes? publication-title: Science doi: 10.1126/science.aav3506 – year: 2025 ident: 10.1016/j.compchemeng.2025.109330_bib0036 article-title: Heating dictates the scalability of CO2 electrolyzer types publication-title: EES Catal. doi: 10.1039/D4EY00190G – volume: 3 start-page: 2777 issue: 11 year: 2019 ident: 10.1016/j.compchemeng.2025.109330_bib0027 article-title: Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly publication-title: Joule doi: 10.1016/j.joule.2019.07.021 – volume: 213 start-page: 455 issue: 2 year: 2009 ident: 10.1016/j.compchemeng.2025.109330_bib0056 article-title: Effective implementation of the ε-constraint method in multi-objective mathematical programming problems publication-title: Appl. Math. Comput. – ident: 10.1016/j.compchemeng.2025.109330_bib0002 – volume: 161 year: 2022 ident: 10.1016/j.compchemeng.2025.109330_bib0039 article-title: A review and perspective on industry high-temperature heat pumps publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2022.112106 – volume: 57 start-page: 9554 issue: 29 year: 2018 ident: 10.1016/j.compchemeng.2025.109330_bib0021 article-title: Design, optimization, and retrofit of the Formic acid process I: base case Design and dividing-wall column retrofit publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b00883 – volume: 20 start-page: 208 year: 2017 ident: 10.1016/j.compchemeng.2025.109330_bib0086 article-title: Electrochemical conversion of CO2 to formic acid utilizing sustainion™ membranes publication-title: J. CO2 Utiliz. doi: 10.1016/j.jcou.2017.04.011 – volume: 7 start-page: 23 issue: 1 year: 2023 ident: 10.1016/j.compchemeng.2025.109330_bib0053 article-title: Decarbonization of the chemical industry through electrification: barriers and opportunities publication-title: Joule doi: 10.1016/j.joule.2022.12.008 – ident: 10.1016/j.compchemeng.2025.109330_bib0092 – volume: 150 start-page: 628 year: 2019 ident: 10.1016/j.compchemeng.2025.109330_bib0026 article-title: Analysis of suitability ranges of high temperature heat pump working fluids publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.01.034 – volume: 5 start-page: 215 issue: 1 year: 2020 ident: 10.1016/j.compchemeng.2025.109330_bib0067 article-title: Voltage matters when reducing CO2 in an electrochemical flow cell publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02356 – volume: 284 start-page: 260 year: 2016 ident: 10.1016/j.compchemeng.2025.109330_bib0046 article-title: Novel efficient process for methanol synthesis by CO 2 hydrogenation publication-title: Chemic. Eng. J. doi: 10.1016/j.cej.2015.08.101 – volume: 41 start-page: 16444 issue: 37 year: 2016 ident: 10.1016/j.compchemeng.2025.109330_bib0062 article-title: Formic acid synthesis using CO2 as raw material: techno-economic and environmental evaluation and market potential publication-title: Int. J. Hydrogen Energy. doi: 10.1016/j.ijhydene.2016.05.199 – volume: 3 start-page: 1822 issue: 8 year: 2019 ident: 10.1016/j.compchemeng.2025.109330_bib0071 article-title: Pathways to industrial-scale fuel out of thin air from CO2 electrolysis publication-title: Joule doi: 10.1016/j.joule.2019.07.009 – volume: 34 year: 2022 ident: 10.1016/j.compchemeng.2025.109330_bib0089 article-title: What matters in the emerging application of CO2 electrolysis publication-title: Curr. Opinion Electrochem. doi: 10.1016/j.coelec.2022.101012 – volume: 2 year: 2019 ident: 10.1016/j.compchemeng.2025.109330_bib0019 article-title: Design and optimization of Kemira-Leonard process for formic acid production publication-title: Chemic. Eng. Sci. – volume: 18 start-page: 72 year: 2019 ident: 10.1016/j.compchemeng.2025.109330_bib0065 article-title: Environmental and economic assessment of the formic acid electrochemical manufacture using carbon dioxide: influence of the electrode lifetime publication-title: Sustain. Product. Consumpt. doi: 10.1016/j.spc.2018.12.002 – volume: 58 start-page: 22718 issue: 51 year: 2019 ident: 10.1016/j.compchemeng.2025.109330_bib0064 article-title: High-pressure electrochemical reduction of CO 2 to formic acid/formate: effect of pH on the downstream separation process and economics publication-title: Ind. Eng. Chem. Res doi: 10.1021/acs.iecr.9b03970 – volume: 123 start-page: 204 year: 2018 ident: 10.1016/j.compchemeng.2025.109330_bib0069 article-title: Intensification and performance assessment of the formic acid production process through a dividing wall reactive distillation column with vapor recompression publication-title: Chemic. Eng. Process. - Proc. Intensificat. doi: 10.1016/j.cep.2017.11.016 – year: 2016 ident: 10.1016/j.compchemeng.2025.109330_bib0045 – volume: 9 start-page: 4293 issue: 9 year: 2024 ident: 10.1016/j.compchemeng.2025.109330_bib0015 article-title: CO2 Electrolysis Technologies: bridging the gap toward scale-up and commercialization publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.4c00955 – volume: 48 start-page: 27872 issue: 72 year: 2023 ident: 10.1016/j.compchemeng.2025.109330_bib0078 article-title: Utilisation of waste heat from PEM electrolysers – Unlocking local optimisation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2023.03.374 – volume: 9 issue: 13 year: 2022 ident: 10.1016/j.compchemeng.2025.109330_bib0081 article-title: The effect of temperature on the cation-promoted electrochemical CO2 reduction on gold publication-title: Chem. Electro. Chem. – volume: 42 year: 2020 ident: 10.1016/j.compchemeng.2025.109330_bib0087 article-title: Performance and long-term stability of CO2 conversion to formic acid using a three-compartment electrolyzer design publication-title: J. CO2 Utiliz. doi: 10.1016/j.jcou.2020.101349 – volume: 182 start-page: 194 year: 2022 ident: 10.1016/j.compchemeng.2025.109330_bib0016 article-title: Electrochemical conversion of carbon dioxide to ethylene: plant design, evaluation and prospects for the future publication-title: Chemic. Eng. Res. Des. doi: 10.1016/j.cherd.2022.03.034 – volume: 352 year: 2023 ident: 10.1016/j.compchemeng.2025.109330_bib0083 article-title: Heat pump integration in non-continuous industrial processes by dynamic pinch analysis targeting publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2023.121933 – volume: 13 start-page: 8080 issue: 12 year: 2023 ident: 10.1016/j.compchemeng.2025.109330_bib0080 article-title: How temperature affects the selectivity of the electrochemical CO2 reduction on copper publication-title: ACS Catal. doi: 10.1021/acscatal.3c00706 – volume: 24 issue: 7 year: 2021 ident: 10.1016/j.compchemeng.2025.109330_bib0072 article-title: Process modeling, techno-economic assessment, and life cycle assessment of the electrochemical reduction of CO2: a review publication-title: iScience doi: 10.1016/j.isci.2021.102813 – volume: 398 year: 2025 ident: 10.1016/j.compchemeng.2025.109330_bib0028 article-title: Rethinking electrolyzer design for optimal waste-heat utilization publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2025.126367 – volume: 8 start-page: 3214 issue: 7 year: 2023 ident: 10.1016/j.compchemeng.2025.109330_bib0013 article-title: Energy-efficient ethanol concentration method for scalable CO 2 electrolysis publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.3c00973 – volume: 9 issue: 2 year: 2024 ident: 10.1016/j.compchemeng.2025.109330_bib0017 article-title: Review and prospects of PEM water electrolysis at elevated temperature operation publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202300281 – volume: 23 start-page: 867 issue: 2 year: 2021 ident: 10.1016/j.compchemeng.2025.109330_bib0043 article-title: Comparative life cycle assessment of electrochemical upgrading of CO 2 to fuels and feedstocks publication-title: Green Chem. doi: 10.1039/D0GC02831B – volume: 8 start-page: 1992 issue: 4 year: 2023 ident: 10.1016/j.compchemeng.2025.109330_bib0025 article-title: Electroreduction of CO 2 : advances in the continuous production of formic acid and formate publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.3c00489 – volume: 24 start-page: 2287 issue: 6 year: 2022 ident: 10.1016/j.compchemeng.2025.109330_bib0074 article-title: Matching emerging formic acid synthesis processes with application requirements publication-title: Green Chem. doi: 10.1039/D1GC04791D – volume: 8 start-page: 2576 issue: 6 year: 2023 ident: 10.1016/j.compchemeng.2025.109330_bib0024 article-title: Pilot-scale CO2 electrolysis enables a semi-empirical electrolyzer model publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.3c00620 – volume: 8 start-page: 693 issue: 3 year: 2024 ident: 10.1016/j.compchemeng.2025.109330_bib0044 article-title: Accelerating the net-zero economy with CO2-hydrogenated formic acid production: process development and pilot plant demonstration publication-title: Joule doi: 10.1016/j.joule.2024.01.003 – volume: 11 start-page: 1536 issue: 6 year: 2018 ident: 10.1016/j.compchemeng.2025.109330_bib0073 article-title: A comparative technoeconomic analysis of pathways for commercial electrochemical CO 2 reduction to liquid products publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00097B – volume: 37 start-page: 1441 issue: 2 year: 2023 ident: 10.1016/j.compchemeng.2025.109330_bib0020 article-title: Techno-economic assessment of green H 2 carrier supply chains publication-title: Energy Fuel. doi: 10.1021/acs.energyfuels.2c03616 – volume: 39 year: 2023 ident: 10.1016/j.compchemeng.2025.109330_bib0030 article-title: Bridging fundamental science and applied science to accelerate CO2 electrolyzer scale-up publication-title: Curr. Opinion Electrochem. doi: 10.1016/j.coelec.2023.101248 – volume: 221 year: 2020 ident: 10.1016/j.compchemeng.2025.109330_bib0085 article-title: Performance evaluation and working fluid selection of combined heat pump and power generation system (HP-PGs) using multi-objective optimization publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113164 – volume: 14 start-page: 7605 issue: 1 year: 2023 ident: 10.1016/j.compchemeng.2025.109330_bib0033 article-title: A scalable membrane electrode assembly architecture for efficient electrochemical conversion of CO2 to formic acid publication-title: Nat. Commun. doi: 10.1038/s41467-023-43409-6 – ident: 10.1016/j.compchemeng.2025.109330_bib0075 doi: 10.2172/1220428 – ident: 10.1016/j.compchemeng.2025.109330_bib0003 – ident: 10.1016/j.compchemeng.2025.109330_bib0007 – volume: 5 start-page: 1369 issue: 8 year: 2012 ident: 10.1016/j.compchemeng.2025.109330_bib0061 article-title: 2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry publication-title: Chem. Sus. Chem. doi: 10.1002/cssc.201100780 – volume: 290 year: 2023 ident: 10.1016/j.compchemeng.2025.109330_bib0079 article-title: Techno-economic optimization of high-temperature heat pumps for waste heat recovery publication-title: Energy Conver. Manag. doi: 10.1016/j.enconman.2023.117194 – ident: 10.1016/j.compchemeng.2025.109330_bib0010 – ident: 10.1016/j.compchemeng.2025.109330_bib0012 doi: 10.1016/j.renene.2022.03.128 – volume: 14 start-page: 1194 issue: 3 year: 2021 ident: 10.1016/j.compchemeng.2025.109330_bib0018 article-title: Enabling storage and utilization of low-carbon electricity: power to formic acid publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03011B – volume: 34 start-page: 490 year: 2019 ident: 10.1016/j.compchemeng.2025.109330_bib0066 article-title: A techno-economic evaluation approach to the electrochemical reduction of CO2 for formic acid manufacture publication-title: Journal of CO2 Utilization doi: 10.1016/j.jcou.2019.07.024 – year: 2016 ident: 10.1016/j.compchemeng.2025.109330_bib0032 article-title: Formic acid – ident: 10.1016/j.compchemeng.2025.109330_bib0037 – volume: 17 start-page: 5114 issue: 12 year: 2015 ident: 10.1016/j.compchemeng.2025.109330_bib0054 article-title: Towards sustainable fuels and chemicals through the electrochemical reduction of CO 2 : lessons from water electrolysis publication-title: Green Chem. doi: 10.1039/C5GC01893E – volume: 22 start-page: 138 issue: 2 year: 2017 ident: 10.1016/j.compchemeng.2025.109330_bib0035 article-title: ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-016-1246-y – volume: 65 start-page: 219 issue: 1–2 year: 2014 ident: 10.1016/j.compchemeng.2025.109330_bib0076 article-title: Optimal performance of compression–Resorption heat pump systems publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.12.067 – volume: 5 issue: 4 year: 2024 ident: 10.1016/j.compchemeng.2025.109330_bib0088 article-title: Flexible endothermic or exothermic operation for temperature-oriented alkaline water electrolysis publication-title: Cell Reports Physic. Science – volume: 351 year: 2023 ident: 10.1016/j.compchemeng.2025.109330_bib0090 article-title: Recent advances and future perspectives in carbon capture, transportation, utilization, and storage (CCTUS) technologies: a comprehensive review publication-title: Fuel doi: 10.1016/j.fuel.2023.128913 – volume: 169 year: 2023 ident: 10.1016/j.compchemeng.2025.109330_bib0029 article-title: Optimization and control of extractive distillation for formic acid-water separation with maximum-boiling azeotrope publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.108075 – volume: 378 year: 2025 ident: 10.1016/j.compchemeng.2025.109330_bib0023 article-title: Valorization of the by-product oxygen from green hydrogen production: a review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.124817 – volume: 11 start-page: 15651 issue: 43 year: 2023 ident: 10.1016/j.compchemeng.2025.109330_bib0008 article-title: Scale-dependent techno-economic analysis of CO 2 capture and electroreduction to ethylene publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.3c04373 – volume: 39 year: 2023 ident: 10.1016/j.compchemeng.2025.109330_bib0014 article-title: Mapping GHG emissions and prospects for renewable energy in the chemical industry publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2022.100881 – volume: 205 year: 2020 ident: 10.1016/j.compchemeng.2025.109330_bib0063 article-title: Comparison of COP estimation methods for large-scale heat pumps used in energy planning publication-title: Energy doi: 10.1016/j.energy.2020.117994 – volume: 63 start-page: 146 year: 2017 ident: 10.1016/j.compchemeng.2025.109330_bib0011 article-title: CO 2 capture from the industry sector publication-title: Prog Energy Combust. Sci. doi: 10.1016/j.pecs.2017.07.001 – volume: 30 start-page: 2580 issue: 14 year: 2005 ident: 10.1016/j.compchemeng.2025.109330_bib0041 article-title: Effective utilization of by-product oxygen from electrolysis hydrogen production publication-title: Energy doi: 10.1016/j.energy.2004.07.004 – volume: 16 issue: 1 year: 2025 ident: 10.1016/j.compchemeng.2025.109330_bib0057 article-title: Carbon pricing drives critical transition to green growth publication-title: Nat. Commun. doi: 10.1038/s41467-025-56540-3 – year: 2020 ident: 10.1016/j.compchemeng.2025.109330_bib0070 – volume: 203 year: 2020 ident: 10.1016/j.compchemeng.2025.109330_bib0047 article-title: Rethinking energy use in distillation processes for a more sustainable chemical industry publication-title: Energy doi: 10.1016/j.energy.2020.117788 – volume: 133 year: 2020 ident: 10.1016/j.compchemeng.2025.109330_bib0068 article-title: Large-scale heat pumps: applications, performance, economic feasibility and industrial integration publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110219 – ident: 10.1016/j.compchemeng.2025.109330_bib0006 – volume: 210 start-page: 425 year: 2024 ident: 10.1016/j.compchemeng.2025.109330_bib0040 article-title: Novel process design for eco-efficient production of green formic acid from CO2 publication-title: Chemic. Eng. Res. Des. doi: 10.1016/j.cherd.2024.09.001 – ident: 10.1016/j.compchemeng.2025.109330_bib0048 – volume: 4 start-page: 943 issue: 11 year: 2021 ident: 10.1016/j.compchemeng.2025.109330_bib0091 article-title: High-purity and High-concentration liquid fuels through CO2 electroreduction publication-title: Nat. Catal. doi: 10.1038/s41929-021-00694-y – volume: 1 start-page: 421 year: 2024 ident: 10.1016/j.compchemeng.2025.109330_bib0001 article-title: Kilowatt-scale tandem CO2 electrolysis for enhanced acetate and ethylene production publication-title: Nat. Chemic. Eng. doi: 10.1038/s44286-024-00076-8 – volume: 124 start-page: 3648 issue: 7 year: 2024 ident: 10.1016/j.compchemeng.2025.109330_bib0059 article-title: CO 2 electrolyzers publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00206 – volume: 89 start-page: 864 year: 2015 ident: 10.1016/j.compchemeng.2025.109330_bib0077 article-title: Low grade waste heat recovery using heat pumps and power cycles publication-title: Energy doi: 10.1016/j.energy.2015.06.030 – volume: 15 issue: 12 year: 2020 ident: 10.1016/j.compchemeng.2025.109330_bib0051 article-title: The CO 2 reduction potential for the European industry via direct electrification of heat supply (Power-to-Heat) publication-title: Environment. Res. Lett. doi: 10.1088/1748-9326/abbd02 – volume: 283 year: 2021 ident: 10.1016/j.compchemeng.2025.109330_bib0058 article-title: The impact of wind, solar, and other factors on the decline in wholesale power prices in the United States publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2020.116266 – volume: 7 start-page: 130 issue: 2 year: 2022 ident: 10.1016/j.compchemeng.2025.109330_bib0082 article-title: Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers publication-title: Nat. Energy. doi: 10.1038/s41560-021-00973-9 – volume: 61 start-page: 15449 issue: 42 year: 2022 ident: 10.1016/j.compchemeng.2025.109330_bib0034 article-title: The NIST REFPROP Database for highly accurate properties of industrially important fluids publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.2c01427 – volume: 31 issue: 31 year: 2019 ident: 10.1016/j.compchemeng.2025.109330_bib0042 article-title: Electrochemical CO 2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design publication-title: Advanc. Mater. – volume: 126 start-page: 206 year: 2018 ident: 10.1016/j.compchemeng.2025.109330_bib0050 article-title: Capital cost of compressors for conceptual design publication-title: Chemic. Eng. Process. - Proc. Intensificat. doi: 10.1016/j.cep.2018.01.020 – volume: 57 start-page: 6883 issue: 23 year: 2018 ident: 10.1016/j.compchemeng.2025.109330_bib0049 article-title: Catholyte-free electrocatalytic CO 2 reduction to formate publication-title: Angewandte Chemie. Int. Edit. doi: 10.1002/anie.201803501 |
SSID | ssj0002488 |
Score | 2.4748623 |
Snippet | •Heat pumps can be used to upgrade the waste heat and drive the fluid separations.•CO2 emissions for the process with dilute streams are reduced by 29–84 %... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 109330 |
SubjectTerms | CO2 electrolysis Downstream processing Heat pumps Waste heat recovery |
Title | Coupling CO2 electrolysis and downstream processing via heat pump-based waste heat recovery |
URI | https://dx.doi.org/10.1016/j.compchemeng.2025.109330 |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qC6IH8Yn1UVbwGpvHJtmAlxIsVaFeLBQ8hN1kUyo0DdIqXvztzjQbrSB48JglC5tvNvPY_WYG4DLlgQ7z3LMCJTKLa2lbygszy0XXWtlS0F9KbIthMBjxu7E_bkBc58IQrdLo_kqnr7S1GekaNLvldEo5vpFwPB83HTUko2TylovWXjSh1bu9Hwy_FLLLhahLZ9KETbj4pnkRcxvhmeligtGi66_qKxEn-jcztWZ6-ruwY3xG1quWtQcNXezD9lolwQN4iudLyq2dsPjBZaa3zaraCJNFxjI6QyZO-YyVVWYAvfo6lYx0MStRphbZs4y9SRR7NUqxMm7090MY9W8e44Fl-iZYqYtLtyTXvsqd3NYq8kVK5Vp8bYvMETKUYRBIjFrQD-T4nRLjOe6r1OMid5TUbuDljncEzWJe6GNgmcxTEUqMVtOIBzwVdLObRV4QOrmvw7ANbg1TUlblMZKaN_acrGGbELZJhW0brmtAkx-yTlCN_z395H_TT2ELn8wxyhk0Fy9LfY6OxUJ1YOPqw-mY7fMJFE_OGg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD6MDbw8iFec1wi-lvWSNCn4Mopjc3O-bDDwoaRNOiasK7Ip_ntz1lYnCD74mjaQfic9l-Q75wDcJtTXPE09y4-FsqiWthV7XFmuca1jWwr8S5FtMfS7Y_owYZMahFUuDNIqS91f6PS1ti5HWiWarXw2wxzfQDgeM5sOG5JhMnmDYlPrOjTavX53-KWQXSpEVToTJ2zBzTfNC5nbBp65zqYmWnTZur4ScqJ_M1MbpqezD3ulz0jaxbIOoKazQ9jdqCR4BM_hYoW5tVMSPrmk7G2zrjZCZKaIwjNk5JTPSV5kBuCrbzNJUBeT3MjUQnumyLs0Yi9GMVY2G_3jGMad-1HYtcq-CVbimqVbkmoWp05q6zhgIsFyLUzbQjlCcsl9X5qoxfiB1HynNPEcZXHiUZE6sdSu76WOdwL1bJHpUyBKpong0kSrSUB9mgi82VWB53MnZZrzJrgVTFFelMeIKt7YS7SBbYTYRgW2TbirAI1-yDoyavzv6Wf_m34N293R4yAa9Ib9c9gxT8ojlQuoL19X-tI4Gcv4qtxEn_RZ0AA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coupling+CO2+electrolysis+and+downstream+processing+via+heat+pump-based+waste+heat+recovery&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Dal+Mas%2C+Riccardo&rft.au=Carta%2C+Andrea&rft.au=Somoza-Tornos%2C+Ana&rft.au=Kiss%2C+Anton+A.&rft.date=2026-01-01&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.volume=204&rft_id=info:doi/10.1016%2Fj.compchemeng.2025.109330&rft.externalDocID=S0098135425003321 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |