Multi-attribute group decision making algorithm based on (p, q)-rung interval-valued orthopair fuzzy set and weight optimization model

With the aim of addressing the complexity of decision environments, uncertainty of decision information and weight determination of mutual influence between decision makers, a ( p , q )-rung interval-valued orthopair fuzzy multi-attribute group decision making algorithm based on weight optimization...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 10; pp. 23997 - 24024
Main Authors Wang, Mengmeng, Kong, Xiangzhi
Format Journal Article
LanguageEnglish
Published 2023
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.20231224

Cover

Abstract With the aim of addressing the complexity of decision environments, uncertainty of decision information and weight determination of mutual influence between decision makers, a ( p , q )-rung interval-valued orthopair fuzzy multi-attribute group decision making algorithm based on weight optimization is proposed. First, in order to improve the ability of decision makers to capture their judgment in a wider space, the concept of a ( p , q )-rung interval-valued orthopair fuzzy set is proposed, and its related definition and properties are studied. Second, considering the mutual influence between decision makers and the relationship between attributes, the analytic network process (ANP) and entropy method are employed to determine the subjective and objective weights, respectively. Considering the influence of subjective and objective weights on the combination weights, the deviation degree and dispersion degree of the subjective and objective weights are taken as objective functions, and the optimal solution of the combination weights is iteratively solved by genetic algorithm. Then, based on the ( p , q )-rung interval-valued orthopair fuzzy set and weight optimization model, an improved ( p , q )-rung interval-valued orthopair fuzzy ELECTRE method is proposed. Finally, in order to verify the accuracy and robustness of the algorithm, the algorithm is applied to the example analysis of investment enterprise evaluation, and the results demonstrate that the algorithm has definite theoretical and application value.
AbstractList With the aim of addressing the complexity of decision environments, uncertainty of decision information and weight determination of mutual influence between decision makers, a ( p , q )-rung interval-valued orthopair fuzzy multi-attribute group decision making algorithm based on weight optimization is proposed. First, in order to improve the ability of decision makers to capture their judgment in a wider space, the concept of a ( p , q )-rung interval-valued orthopair fuzzy set is proposed, and its related definition and properties are studied. Second, considering the mutual influence between decision makers and the relationship between attributes, the analytic network process (ANP) and entropy method are employed to determine the subjective and objective weights, respectively. Considering the influence of subjective and objective weights on the combination weights, the deviation degree and dispersion degree of the subjective and objective weights are taken as objective functions, and the optimal solution of the combination weights is iteratively solved by genetic algorithm. Then, based on the ( p , q )-rung interval-valued orthopair fuzzy set and weight optimization model, an improved ( p , q )-rung interval-valued orthopair fuzzy ELECTRE method is proposed. Finally, in order to verify the accuracy and robustness of the algorithm, the algorithm is applied to the example analysis of investment enterprise evaluation, and the results demonstrate that the algorithm has definite theoretical and application value.
Author Kong, Xiangzhi
Wang, Mengmeng
Author_xml – sequence: 1
  givenname: Mengmeng
  surname: Wang
  fullname: Wang, Mengmeng
– sequence: 2
  givenname: Xiangzhi
  surname: Kong
  fullname: Kong, Xiangzhi
BookMark eNqFkMtOwzAQRS0EEqV0yd5LkHBxHLdNlqjiJRWxgXU0fiQxJHHwg6r9AL6blILEjsVoRjpz52ruCTrsbKcROkvoNM1TftVCqKeMsjRhjB-gEeOLlMzzLDv8Mx-jifevlFKWMM4WfIQ-H2MTDIEQnBExaFw5G3ustDTe2A638Ga6CkNTWWdC3WIBXis8kPP-Er9fEBcHbLqg3Qc0ZKi4wy7UtgfjcBm32w32OmDoFF5rU9UB2z6Y1mwhfDtYpZtTdFRC4_Xkp4_Ry-3N8_KerJ7uHpbXKyJZygIpaSaAKzY8IJnItColV6VaCCXnVDBNc-DAklRIKWc813QuBFdaUyXoTM4gHaPp_m7setisoWmK3pkW3KZIaLELstgFWfwGOQjIXiCd9d7p8p_9L6NpfCA
Cites_doi 10.1016/j.eswa.2019.02.019
10.1007/s40815-022-01449-y
10.3233/JIFS-201429
10.1016/j.asoc.2021.107168
10.1016/j.omega.2014.11.009
10.1016/j.ins.2021.04.079
10.3934/math.2023913
10.3390/e21040364
10.3233/JIFS-169806
10.31181/dmame060129022023j
10.3390/sym15010127
10.3390/e22040442
10.1051/mfreview/2022019
10.3934/math.2023539
10.1016/j.eswa.2014.11.057
10.1109/TFUZZ.2016.2604005
10.1111/exsy.13272
10.3934/math.2023956
10.1007/s10479-005-2448-z
10.31181/dmame1902102z
10.3390/sym10090393
10.1002/(SICI)1099-1360(199711)6:6<309::AID-MCDA163>3.0.CO;2-2
10.3846/20294913.2015.1072751
10.12738/estp.2018.5.047
10.3390/sym11010056
10.1109/TFUZZ.2013.2278989
10.28924/2291-8639-18-2020-989
10.1002/int.21584
10.1007/s12652-019-01377-0
10.3390/math9182337
10.1016/j.scitotenv.2021.147763
10.1002/j.1538-7305.1948.tb01338.x
10.1016/j.dt.2019.06.019
10.1016/j.cie.2019.106231
10.14429/dsj.71.15738
10.1111/exsy.12609
10.35378/gujs.978997
10.1002/int.22163
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.3934/math.20231224
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 24024
ExternalDocumentID 10.3934/math.20231224
10_3934_math_20231224
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ADTOC
UNPAY
ID FETCH-LOGICAL-c232t-f08ba4d2002c2b8edfc4dfd7bdc60b2e09a4a213bccc549e06bb4dee0db05c5a3
IEDL.DBID UNPAY
ISSN 2473-6988
IngestDate Mon Sep 15 08:17:27 EDT 2025
Tue Jul 01 03:57:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c232t-f08ba4d2002c2b8edfc4dfd7bdc60b2e09a4a213bccc549e06bb4dee0db05c5a3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/math.20231224
PageCount 28
ParticipantIDs unpaywall_primary_10_3934_math_20231224
crossref_primary_10_3934_math_20231224
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
References key-10.3934/math.20231224-1
key-10.3934/math.20231224-3
key-10.3934/math.20231224-2
key-10.3934/math.20231224-5
key-10.3934/math.20231224-4
key-10.3934/math.20231224-7
key-10.3934/math.20231224-6
key-10.3934/math.20231224-19
key-10.3934/math.20231224-9
key-10.3934/math.20231224-18
key-10.3934/math.20231224-8
key-10.3934/math.20231224-17
key-10.3934/math.20231224-39
key-10.3934/math.20231224-16
key-10.3934/math.20231224-38
key-10.3934/math.20231224-15
key-10.3934/math.20231224-37
key-10.3934/math.20231224-14
key-10.3934/math.20231224-36
key-10.3934/math.20231224-13
key-10.3934/math.20231224-35
key-10.3934/math.20231224-12
key-10.3934/math.20231224-34
key-10.3934/math.20231224-11
key-10.3934/math.20231224-33
key-10.3934/math.20231224-10
key-10.3934/math.20231224-32
key-10.3934/math.20231224-31
key-10.3934/math.20231224-30
key-10.3934/math.20231224-29
key-10.3934/math.20231224-28
key-10.3934/math.20231224-27
key-10.3934/math.20231224-26
key-10.3934/math.20231224-25
key-10.3934/math.20231224-24
key-10.3934/math.20231224-23
key-10.3934/math.20231224-22
key-10.3934/math.20231224-21
key-10.3934/math.20231224-20
key-10.3934/math.20231224-42
key-10.3934/math.20231224-41
key-10.3934/math.20231224-40
References_xml – ident: key-10.3934/math.20231224-23
  doi: 10.1016/j.eswa.2019.02.019
– ident: key-10.3934/math.20231224-42
  doi: 10.1007/s40815-022-01449-y
– ident: key-10.3934/math.20231224-1
– ident: key-10.3934/math.20231224-39
  doi: 10.3233/JIFS-201429
– ident: key-10.3934/math.20231224-10
  doi: 10.1016/j.asoc.2021.107168
– ident: key-10.3934/math.20231224-9
  doi: 10.1016/j.omega.2014.11.009
– ident: key-10.3934/math.20231224-11
  doi: 10.1016/j.ins.2021.04.079
– ident: key-10.3934/math.20231224-40
  doi: 10.3934/math.2023913
– ident: key-10.3934/math.20231224-20
  doi: 10.3390/e21040364
– ident: key-10.3934/math.20231224-6
  doi: 10.3233/JIFS-169806
– ident: key-10.3934/math.20231224-31
  doi: 10.31181/dmame060129022023j
– ident: key-10.3934/math.20231224-8
  doi: 10.3390/sym15010127
– ident: key-10.3934/math.20231224-19
  doi: 10.3390/e22040442
– ident: key-10.3934/math.20231224-26
  doi: 10.1051/mfreview/2022019
– ident: key-10.3934/math.20231224-28
  doi: 10.3934/math.2023539
– ident: key-10.3934/math.20231224-27
  doi: 10.1016/j.eswa.2014.11.057
– ident: key-10.3934/math.20231224-4
  doi: 10.1109/TFUZZ.2016.2604005
– ident: key-10.3934/math.20231224-41
  doi: 10.1111/exsy.13272
– ident: key-10.3934/math.20231224-5
  doi: 10.3934/math.2023956
– ident: key-10.3934/math.20231224-29
  doi: 10.1007/s10479-005-2448-z
– ident: key-10.3934/math.20231224-12
  doi: 10.31181/dmame1902102z
– ident: key-10.3934/math.20231224-14
  doi: 10.3390/sym10090393
– ident: key-10.3934/math.20231224-34
  doi: 10.1002/(SICI)1099-1360(199711)6:6<309::AID-MCDA163>3.0.CO;2-2
– ident: key-10.3934/math.20231224-30
  doi: 10.3846/20294913.2015.1072751
– ident: key-10.3934/math.20231224-17
  doi: 10.12738/estp.2018.5.047
– ident: key-10.3934/math.20231224-7
  doi: 10.3390/sym11010056
– ident: key-10.3934/math.20231224-3
  doi: 10.1109/TFUZZ.2013.2278989
– ident: key-10.3934/math.20231224-22
  doi: 10.28924/2291-8639-18-2020-989
– ident: key-10.3934/math.20231224-32
  doi: 10.1002/int.21584
– ident: key-10.3934/math.20231224-33
  doi: 10.1007/s12652-019-01377-0
– ident: key-10.3934/math.20231224-38
  doi: 10.3390/math9182337
– ident: key-10.3934/math.20231224-16
– ident: key-10.3934/math.20231224-2
– ident: key-10.3934/math.20231224-15
  doi: 10.1016/j.scitotenv.2021.147763
– ident: key-10.3934/math.20231224-18
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: key-10.3934/math.20231224-35
  doi: 10.1016/j.dt.2019.06.019
– ident: key-10.3934/math.20231224-24
  doi: 10.1016/j.cie.2019.106231
– ident: key-10.3934/math.20231224-13
  doi: 10.14429/dsj.71.15738
– ident: key-10.3934/math.20231224-21
– ident: key-10.3934/math.20231224-36
  doi: 10.1111/exsy.12609
– ident: key-10.3934/math.20231224-25
  doi: 10.35378/gujs.978997
– ident: key-10.3934/math.20231224-37
  doi: 10.1002/int.22163
SSID ssj0002124274
Score 2.2081301
Snippet With the aim of addressing the complexity of decision environments, uncertainty of decision information and weight determination of mutual influence between...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 23997
Title Multi-attribute group decision making algorithm based on (p, q)-rung interval-valued orthopair fuzzy set and weight optimization model
URI https://doi.org/10.3934/math.20231224
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: AMVHM
  dateStart: 20220701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4oHIwH30aMkjkYH4mrC92W9kiMhJhAPIjBE9mnEKFgKSHwD_zX7raFoCbqudN0M9PsfLM7830InTmuZFLLChYlrTENCMHMwCIsSaXMlQG4OhGbaDS9eos-tN121kRjZ2FW7u-dwKG3BrbZKwODQkyuWUd5zzWQO4fyreZj9cUKx9GKg73A91P-zJ_vfMk3G5NwxGZT1u-vJJHaNqotPp_2jrzdTGJ-I-bfmBn_XN8O2spgJFTTuO-iNRXuoc3GkoN1vI8-ktlazOJU00pBMsABMhPVgUGiQwWs_zqMenF3ADahSTBPLmEE1_AOVzgyWwH0krZI1seWGNxaRHHXlNq9CPRkPp_BWMXAQgnT5JQVhmYTGmTTnZAI7RygVu3-6a6OM-EFLAzAirEmPmdU2v4NUea-klpQG1AuhUd4WZGAUVYuOVwIYepLRTzOqVSKSE5c4TLnEOXCYaiOEKiSZkT5QitXUikoZyLgvsE5whIZKlZA54vwdEYpv0bH1CXWtx3r287CtwV0sQze75bH_7Y8Qbk4mqhTAytiXkT5auO53igmZXkx-8U-AeJX06Q
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4oHowH30aMmjkYH4mLC92W9kiMhJhAPEiCJ7JPIULB0obAP_Bfu9sWgpqo507TzUyz883uzPchdOG4kkktq1iUtcY0IAQzA4uwJNUKVwbg6lRsotnyGm362HE7eRONnYVZub93AofeGdhmrwwMCjG5Zh1teK6B3AW00W491V6scBytOtgLfD_jz_z5zpd8s5mEYzabssFgJYnUd1B98fmsd-StlMS8JObfmBn_XN8u2s5hJNSyuO-hNRXuo63mkoN1coA-0tlazOJM00pBOsABMhfVgWGqQwVs8DqK-nFvCDahSTBPrmEMt_AONzgyWwH007ZINsCWGNxaRHHPlNr9CHQyn89gomJgoYRpesoKI7MJDfPpTkiFdg5Ru_7wfN_AufACFgZgxVgTnzMqbf-GqHBfSS2oDSiXwiO8okjAKKuUHS6EMPWlIh7nVCpFJCeucJlzhArhKFTHCFRZM6J8oZUrqRSUMxFw3-AcYYkMFSuiy0V4uuOMX6Nr6hLr2671bXfh2yK6Wgbvd8uTf1ueokIcJerMwIqYn-c_1SdkR9ET
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-attribute+group+decision+making+algorithm+based+on+%28p%2C+q%29-rung+interval-valued+orthopair+fuzzy+set+and+weight+optimization+model&rft.jtitle=AIMS+mathematics&rft.au=Wang%2C+Mengmeng&rft.au=Kong%2C+Xiangzhi&rft.date=2023&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=10&rft.spage=23997&rft.epage=24024&rft_id=info:doi/10.3934%2Fmath.20231224&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20231224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon