Wnt/β-Catenin Signaling Is a Normal Physiological Response to Mechanical Loading in Bone
A preliminary expression profiling analysis of osteoblasts derived from tibia explants of the high bone mass LRP5 G171V transgenic mice demonstrated increased expression of canonical Wnt pathway and Wnt/β-catenin target genes compared with non-transgenic explant derived osteoblasts. Therefore, expre...
Saved in:
Published in | The Journal of biological chemistry Vol. 281; no. 42; pp. 31720 - 31728 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
20.10.2006
|
Online Access | Get full text |
ISSN | 0021-9258 1083-351X |
DOI | 10.1074/jbc.M602308200 |
Cover
Abstract | A preliminary expression profiling analysis of osteoblasts derived from tibia explants of the high bone mass LRP5 G171V transgenic mice demonstrated increased expression of canonical Wnt pathway and Wnt/β-catenin target genes compared with non-transgenic explant derived osteoblasts. Therefore, expression of Wnt/β-catenin target genes were monitored after in vivo loading of the tibia of LRP5 G171V transgenic mice compared with non-transgenic mice. Loading resulted in the increased expression of Wnt pathway and Wnt/β-catenin target genes including Wnt10B, SFRP1, cyclin D1, FzD2, WISP2, and connexin 43 in both genotypes; however, there was a further increased in transcriptional response with the LRP5 G171V transgenic mice. Similar increases in the expression of these genes (except cyclin D1) were observed when non-transgenic mice were pharmacologically treated with a canonical Wnt pathway activator, glycogen synthase kinase 3β inhibitor and then subjected to load. These in vivo results were further corroborated by in vitro mechanical loading experiments in which MC3T3-E1 osteoblastic cells were subjected to 3400 microstrain alone for 5 h, which increased the expression of Wnt10B, SFRP1, cyclin D1, FzD2, WISP2, and connexin 43. Furthermore, when MC3T3-E1 cells were treated with either glycogen synthase kinase 3β inhibitor or Wnt3A to activate Wnt signaling and then subjected to load, a synergistic up-regulation of these genes was observed compared with vehicle-treated cells. Collectively, the in vivo and in vitro mechanical loading results support that Wnt/β-catenin signaling is a normal physiological response to load and that activation of the Wnt/β-catenin pathway enhances the sensitivity of osteoblasts/osteocytes to mechanical loading. |
---|---|
AbstractList | A preliminary expression profiling analysis of osteoblasts derived from tibia explants of the high bone mass LRP5 G171V transgenic mice demonstrated increased expression of canonical Wnt pathway and Wnt/β-catenin target genes compared with non-transgenic explant derived osteoblasts. Therefore, expression of Wnt/β-catenin target genes were monitored after in vivo loading of the tibia of LRP5 G171V transgenic mice compared with non-transgenic mice. Loading resulted in the increased expression of Wnt pathway and Wnt/β-catenin target genes including Wnt10B, SFRP1, cyclin D1, FzD2, WISP2, and connexin 43 in both genotypes; however, there was a further increased in transcriptional response with the LRP5 G171V transgenic mice. Similar increases in the expression of these genes (except cyclin D1) were observed when non-transgenic mice were pharmacologically treated with a canonical Wnt pathway activator, glycogen synthase kinase 3β inhibitor and then subjected to load. These in vivo results were further corroborated by in vitro mechanical loading experiments in which MC3T3-E1 osteoblastic cells were subjected to 3400 microstrain alone for 5 h, which increased the expression of Wnt10B, SFRP1, cyclin D1, FzD2, WISP2, and connexin 43. Furthermore, when MC3T3-E1 cells were treated with either glycogen synthase kinase 3β inhibitor or Wnt3A to activate Wnt signaling and then subjected to load, a synergistic up-regulation of these genes was observed compared with vehicle-treated cells. Collectively, the in vivo and in vitro mechanical loading results support that Wnt/β-catenin signaling is a normal physiological response to load and that activation of the Wnt/β-catenin pathway enhances the sensitivity of osteoblasts/osteocytes to mechanical loading. A preliminary expression profiling analysis of osteoblasts derived from tibia explants of the high bone mass LRP5 G171V transgenic mice demonstrated increased expression of canonical Wnt pathway and Wnt/beta-catenin target genes compared with non-transgenic explant derived osteoblasts. Therefore, expression of Wnt/beta-catenin target genes were monitored after in vivo loading of the tibia of LRP5 G171V transgenic mice compared with non-transgenic mice. Loading resulted in the increased expression of Wnt pathway and Wnt/beta-catenin target genes including Wnt10B, SFRP1, cyclin D1, FzD2, WISP2, and connexin 43 in both genotypes; however, there was a further increased in transcriptional response with the LRP5 G171V transgenic mice. Similar increases in the expression of these genes (except cyclin D1) were observed when non-transgenic mice were pharmacologically treated with a canonical Wnt pathway activator, glycogen synthase kinase 3beta inhibitor and then subjected to load. These in vivo results were further corroborated by in vitro mechanical loading experiments in which MC3T3-E1 osteoblastic cells were subjected to 3400 microstrain alone for 5 h, which increased the expression of Wnt10B, SFRP1, cyclin D1, FzD2, WISP2, and connexin 43. Furthermore, when MC3T3-E1 cells were treated with either glycogen synthase kinase 3beta inhibitor or Wnt3A to activate Wnt signaling and then subjected to load, a synergistic up-regulation of these genes was observed compared with vehicle-treated cells. Collectively, the in vivo and in vitro mechanical loading results support that Wnt/beta-catenin signaling is a normal physiological response to load and that activation of the Wnt/beta-catenin pathway enhances the sensitivity of osteoblasts/osteocytes to mechanical loading.A preliminary expression profiling analysis of osteoblasts derived from tibia explants of the high bone mass LRP5 G171V transgenic mice demonstrated increased expression of canonical Wnt pathway and Wnt/beta-catenin target genes compared with non-transgenic explant derived osteoblasts. Therefore, expression of Wnt/beta-catenin target genes were monitored after in vivo loading of the tibia of LRP5 G171V transgenic mice compared with non-transgenic mice. Loading resulted in the increased expression of Wnt pathway and Wnt/beta-catenin target genes including Wnt10B, SFRP1, cyclin D1, FzD2, WISP2, and connexin 43 in both genotypes; however, there was a further increased in transcriptional response with the LRP5 G171V transgenic mice. Similar increases in the expression of these genes (except cyclin D1) were observed when non-transgenic mice were pharmacologically treated with a canonical Wnt pathway activator, glycogen synthase kinase 3beta inhibitor and then subjected to load. These in vivo results were further corroborated by in vitro mechanical loading experiments in which MC3T3-E1 osteoblastic cells were subjected to 3400 microstrain alone for 5 h, which increased the expression of Wnt10B, SFRP1, cyclin D1, FzD2, WISP2, and connexin 43. Furthermore, when MC3T3-E1 cells were treated with either glycogen synthase kinase 3beta inhibitor or Wnt3A to activate Wnt signaling and then subjected to load, a synergistic up-regulation of these genes was observed compared with vehicle-treated cells. Collectively, the in vivo and in vitro mechanical loading results support that Wnt/beta-catenin signaling is a normal physiological response to load and that activation of the Wnt/beta-catenin pathway enhances the sensitivity of osteoblasts/osteocytes to mechanical loading. |
Author | Kharode, Yogendra Zhao, Weiguang Johnson, Mark L. Akhter, Mohammed P. Cullen, Diane M. Yaworsky, Paul J. Hill, Andrew A. Sauter, Linda Bex, Frederick J. Recker, Robert R. Komm, Barry S. Li, Christine Babij, Philip Robinson, John A. Chatterjee-Kishore, Moitreyee Brown, Eugene L. |
Author_xml | – sequence: 1 givenname: John A. surname: Robinson fullname: Robinson, John A. – sequence: 2 givenname: Moitreyee surname: Chatterjee-Kishore fullname: Chatterjee-Kishore, Moitreyee – sequence: 3 givenname: Paul J. surname: Yaworsky fullname: Yaworsky, Paul J. – sequence: 4 givenname: Diane M. surname: Cullen fullname: Cullen, Diane M. – sequence: 5 givenname: Weiguang surname: Zhao fullname: Zhao, Weiguang – sequence: 6 givenname: Christine surname: Li fullname: Li, Christine – sequence: 7 givenname: Yogendra surname: Kharode fullname: Kharode, Yogendra – sequence: 8 givenname: Linda surname: Sauter fullname: Sauter, Linda – sequence: 9 givenname: Philip surname: Babij fullname: Babij, Philip – sequence: 10 givenname: Eugene L. surname: Brown fullname: Brown, Eugene L. – sequence: 11 givenname: Andrew A. surname: Hill fullname: Hill, Andrew A. – sequence: 12 givenname: Mohammed P. surname: Akhter fullname: Akhter, Mohammed P. – sequence: 13 givenname: Mark L. surname: Johnson fullname: Johnson, Mark L. – sequence: 14 givenname: Robert R. surname: Recker fullname: Recker, Robert R. – sequence: 15 givenname: Barry S. surname: Komm fullname: Komm, Barry S. – sequence: 16 givenname: Frederick J. surname: Bex fullname: Bex, Frederick J. |
BookMark | eNqFkMtKAzEUhoNUsFa3rmflbtpcJrelFi-FVsUL6mrIpJk2ZZrUSbroa_kgPpOpFQRBPJvDOXzf4fAfgo7zzgBwgmAfQV4MFpXuTxjEBAoM4R7oIihITih66YAuhBjlElNxAA5DWMBUhURd8Prs4uDjPR-qaJx12YOdOdVYN8tGIVPZjW-Xqsnu5ptgfeNnVqfp3oSVd8Fk0WcTo-fKfa3HXk23Yrpynj47Avu1aoI5_u498HR58Ti8zse3V6Ph2TjXmKCYV4JhilldMS6Q4hiRClNEmMGkphwbRjUTVPGKMMkZrCgssMIFhQxPpUxUD5zu7q5a_7Y2IZZLG7RpGuWMX4eSCckwEeJfsOBIUo5gAvs7ULc-hNbU5aq1S9VuSgTLbdRlirr8iToJxS9B26ii9S62yjZ_aZ96o4Mz |
CitedBy_id | crossref_primary_10_1016_j_medengphy_2019_03_013 crossref_primary_10_1016_j_medengphy_2011_07_022 crossref_primary_10_1172_JCI33612 crossref_primary_10_1007_s00198_011_1892_7 crossref_primary_10_1038_nm_3074 crossref_primary_10_1002_jor_22830 crossref_primary_10_1016_j_bbrc_2009_11_064 crossref_primary_10_1016_j_bone_2014_09_026 crossref_primary_10_1002_jor_20888 crossref_primary_10_3389_fphys_2014_00131 crossref_primary_10_1134_S036211971305006X crossref_primary_10_3892_mmr_2017_6327 crossref_primary_10_1016_j_diff_2013_07_004 crossref_primary_10_5808_GI_2016_14_4_216 crossref_primary_10_1007_s00223_013_9749_z crossref_primary_10_1126_scisignal_3153pe51 crossref_primary_10_1152_japplphysiol_00040_2008 crossref_primary_10_1530_EJE_17_0920 crossref_primary_10_1007_s10237_017_0935_1 crossref_primary_10_3389_fendo_2019_00184 crossref_primary_10_1016_j_jmb_2015_05_004 crossref_primary_10_1007_s10735_016_9687_y crossref_primary_10_1016_j_bone_2012_10_013 crossref_primary_10_1016_j_bone_2008_12_026 crossref_primary_10_1007_s11302_016_9517_4 crossref_primary_10_1038_nrendo_2016_71 crossref_primary_10_2976_1_2955566 crossref_primary_10_1038_bonekey_2012_1 crossref_primary_10_1007_s11914_016_0311_6 crossref_primary_10_1007_s00223_010_9334_7 crossref_primary_10_1038_nrendo_2013_154 crossref_primary_10_1016_j_bone_2012_09_030 crossref_primary_10_1371_journal_pone_0167673 crossref_primary_10_1016_j_stemcr_2016_06_004 crossref_primary_10_1007_s12018_011_9084_8 crossref_primary_10_1016_j_bone_2016_10_011 crossref_primary_10_1007_s00223_010_9372_1 crossref_primary_10_1016_j_gene_2012_04_014 crossref_primary_10_1111_j_1601_0825_2012_01957_x crossref_primary_10_1016_j_bone_2011_04_020 crossref_primary_10_1002_jcp_22057 crossref_primary_10_1016_j_colsurfb_2018_07_017 crossref_primary_10_1007_s11926_009_0004_6 crossref_primary_10_1186_ar4599 crossref_primary_10_2174_1389201021666200611121539 crossref_primary_10_1002_mabi_201900020 crossref_primary_10_1063_1_3520135 crossref_primary_10_1152_ajpendo_00092_2013 crossref_primary_10_1042_CBI20120078 crossref_primary_10_1172_JCI65910 crossref_primary_10_3389_fcell_2021_659654 crossref_primary_10_1002_jor_21078 crossref_primary_10_1007_s12020_013_9962_6 crossref_primary_10_2319_020716_107_1 crossref_primary_10_58600_eurjther2370 crossref_primary_10_1152_physiolgenomics_00076_2009 crossref_primary_10_1007_s12018_010_9079_x crossref_primary_10_1159_000334468 crossref_primary_10_4137_GRSB_S8068 crossref_primary_10_1016_j_bone_2015_04_015 crossref_primary_10_1007_s11914_015_0255_2 crossref_primary_10_3389_fphys_2021_749464 crossref_primary_10_1007_s12079_010_0098_7 crossref_primary_10_1016_j_juro_2012_02_2556 crossref_primary_10_1007_s00223_010_9350_7 crossref_primary_10_1007_s11914_021_00708_5 crossref_primary_10_1007_s00132_009_1488_5 crossref_primary_10_1007_s00774_009_0156_5 crossref_primary_10_1111_odi_12876 crossref_primary_10_1007_s10396_019_00962_2 crossref_primary_10_1007_s00774_013_0449_6 crossref_primary_10_1097_BOR_0b013e32816e06f9 crossref_primary_10_1016_j_tem_2009_12_002 crossref_primary_10_1038_nrd3299 crossref_primary_10_1016_j_bone_2010_08_007 crossref_primary_10_1038_bonekey_2013_180 crossref_primary_10_1371_journal_pone_0091730 crossref_primary_10_1007_s12018_010_9075_1 crossref_primary_10_1007_s12018_008_9011_9 crossref_primary_10_1016_j_bone_2011_01_012 crossref_primary_10_1016_j_arr_2011_12_007 crossref_primary_10_1007_s11914_023_00826_2 crossref_primary_10_1016_j_bone_2011_03_683 crossref_primary_10_1007_s12195_012_0228_9 crossref_primary_10_1016_j_fct_2015_10_005 crossref_primary_10_1038_leu_2009_129 crossref_primary_10_3389_fendo_2014_00246 crossref_primary_10_3892_mmr_2018_9146 crossref_primary_10_1016_j_bone_2016_10_007 crossref_primary_10_3892_or_2012_1816 crossref_primary_10_2220_biomedres_37_117 crossref_primary_10_1016_j_bone_2017_01_010 crossref_primary_10_1007_s00198_009_0931_0 crossref_primary_10_1138_20070255 crossref_primary_10_1002_jcb_27509 crossref_primary_10_1302_2046_3758_47_2000387 crossref_primary_10_1016_j_jbiomech_2009_09_016 crossref_primary_10_1016_j_bone_2015_03_019 crossref_primary_10_1186_s12860_020_00322_w crossref_primary_10_1002_bies_201200061 crossref_primary_10_1007_s11914_017_0402_z crossref_primary_10_1096_fj_201802322RR crossref_primary_10_18632_oncotarget_22790 crossref_primary_10_1111_j_1468_3083_2010_03782_x crossref_primary_10_1016_j_bone_2014_12_015 crossref_primary_10_1042_ETLS20180042 crossref_primary_10_1210_jc_2010_2113 crossref_primary_10_3389_fendo_2014_00214 crossref_primary_10_1016_j_bone_2009_08_054 crossref_primary_10_1155_2018_5893514 crossref_primary_10_1007_s10237_011_0305_3 crossref_primary_10_1007_s12079_010_0088_9 crossref_primary_10_1111_cid_12220 crossref_primary_10_1039_C5RA18287E crossref_primary_10_1016_j_ecl_2016_09_014 crossref_primary_10_1016_j_gene_2016_11_006 crossref_primary_10_1007_s11154_015_9313_4 crossref_primary_10_1016_j_semarthrit_2008_10_008 crossref_primary_10_1007_s00441_014_2010_x crossref_primary_10_1111_ocr_12076 crossref_primary_10_1016_j_ijbiomac_2017_09_029 crossref_primary_10_1016_j_bone_2010_04_604 crossref_primary_10_1002_pbc_21595 crossref_primary_10_2217_17460816_3_6_571 crossref_primary_10_1089_ars_2013_5467 crossref_primary_10_1007_s13577_017_0182_x crossref_primary_10_2174_0929867327666200330142432 crossref_primary_10_1038_bonekey_2012_164 crossref_primary_10_3109_10799893_2013_863919 crossref_primary_10_1016_j_bone_2018_08_015 crossref_primary_10_1210_me_2007_0259 crossref_primary_10_1210_en_2008_0687 crossref_primary_10_1016_j_ultrasmedbio_2018_01_005 crossref_primary_10_3892_ijmm_2016_2636 crossref_primary_10_3892_ijmm_2016_2757 crossref_primary_10_1016_j_biocel_2016_05_015 crossref_primary_10_1371_journal_pone_0223245 crossref_primary_10_1152_ajprenal_00325_2017 crossref_primary_10_1002_cbf_3027 crossref_primary_10_1038_nm_2388 crossref_primary_10_1016_j_intimp_2014_11_010 crossref_primary_10_1093_abbs_gmq047 crossref_primary_10_1007_s00198_013_2590_4 crossref_primary_10_1016_j_jbiomech_2014_12_009 crossref_primary_10_1080_03008207_2017_1300154 crossref_primary_10_1016_j_bone_2011_10_025 crossref_primary_10_1271_bbb_110274 crossref_primary_10_1039_B914460A crossref_primary_10_1007_s00421_011_2306_4 crossref_primary_10_1155_2020_5720360 crossref_primary_10_3109_10520295_2013_811285 crossref_primary_10_1186_s12952_016_0059_7 crossref_primary_10_1093_gerona_glv160 crossref_primary_10_1002_term_1498 crossref_primary_10_1016_j_bone_2016_07_002 crossref_primary_10_1530_JME_15_0067 crossref_primary_10_1016_j_bmcl_2009_10_093 crossref_primary_10_1155_2013_138704 crossref_primary_10_1289_ehp_1205374 crossref_primary_10_1007_s00018_015_1853_y crossref_primary_10_1016_j_bonr_2019_100218 crossref_primary_10_1007_s12210_009_0051_y crossref_primary_10_1007_s00774_009_0064_8 crossref_primary_10_1016_j_bbrc_2015_10_152 crossref_primary_10_1007_s00774_007_0824_2 crossref_primary_10_1007_s00776_011_0124_5 crossref_primary_10_1371_journal_pone_0079672 crossref_primary_10_1590_0001_3765201920180459 crossref_primary_10_1016_j_cellsig_2014_07_018 crossref_primary_10_1007_s12217_015_9439_8 crossref_primary_10_1016_j_febslet_2014_01_025 crossref_primary_10_1177_0022034510389180 crossref_primary_10_1007_s10735_017_9729_0 crossref_primary_10_1007_s00223_020_00724_0 crossref_primary_10_1016_j_bone_2016_04_028 crossref_primary_10_1002_term_1928 crossref_primary_10_1002_jcp_21482 crossref_primary_10_1138_20090371 crossref_primary_10_1371_journal_pone_0203448 crossref_primary_10_1210_er_2009_0024 crossref_primary_10_1007_s00232_007_9026_z crossref_primary_10_1038_nrrheum_2017_204 crossref_primary_10_18632_oncotarget_3696 crossref_primary_10_1152_ajpendo_00035_2022 crossref_primary_10_1007_s00421_018_4007_8 crossref_primary_10_1007_s11914_010_0013_4 crossref_primary_10_1016_j_jbiomech_2018_04_013 crossref_primary_10_1038_bonekey_2016_14 crossref_primary_10_1002_jbm_a_32887 crossref_primary_10_3389_fphys_2020_00549 crossref_primary_10_1016_j_bone_2007_12_224 crossref_primary_10_1007_s00223_009_9227_9 crossref_primary_10_1186_s13024_017_0153_4 crossref_primary_10_1138_20090382 crossref_primary_10_1138_20070276 crossref_primary_10_1007_s12079_018_0457_3 crossref_primary_10_1111_nyas_13914 crossref_primary_10_3892_etm_2021_10397 crossref_primary_10_1016_j_semarthrit_2013_01_004 crossref_primary_10_1196_annals_1402_009 crossref_primary_10_1093_ejo_cjr016 crossref_primary_10_1007_s10237_010_0244_4 crossref_primary_10_3109_00016357_2015_1090011 crossref_primary_10_1016_j_trsl_2016_11_004 crossref_primary_10_1161_ATVBAHA_110_220061 crossref_primary_10_5466_ijoms_13_120 crossref_primary_10_3892_mmr_2018_8797 crossref_primary_10_1038_s41374_022_00793_9 crossref_primary_10_1111_ocr_12459 crossref_primary_10_1096_fj_08_118679 crossref_primary_10_1002_adfm_202006796 crossref_primary_10_1128_MCB_01428_09 crossref_primary_10_1152_ajpcell_90619_2007 crossref_primary_10_1096_fj_10_180299 crossref_primary_10_1371_journal_pone_0160034 crossref_primary_10_1016_j_berh_2009_08_004 crossref_primary_10_1002_jcp_26374 crossref_primary_10_1138_20100454 crossref_primary_10_1002_jor_22341 crossref_primary_10_1097_BRS_0b013e318242a132 crossref_primary_10_1016_j_bone_2008_03_006 crossref_primary_10_1080_03008207_2016_1267153 crossref_primary_10_1002_jcb_22660 crossref_primary_10_1016_j_bone_2019_115078 crossref_primary_10_2485_jhtb_24_169 crossref_primary_10_1007_s00774_010_0194_z crossref_primary_10_1096_fj_10_157370 crossref_primary_10_1002_jcb_24639 crossref_primary_10_1007_s11154_010_9153_1 crossref_primary_10_1007_s00223_009_9256_4 crossref_primary_10_1016_j_bone_2010_12_019 crossref_primary_10_1007_s00018_010_0467_7 crossref_primary_10_1016_j_bone_2011_08_035 crossref_primary_10_1016_j_gene_2011_10_044 crossref_primary_10_1007_s00774_020_01168_0 crossref_primary_10_1002_jcb_22574 crossref_primary_10_1002_jor_20991 crossref_primary_10_1007_s00223_013_9774_y crossref_primary_10_1016_j_bone_2014_10_011 crossref_primary_10_1016_j_bbcan_2010_08_004 crossref_primary_10_1016_j_bbcan_2009_02_002 crossref_primary_10_1016_j_bbamem_2011_06_011 crossref_primary_10_1155_2014_814057 crossref_primary_10_2319_090310_519_1 crossref_primary_10_1186_1423_0127_21_30 crossref_primary_10_1111_j_1524_475X_2007_00287_x crossref_primary_10_1371_journal_pone_0063323 crossref_primary_10_1177_0022034510378521 crossref_primary_10_1016_j_bone_2015_09_007 crossref_primary_10_1016_j_ultras_2014_02_003 crossref_primary_10_1155_2020_3906426 crossref_primary_10_1016_j_bone_2012_11_017 crossref_primary_10_1016_j_bone_2012_05_023 crossref_primary_10_1016_j_actaastro_2015_07_020 crossref_primary_10_1155_2014_863421 crossref_primary_10_4137_CCRPM_S22803 crossref_primary_10_1139_bcb_2012_0021 crossref_primary_10_1123_pes_2017_0042 crossref_primary_10_1002_jcp_28099 crossref_primary_10_1007_s11914_017_0357_0 crossref_primary_10_1038_s41413_020_0099_y crossref_primary_10_1007_s12018_008_9014_6 crossref_primary_10_1016_j_jbiomech_2014_12_032 crossref_primary_10_1016_j_archoralbio_2016_06_009 crossref_primary_10_3389_fendo_2022_942368 crossref_primary_10_1002_jor_21156 crossref_primary_10_1002_jor_22004 crossref_primary_10_1111_mec_12417 crossref_primary_10_1111_joim_12368 crossref_primary_10_1016_j_actaastro_2014_05_008 crossref_primary_10_1016_j_bone_2013_12_005 crossref_primary_10_1098_rsif_2013_0179 crossref_primary_10_1016_j_bone_2012_09_017 crossref_primary_10_1016_j_bone_2013_02_022 crossref_primary_10_1016_j_bone_2018_01_010 crossref_primary_10_1038_nrendo_2013_179 crossref_primary_10_1016_j_bone_2016_02_007 |
Cites_doi | 10.1016/S1097-2765(01)00224-6 10.1096/fasebj.9.15.8529841 10.1038/nrg1427 10.1097/00019616-200209000-00012 10.1242/dev.00674 10.1016/S8756-3282(01)00678-0 10.1359/JBMR.050210 10.1016/S0002-9440(10)63963-6 10.1074/jbc.M413274200 10.1016/S0014-5793(03)00055-3 10.1038/79683 10.1086/368277 10.1073/pnas.0408742102 10.1038/nature756 10.1038/35077108 10.1074/jbc.M109881200 10.1126/science.289.5481.950 10.1056/NEJM200405133502017 10.1038/79676 10.1016/S0092-8674(01)00571-2 10.1359/jbmr.1997.12.2.276 10.1086/338450 10.1083/jcb.200201089 10.1186/1471-213X-2-8 10.1016/S0959-437X(02)00012-6 10.1002/bies.10136 10.1038/35035110 10.1046/j.1365-2567.2001.01261.x 10.1056/NEJMoa013444 10.1016/S0378-1119(02)01106-X 10.1083/jcb.151.4.931 10.1074/jbc.M601000200 10.1002/jcp.10221 10.1016/S0959-437X(00)00231-8 10.1359/jbmr.2002.17.4.603 10.1016/j.bone.2004.02.018 10.1074/jbc.M509205200 10.1016/S0960-9822(01)00290-1 10.1359/jbmr.2003.18.6.960 10.1038/ng1430 10.1038/35035124 10.1073/pnas.0505259102 10.1038/35083081 10.1016/S0945-053X(00)00050-0 10.1126/science.1071549 10.1038/35035117 10.1146/annurev.cellbio.14.1.59 10.1038/ng1004-1038 10.1016/S1074-5521(00)00025-9 10.1007/s002239900554 10.1126/science.1116221 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 7X8 |
DOI | 10.1074/jbc.M602308200 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
EndPage | 31728 |
ExternalDocumentID | 10_1074_jbc_M602308200 |
GroupedDBID | --- -DZ -ET -~X .55 .7T .GJ 0R~ 186 18M 2WC 34G 39C 3O- 4.4 53G 5GY 5RE 5VS 79B 85S AAEDW AAFWJ AALRI AARDX AAXUO AAYWO AAYXX ABDNZ ABOCM ABPPZ ABRJW ACGFO ACNCT ACVFH ADBBV ADCNI ADIYS ADNWM ADVLN ADXHL AENEX AEUPX AEXQZ AFFNX AFOSN AFPKN AFPUW AI. AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BTFSW C1A CITATION CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FA8 FDB FRP GROUPED_DOAJ GX1 H13 HH5 HYE IH2 KQ8 L7B MVM N9A OHT OK1 P-O P0W P2P R.V RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT UQL VH1 W8F WH7 WHG WOQ X7M XSW Y6R YQT YSK YWH YZZ ZE2 ~02 ~KM 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c231t-b862526fb6781a7213b25136e23f572e65c685a7b369760b5042a245062d99e23 |
ISSN | 0021-9258 |
IngestDate | Fri Sep 05 10:54:08 EDT 2025 Fri Sep 05 14:49:52 EDT 2025 Tue Jul 01 02:13:05 EDT 2025 Thu Apr 24 23:09:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c231t-b862526fb6781a7213b25136e23f572e65c685a7b369760b5042a245062d99e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 47195710 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_68962388 proquest_miscellaneous_47195710 crossref_primary_10_1074_jbc_M602308200 crossref_citationtrail_10_1074_jbc_M602308200 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2006-10-20 20061020 |
PublicationDateYYYYMMDD | 2006-10-20 |
PublicationDate_xml | – month: 10 year: 2006 text: 2006-10-20 day: 20 |
PublicationDecade | 2000 |
PublicationTitle | The Journal of biological chemistry |
PublicationYear | 2006 |
References | (2017062211203894000_281.42.31720.23) 2004; 35 2017062211203894000_281.42.31720.14 2017062211203894000_281.42.31720.15 2017062211203894000_281.42.31720.16 2017062211203894000_281.42.31720.17 2017062211203894000_281.42.31720.18 2017062211203894000_281.42.31720.19 2017062211203894000_281.42.31720.50 (2017062211203894000_281.42.31720.26) 2002; 17 2017062211203894000_281.42.31720.52 2017062211203894000_281.42.31720.53 2017062211203894000_281.42.31720.10 2017062211203894000_281.42.31720.54 2017062211203894000_281.42.31720.11 (2017062211203894000_281.42.31720.41) 2003; 18 2017062211203894000_281.42.31720.55 2017062211203894000_281.42.31720.12 2017062211203894000_281.42.31720.56 2017062211203894000_281.42.31720.13 (2017062211203894000_281.42.31720.39) 2002; 30 2017062211203894000_281.42.31720.47 2017062211203894000_281.42.31720.48 2017062211203894000_281.42.31720.49 (2017062211203894000_281.42.31720.25) 2002; 12 2017062211203894000_281.42.31720.40 2017062211203894000_281.42.31720.42 2017062211203894000_281.42.31720.43 2017062211203894000_281.42.31720.44 2017062211203894000_281.42.31720.45 2017062211203894000_281.42.31720.46 2017062211203894000_281.42.31720.36 2017062211203894000_281.42.31720.38 2017062211203894000_281.42.31720.30 2017062211203894000_281.42.31720.31 2017062211203894000_281.42.31720.32 2017062211203894000_281.42.31720.33 2017062211203894000_281.42.31720.34 2017062211203894000_281.42.31720.35 (2017062211203894000_281.42.31720.37) 1995; 9 2017062211203894000_281.42.31720.1 2017062211203894000_281.42.31720.2 2017062211203894000_281.42.31720.3 2017062211203894000_281.42.31720.4 2017062211203894000_281.42.31720.5 2017062211203894000_281.42.31720.6 2017062211203894000_281.42.31720.7 2017062211203894000_281.42.31720.27 2017062211203894000_281.42.31720.8 2017062211203894000_281.42.31720.28 2017062211203894000_281.42.31720.9 2017062211203894000_281.42.31720.29 (2017062211203894000_281.42.31720.51) 2001; 158 2017062211203894000_281.42.31720.20 2017062211203894000_281.42.31720.21 2017062211203894000_281.42.31720.22 (2017062211203894000_281.42.31720.24) 2004; 4 |
References_xml | – ident: 2017062211203894000_281.42.31720.8 doi: 10.1016/S1097-2765(01)00224-6 – volume: 9 start-page: 1614 year: 1995 ident: 2017062211203894000_281.42.31720.37 publication-title: FASEB J. doi: 10.1096/fasebj.9.15.8529841 – ident: 2017062211203894000_281.42.31720.56 doi: 10.1038/nrg1427 – volume: 12 start-page: 445 year: 2002 ident: 2017062211203894000_281.42.31720.25 publication-title: Endocrinologist doi: 10.1097/00019616-200209000-00012 – ident: 2017062211203894000_281.42.31720.21 doi: 10.1242/dev.00674 – volume: 30 start-page: 347 year: 2002 ident: 2017062211203894000_281.42.31720.39 publication-title: Bone (NY) doi: 10.1016/S8756-3282(01)00678-0 – ident: 2017062211203894000_281.42.31720.28 doi: 10.1359/JBMR.050210 – volume: 158 start-page: 247 year: 2001 ident: 2017062211203894000_281.42.31720.51 publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)63963-6 – ident: 2017062211203894000_281.42.31720.22 doi: 10.1074/jbc.M413274200 – ident: 2017062211203894000_281.42.31720.32 doi: 10.1016/S0014-5793(03)00055-3 – ident: 2017062211203894000_281.42.31720.48 doi: 10.1038/79683 – ident: 2017062211203894000_281.42.31720.4 doi: 10.1086/368277 – ident: 2017062211203894000_281.42.31720.54 doi: 10.1073/pnas.0408742102 – ident: 2017062211203894000_281.42.31720.16 doi: 10.1038/nature756 – ident: 2017062211203894000_281.42.31720.18 doi: 10.1038/35077108 – ident: 2017062211203894000_281.42.31720.35 doi: 10.1074/jbc.M109881200 – ident: 2017062211203894000_281.42.31720.47 – ident: 2017062211203894000_281.42.31720.53 doi: 10.1126/science.289.5481.950 – ident: 2017062211203894000_281.42.31720.40 doi: 10.1056/NEJM200405133502017 – ident: 2017062211203894000_281.42.31720.49 doi: 10.1038/79676 – ident: 2017062211203894000_281.42.31720.1 doi: 10.1016/S0092-8674(01)00571-2 – ident: 2017062211203894000_281.42.31720.38 doi: 10.1359/jbmr.1997.12.2.276 – ident: 2017062211203894000_281.42.31720.3 doi: 10.1086/338450 – ident: 2017062211203894000_281.42.31720.6 doi: 10.1083/jcb.200201089 – ident: 2017062211203894000_281.42.31720.14 doi: 10.1186/1471-213X-2-8 – ident: 2017062211203894000_281.42.31720.55 doi: 10.1016/S0959-437X(02)00012-6 – ident: 2017062211203894000_281.42.31720.17 doi: 10.1002/bies.10136 – ident: 2017062211203894000_281.42.31720.7 doi: 10.1038/35035110 – ident: 2017062211203894000_281.42.31720.52 doi: 10.1046/j.1365-2567.2001.01261.x – ident: 2017062211203894000_281.42.31720.2 doi: 10.1056/NEJMoa013444 – ident: 2017062211203894000_281.42.31720.15 doi: 10.1016/S0378-1119(02)01106-X – ident: 2017062211203894000_281.42.31720.50 doi: 10.1083/jcb.151.4.931 – ident: 2017062211203894000_281.42.31720.27 doi: 10.1074/jbc.M601000200 – ident: 2017062211203894000_281.42.31720.30 doi: 10.1002/jcp.10221 – ident: 2017062211203894000_281.42.31720.31 – ident: 2017062211203894000_281.42.31720.13 doi: 10.1016/S0959-437X(00)00231-8 – ident: 2017062211203894000_281.42.31720.34 doi: 10.1359/jbmr.2002.17.4.603 – volume: 35 start-page: 162 year: 2004 ident: 2017062211203894000_281.42.31720.23 publication-title: Bone (NY) doi: 10.1016/j.bone.2004.02.018 – ident: 2017062211203894000_281.42.31720.42 doi: 10.1074/jbc.M509205200 – ident: 2017062211203894000_281.42.31720.20 doi: 10.1016/S0960-9822(01)00290-1 – ident: 2017062211203894000_281.42.31720.5 doi: 10.1359/jbmr.2003.18.6.960 – ident: 2017062211203894000_281.42.31720.45 doi: 10.1038/ng1430 – ident: 2017062211203894000_281.42.31720.10 doi: 10.1038/35035124 – ident: 2017062211203894000_281.42.31720.29 doi: 10.1073/pnas.0505259102 – ident: 2017062211203894000_281.42.31720.19 doi: 10.1038/35083081 – volume: 17 start-page: 332 year: 2002 ident: 2017062211203894000_281.42.31720.26 publication-title: J. Bone Miner. Res. – ident: 2017062211203894000_281.42.31720.33 doi: 10.1016/S0945-053X(00)00050-0 – ident: 2017062211203894000_281.42.31720.11 doi: 10.1126/science.1071549 – volume: 18 start-page: 60 year: 2003 ident: 2017062211203894000_281.42.31720.41 publication-title: J. Bone Miner. Res. – ident: 2017062211203894000_281.42.31720.9 doi: 10.1038/35035117 – ident: 2017062211203894000_281.42.31720.12 doi: 10.1146/annurev.cellbio.14.1.59 – volume: 4 start-page: 135 year: 2004 ident: 2017062211203894000_281.42.31720.24 publication-title: J. Musculoskelet. Neuronal Interact. – ident: 2017062211203894000_281.42.31720.46 doi: 10.1038/ng1004-1038 – ident: 2017062211203894000_281.42.31720.36 doi: 10.1016/S1074-5521(00)00025-9 – ident: 2017062211203894000_281.42.31720.43 doi: 10.1007/s002239900554 – ident: 2017062211203894000_281.42.31720.44 doi: 10.1126/science.1116221 |
SSID | ssj0000491 |
Score | 2.4246366 |
Snippet | A preliminary expression profiling analysis of osteoblasts derived from tibia explants of the high bone mass LRP5 G171V transgenic mice demonstrated increased... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 31720 |
Title | Wnt/β-Catenin Signaling Is a Normal Physiological Response to Mechanical Loading in Bone |
URI | https://www.proquest.com/docview/47195710 https://www.proquest.com/docview/68962388 |
Volume | 281 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWWcoALghZE-fSBwgG53TixkxzbaFcFukXArtieIttx2kV0g9j0UPhX_BB-E-PYiRvUio9LtBt5R5Hn7eTZnnmD0LOhLpO0CASJaciIYdAkjUpYuLKSMgn_9DA2tcOTQ74_i17P2Xww-H6xuqSW2-rbpXUl_-NVuAd-NVWy_-DZzijcgM_gX7iCh-H6Vz7-aEQDxlvZaGuPkgxYo1FK_bA4NuTaJAKsXgpzMHMKbmgyPbtA995mxjZtMybaFP_aHe1KtDUue9WylyTkS8ga8iq9LdW2jPNnN76krEnM6UCSnTRqnp-0Jm8WqxOX4jupFjUASncQOzI6rm5T12Qu-qOrzIiF2zgJsNZuK9dvWkC0p8OLgdhkhlCr2t4GYmqbtzjEWdEtF1eB5bif6-57cukbACiReQNItT3hZn2VWCXU36S2D9_m49nBQT4dzafX0HUaA_EyJ_rvvNQ8LJ1su0X3pK3iZxzt9K33GU3_hd6wlOltdMt5CO9arNxBA71cRxu7S1FXp-f4Oe5gcL6ObmSt5zbQEUBp5-ePFkS4AxF-tcICWxDhHohwCyJcV9iDCDsQYbBiQHQXzcajabZPXNcNooDr10TCGpdRXkqgMYGIaRBK4MAh1zQsWUw1Z4onTMQy5EBlh5JB2Bc0YkNOizSFUffQ2hLM30c4VlQqISAclCyKCp6yUhVBURZUCRbSYBORduZy5STpTWeUz3mTGhFHOcx07md6E73oxn-xYixXjnzaOiKHmTSHYIDK6myVAxlLGdDqq0fwJIU1QZI8-KONh-imB_cjtFZ_PdOPgaPW8kmDpV8TRZJw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wnt%2F%CE%B2-Catenin+Signaling+Is+a+Normal+Physiological+Response+to+Mechanical+Loading+in+Bone&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Robinson%2C+John+A&rft.au=Chatterjee-Kishore%2C+Moitreyee&rft.au=Yaworsky%2C+Paul+J&rft.au=Cullen%2C+Diane+M&rft.date=2006-10-20&rft.issn=0021-9258&rft.volume=281&rft.issue=42&rft.spage=31720&rft.epage=31728&rft_id=info:doi/10.1074%2Fjbc.M602308200&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |