A Framework for Diagnosing Kidney Disease in Diabetes Patients Using Classification Algorithms
Data mining algorithms are widely used to extract latent trends or patterns from databases. They are used to predict unknown class labels in order to help in accurate decision making process. The machine learning techniques are very useful in applications of healthcare domain. In this domain, the te...
Saved in:
| Published in | SN computer science Vol. 1; no. 2; p. 101 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Nature Singapore
01.03.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2662-995X 2661-8907 |
| DOI | 10.1007/s42979-020-0096-7 |
Cover
| Abstract | Data mining algorithms are widely used to extract latent trends or patterns from databases. They are used to predict unknown class labels in order to help in accurate decision making process. The machine learning techniques are very useful in applications of healthcare domain. In this domain, the techniques are employed to diagnose diseases and even predicting the probabilities related to health and other aspects. Since diabetes is one of the diseases that prevail in Indians now and it causes other diseases as well, in this paper we studied the kidney disease diagnosis in diabetes patients. Kidney disease dataset is used to explore four different data mining algorithms. They are known as Naive Bayes, decision table, J48 and random forest. The dataset is used to have both training and testing sets and produce prediction details. These algorithms are evaluated by using measures like accuracy, mean absolute error (MAE) and root-mean-squared error (RMSE). The results revealed that all the machine learning algorithms are able to predict the disease. However, they differ in accuracy levels. With tenfold cross-validation, it is understood that random forest showed the highest accuracy, while Naive Bayes showed least MAE and RMSE. We built prototype application to demonstrate proof of the concept. Our experimental results revealed that the proposed framework to evaluate machine learning algorithms is useful. |
|---|---|
| AbstractList | Data mining algorithms are widely used to extract latent trends or patterns from databases. They are used to predict unknown class labels in order to help in accurate decision making process. The machine learning techniques are very useful in applications of healthcare domain. In this domain, the techniques are employed to diagnose diseases and even predicting the probabilities related to health and other aspects. Since diabetes is one of the diseases that prevail in Indians now and it causes other diseases as well, in this paper we studied the kidney disease diagnosis in diabetes patients. Kidney disease dataset is used to explore four different data mining algorithms. They are known as Naive Bayes, decision table, J48 and random forest. The dataset is used to have both training and testing sets and produce prediction details. These algorithms are evaluated by using measures like accuracy, mean absolute error (MAE) and root-mean-squared error (RMSE). The results revealed that all the machine learning algorithms are able to predict the disease. However, they differ in accuracy levels. With tenfold cross-validation, it is understood that random forest showed the highest accuracy, while Naive Bayes showed least MAE and RMSE. We built prototype application to demonstrate proof of the concept. Our experimental results revealed that the proposed framework to evaluate machine learning algorithms is useful. |
| ArticleNumber | 101 |
| Author | Puneeth, B. N. Reddy, N. Chandra Sekhar Prasad, Kashi Sai |
| Author_xml | – sequence: 1 givenname: Kashi Sai surname: Prasad fullname: Prasad, Kashi Sai email: saiprasad.kashi@gmail.com organization: Department of Computer Science and Engineering, MLR Institute of Technology – sequence: 2 givenname: N. Chandra Sekhar surname: Reddy fullname: Reddy, N. Chandra Sekhar organization: Department of Computer Science and Engineering, MLR Institute of Technology – sequence: 3 givenname: B. N. surname: Puneeth fullname: Puneeth, B. N. organization: Department of Computer Science and Engineering, MLR Institute of Technology |
| BookMark | eNp9UNFKwzAUDTLBOfcBvhV8rt4mbZM8julUHOiDA58MaZvUzC6ZSYfs721XQRD06V7OPefce88pGllnFULnCVwmAPQqpJhTHgOGGIDnMT1CY5znScw40NGhxzHn2csJmoawBgCcQZrm2Ri9zqKFlxv16fx7pJ2Pro2srQvG1tGDqazad0hQMqjI2H5YqFaF6Em2Rtk2RKsDc97IEIw2ZQc7G82a2nnTvm3CGTrWsglq-l0naLW4eZ7fxcvH2_v5bBmXmCQ0LomqCkIyWWDNlcJlIYuEkQqDThiGbpSyPMu1lLksWUEZ1kzzNEs1AVXllEzQxeC79e5jp0Ir1m7nbbdSYE5wRjkG1rGSgVV6F4JXWmy92Ui_FwmIPkkxJCm6JEWfpOid6S9NadrDm62XpvlXiQdl6LbYWvmfm_4WfQG4h4ny |
| CitedBy_id | crossref_primary_10_1016_j_matpr_2022_04_907 crossref_primary_10_1007_s42979_023_02545_y crossref_primary_10_1016_j_matpr_2022_04_809 crossref_primary_10_1016_j_mlwa_2022_100418 crossref_primary_10_53759_7669_jmc202303027 |
| Cites_doi | 10.17485/ijst/2015/v8i8/69272 10.1016/j.procs.2011.01.018 10.17485/ijst/2016/v9i43/93874 10.17485/ijst/2016/v9i47/106827 10.4236/jsea.2013.63013 10.1109/ACCESS.2017.2694446 10.5121/ijdkp.2015.5101 |
| ContentType | Journal Article |
| Copyright | Springer Nature Singapore Pte Ltd 2020. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: Springer Nature Singapore Pte Ltd 2020. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s42979-020-0096-7 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2661-8907 |
| ExternalDocumentID | 10_1007_s42979_020_0096_7 |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ BSONS CCPQU DPUIP EBLON EBS EJD FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c2317-c3edb335ab2f9ee2cbab183d20f1820b3348656faa6ac8b782f8f9454f30ed673 |
| IEDL.DBID | BENPR |
| ISSN | 2662-995X |
| IngestDate | Sat Jul 26 02:22:38 EDT 2025 Wed Oct 01 03:59:05 EDT 2025 Thu Apr 24 22:56:38 EDT 2025 Fri Feb 21 02:41:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Naive Bayes Classification Random forest Data mining Kidney disease diagnosis Decision table J48 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2317-c3edb335ab2f9ee2cbab183d20f1820b3348656faa6ac8b782f8f9454f30ed673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2932579208 |
| PQPubID | 6623307 |
| ParticipantIDs | proquest_journals_2932579208 crossref_primary_10_1007_s42979_020_0096_7 crossref_citationtrail_10_1007_s42979_020_0096_7 springer_journals_10_1007_s42979_020_0096_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20200300 2020-03-00 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 3 year: 2020 text: 20200300 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Kolkata |
| PublicationTitle | SN computer science |
| PublicationTitleAbbrev | SN COMPUT. SCI |
| PublicationYear | 2020 |
| Publisher | Springer Nature Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
| References | Devi, alias Balamurugan, Kris (CR20) 2016; 9 Thiyagarajan, AnandhaKumar, Bharathi (CR29) 2016; 11 Saravananathan, Velmurugan (CR30) 2016; 9 Kalantari, Kamsin, Shamshirband, Gani, Alinejad-Rokny, Chronopoulos (CR32) 2018; 276 Rajesh, Sangeetha (CR6) 2012; 2 Karthikeyani, PhD, Begum, Shahina Begam (CR11) 2012; 60 Li, Li, Yao (CR16) 2018; 2018 Selvakumar, SenthamaraiKannan, GothaiNachiyar (CR14) 2017; 12 Garga, Mahajanb, Kamal (CR5) 2017; 465 CR12 Vembandasamy, Karthikeyan (CR31) 2016; 11 Durairaj, Kalaiselvi (CR22) 2015; 1 Sengamuthu, Abirami, Karthik (CR25) 2018; 5 Thirumal, Nagarajan (CR10) 2015; 10 Vijayalakshmi, Jenifer (CR15) 2017; 6 Yldma, Karahocaa, Uçara (CR4) 2011; 3 Sharmila, VethaManickam (CR21) 2015; 2 Pandeeswari, Rajeswari (CR23) 2015; 2 Sa’di, Maleki, Hashemi, Panbechi, Chalabi (CR17) 2015; 5 Ahmed (CR13) 2016; 90 Nagarajan, Chandrasekaran (CR3) 2015; 8 Shinde, Rajmane, Chindage, Gundale, Mane (CR18) 2018; 3 Esmaily, Tayefi, Doosti, Nezami, Amirabadizadeh (CR19) 2018; 18 Ramanakumar, KrishnamohanRao (CR24) 2018; 13 Vijayan, Ravikumar (CR8) 2014; 95 Soltani, Jafarian (CR28) 2016; 7 Rahman, Afroz (CR2) 2013; 6 Mirza, Mittal, Zaman (CR26) 2013; 13 Iyer, Jeyalatha, Sumbaly (CR9) 2015; 5 Chen, Hao, Hwang, Wang, Wang (CR1) 2017; 5 Kaur, Chhabra (CR7) 2014; 98 Verma, Ghosh (CR27) 2017; 7 CV Verma (96_CR27) 2017; 7 K Vembandasamy (96_CR31) 2016; 11 SB Garga (96_CR5) 2017; 465 Z Soltani (96_CR28) 2016; 7 S Nagarajan (96_CR3) 2015; 8 H Esmaily (96_CR19) 2018; 18 C Thiyagarajan (96_CR29) 2016; 11 PC Thirumal (96_CR10) 2015; 10 K Saravananathan (96_CR30) 2016; 9 V Vijayan (96_CR8) 2014; 95 D Ramanakumar (96_CR24) 2018; 13 R Sengamuthu (96_CR25) 2018; 5 M Durairaj (96_CR22) 2015; 1 M Chen (96_CR1) 2017; 5 S Selvakumar (96_CR14) 2017; 12 RM Rahman (96_CR2) 2013; 6 G Kaur (96_CR7) 2014; 98 K Rajesh (96_CR6) 2012; 2 TM Ahmed (96_CR13) 2016; 90 SS Shinde (96_CR18) 2018; 3 V Karthikeyani (96_CR11) 2012; 60 Y Li (96_CR16) 2018; 2018 MN Devi (96_CR20) 2016; 9 EG Yldma (96_CR4) 2011; 3 A Iyer (96_CR9) 2015; 5 96_CR12 N Vijayalakshmi (96_CR15) 2017; 6 K Sharmila (96_CR21) 2015; 2 A Kalantari (96_CR32) 2018; 276 S Sa’di (96_CR17) 2015; 5 S Mirza (96_CR26) 2013; 13 L Pandeeswari (96_CR23) 2015; 2 |
| References_xml | – volume: 465 start-page: 202 year: 2017 end-page: 218 ident: CR5 article-title: An approach for diabetes detection using data mining classification techniques publication-title: Int J Eng Sci – volume: 12 start-page: p183 issue: 2 year: 2017 end-page: p188 ident: CR14 article-title: Prediction of diabetes diagnosis using classification based data mining techniques publication-title: Int J Stat Syst – volume: 10 start-page: 8 issue: 1 year: 2015 end-page: 13 ident: CR10 article-title: Utilization of data mining techniques for diagnosis of diabetes mellitus—a case study publication-title: ARPN J Eng Appl Sci – volume: 5 start-page: 676 issue: 5 year: 2018 end-page: 679 ident: CR25 article-title: Various data mining techniques analysis to predict diabetes mellitus publication-title: Int Res J Eng Technol (IRJET). – volume: 11 start-page: 1810 issue: 3 year: 2016 end-page: 1814 ident: CR29 article-title: A survey on diabetes mellitus prediction using machine learning techniques publication-title: Int J Appl Eng Res – volume: 8 start-page: 771 issue: 8 year: 2015 end-page: 776 ident: CR3 article-title: Design and implementation of expert clinical system for diagnosing diabetes using data mining techniques publication-title: Indian J Sci Technol doi: 10.17485/ijst/2015/v8i8/69272 – volume: 13 start-page: 9277 issue: 11 year: 2013 end-page: 9282 ident: CR26 article-title: Decision support predictive model for prognosis of diabetes using SMOTE and decision tree publication-title: Int J Appl Eng Res. – volume: 3 start-page: 1374 year: 2011 end-page: 1380 ident: CR4 article-title: Dosage planning for diabetes patients using data mining methods publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2011.01.018 – volume: 9 start-page: 1 issue: 43 year: 2016 end-page: 6 ident: CR30 article-title: Analyzing diabetic data using classification algorithms in data mining publication-title: Indian J Sci Technol doi: 10.17485/ijst/2016/v9i43/93874 – volume: 95 start-page: 12 issue: 17 year: 2014 end-page: 16 ident: CR8 article-title: Study of data mining algorithms for prediction and diagnosis of diabetes mellitus publication-title: Int J Comput Appl – ident: CR12 – volume: 90 start-page: 181 issue: 2 year: 2016 end-page: 187 ident: CR13 article-title: Developing a predicted model for diabetes type 2 treatment plans by using data mining publication-title: J Theor Appl Inf Technol – volume: 6 start-page: 166 issue: 7 year: 2017 end-page: 172 ident: CR15 article-title: An analysis of risk factors for diabetes using data mining approach publication-title: Int J Comput Sci Mobile Comput – volume: 2 start-page: 56 issue: 9 year: 2015 end-page: 58 ident: CR21 article-title: Efficient prediction and classification of diabetic patients from bigdata using R publication-title: Int J Adv Eng Res Sci (IJAERS) – volume: 9 start-page: 1 issue: 4 year: 2016 end-page: 8 ident: CR20 article-title: Developing a modified logistic regression model for diabetes mellitus and identifying the important factors of type II DM publication-title: Indian J Sci Technol doi: 10.17485/ijst/2016/v9i47/106827 – volume: 2 start-page: 179 issue: 1 year: 2015 end-page: 185 ident: CR23 article-title: K-means clustering and naïve bayes classifier for categorization of diabetes patients publication-title: IJISET Int J Innov Sci Eng Technol – volume: 6 start-page: p85 year: 2013 end-page: p97 ident: CR2 article-title: Comparison of various classification techniques using different data mining tools for diabetes diagnosis publication-title: J Softw Eng Appl doi: 10.4236/jsea.2013.63013 – volume: 5 start-page: 8869 year: 2017 end-page: 8879 ident: CR1 article-title: Disease prediction by machine learning over big data from health care communities publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2694446 – volume: 5 start-page: 1 issue: 1 year: 2015 end-page: 14 ident: CR9 article-title: Diagnosis of diabetes using classification mining techniques publication-title: Int J Data Mining Knowl Manag Process (IJDKP) doi: 10.5121/ijdkp.2015.5101 – volume: 18 start-page: 1 issue: 2 year: 2018 end-page: 7 ident: CR19 article-title: A comparison between decision tree and random forest in determining the risk factors associated with type 2 diabetes publication-title: J Res Health Sci – volume: 60 start-page: 26 issue: 12 year: 2012 end-page: 31 ident: CR11 article-title: Comparative of data mining classification algorithm (CDMCA) in diabetes disease prediction publication-title: Int J Comput Appl – volume: 13 start-page: 59 issue: 1 year: 2018 end-page: 65 ident: CR24 article-title: Healthcare system: stream machine learning classifier for features prediction in diabetes therapy publication-title: Int J Appl Eng Res – volume: 7 start-page: 11982 issue: 5 year: 2017 end-page: 11986 ident: CR27 article-title: Review of cardiovascular disease in diabetic patients using data mining techniques publication-title: Int J Eng Sci Comput – volume: 11 start-page: 1400 issue: 2 year: 2016 end-page: 1403 ident: CR31 article-title: Novel outlier detection in diabetics classification using data mining novel outlier detection in diabetics classification using data mining novel outlier detection in diabetics classification using data mining publication-title: Int J Appl Eng Res – volume: 2 start-page: 224 issue: 3 year: 2012 end-page: 229 ident: CR6 article-title: Application of data mining methods and techniques for diabetes diagnosis publication-title: Int J Eng Innov Technol (IJEIT) – volume: 276 start-page: 2 year: 2018 end-page: 22 ident: CR32 article-title: Computational intelligence approaches for classification of medical data: state-of-the- art, future challenges and research directions publication-title: Neuro Comput – volume: 2018 start-page: 1 year: 2018 end-page: 8 ident: CR16 article-title: Analysis and study of diabetes follow-up data using a data- mining-based approach in new urban area of Urumqi, Xinjiang, China, 2016–2017 publication-title: Hindawi Comput Math Methods Med – volume: 7 start-page: 89 issue: 6 year: 2016 end-page: 94 ident: CR28 article-title: A new artificial neural networks approach for diagnosing diabetes disease type II publication-title: (IJACSA) Int J Adv Comput Sci Appl – volume: 5 start-page: 1 issue: 5 year: 2015 end-page: 12 ident: CR17 article-title: Comparison of data mining algorithms in the diagnosis of type II diabetes publication-title: Int J Comput Sci Appl (IJCSA) – volume: 98 start-page: 13 issue: 22 year: 2014 end-page: 17 ident: CR7 article-title: Improved J48 classification algorithm for the prediction of diabetes publication-title: Int J Comput Appl – volume: 1 start-page: 21 issue: 8 year: 2015 end-page: 25 ident: CR22 article-title: Prediction of diabetes using back propagation algorithm publication-title: Int J Emerg Technol Innov Eng – volume: 3 start-page: 561 issue: 3 year: 2018 end-page: 564 ident: CR18 article-title: A survey on prediction of diabetes using data mining publication-title: Int J Sci Res Comput Sci Eng Inf Technol – volume: 2018 start-page: 1 year: 2018 ident: 96_CR16 publication-title: Hindawi Comput Math Methods Med – volume: 18 start-page: 1 issue: 2 year: 2018 ident: 96_CR19 publication-title: J Res Health Sci – volume: 9 start-page: 1 issue: 4 year: 2016 ident: 96_CR20 publication-title: Indian J Sci Technol doi: 10.17485/ijst/2016/v9i47/106827 – volume: 5 start-page: 676 issue: 5 year: 2018 ident: 96_CR25 publication-title: Int Res J Eng Technol (IRJET). – volume: 465 start-page: 202 year: 2017 ident: 96_CR5 publication-title: Int J Eng Sci – volume: 2 start-page: 56 issue: 9 year: 2015 ident: 96_CR21 publication-title: Int J Adv Eng Res Sci (IJAERS) – volume: 95 start-page: 12 issue: 17 year: 2014 ident: 96_CR8 publication-title: Int J Comput Appl – volume: 8 start-page: 771 issue: 8 year: 2015 ident: 96_CR3 publication-title: Indian J Sci Technol doi: 10.17485/ijst/2015/v8i8/69272 – volume: 2 start-page: 179 issue: 1 year: 2015 ident: 96_CR23 publication-title: IJISET Int J Innov Sci Eng Technol – volume: 13 start-page: 9277 issue: 11 year: 2013 ident: 96_CR26 publication-title: Int J Appl Eng Res. – volume: 6 start-page: 166 issue: 7 year: 2017 ident: 96_CR15 publication-title: Int J Comput Sci Mobile Comput – volume: 9 start-page: 1 issue: 43 year: 2016 ident: 96_CR30 publication-title: Indian J Sci Technol doi: 10.17485/ijst/2016/v9i43/93874 – volume: 98 start-page: 13 issue: 22 year: 2014 ident: 96_CR7 publication-title: Int J Comput Appl – volume: 7 start-page: 11982 issue: 5 year: 2017 ident: 96_CR27 publication-title: Int J Eng Sci Comput – volume: 5 start-page: 1 issue: 1 year: 2015 ident: 96_CR9 publication-title: Int J Data Mining Knowl Manag Process (IJDKP) doi: 10.5121/ijdkp.2015.5101 – volume: 3 start-page: 1374 year: 2011 ident: 96_CR4 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2011.01.018 – volume: 12 start-page: p183 issue: 2 year: 2017 ident: 96_CR14 publication-title: Int J Stat Syst – volume: 276 start-page: 2 year: 2018 ident: 96_CR32 publication-title: Neuro Comput – volume: 5 start-page: 8869 year: 2017 ident: 96_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2694446 – volume: 10 start-page: 8 issue: 1 year: 2015 ident: 96_CR10 publication-title: ARPN J Eng Appl Sci – volume: 90 start-page: 181 issue: 2 year: 2016 ident: 96_CR13 publication-title: J Theor Appl Inf Technol – volume: 13 start-page: 59 issue: 1 year: 2018 ident: 96_CR24 publication-title: Int J Appl Eng Res – volume: 3 start-page: 561 issue: 3 year: 2018 ident: 96_CR18 publication-title: Int J Sci Res Comput Sci Eng Inf Technol – volume: 60 start-page: 26 issue: 12 year: 2012 ident: 96_CR11 publication-title: Int J Comput Appl – volume: 7 start-page: 89 issue: 6 year: 2016 ident: 96_CR28 publication-title: (IJACSA) Int J Adv Comput Sci Appl – ident: 96_CR12 – volume: 6 start-page: p85 year: 2013 ident: 96_CR2 publication-title: J Softw Eng Appl doi: 10.4236/jsea.2013.63013 – volume: 1 start-page: 21 issue: 8 year: 2015 ident: 96_CR22 publication-title: Int J Emerg Technol Innov Eng – volume: 11 start-page: 1400 issue: 2 year: 2016 ident: 96_CR31 publication-title: Int J Appl Eng Res – volume: 2 start-page: 224 issue: 3 year: 2012 ident: 96_CR6 publication-title: Int J Eng Innov Technol (IJEIT) – volume: 5 start-page: 1 issue: 5 year: 2015 ident: 96_CR17 publication-title: Int J Comput Sci Appl (IJCSA) – volume: 11 start-page: 1810 issue: 3 year: 2016 ident: 96_CR29 publication-title: Int J Appl Eng Res |
| SSID | ssj0002504465 |
| Score | 2.2603276 |
| Snippet | Data mining algorithms are widely used to extract latent trends or patterns from databases. They are used to predict unknown class labels in order to help in... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 101 |
| SubjectTerms | Accuracy Advances in Computational Intelligence Algorithms Case studies Classification Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data mining Data Structures and Information Theory Datasets Decision trees Diabetes Error analysis Evaluation Experiments Information Systems and Communication Service Kidney diseases Machine learning Neural networks Original Research Paradigms and Applications Pattern Recognition and Graphics Performance evaluation Root-mean-square errors Software Engineering/Programming and Operating Systems Vision |
| Title | A Framework for Diagnosing Kidney Disease in Diabetes Patients Using Classification Algorithms |
| URI | https://link.springer.com/article/10.1007/s42979-020-0096-7 https://www.proquest.com/docview/2932579208 |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2662-995X databaseCode: AFBBN dateStart: 20190625 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2661-8907 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0002504465 issn: 2662-995X databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu3BBIECMx5QDJ1BEaZq2OSDUAQWBqCbEpJ2okiYFJOgGGwf-PU7WbgIJrn34YDvxl9j-DHDAlCyVZoxKjBU0UFJQwXVIleaRH0oeGmEbnO-y8HoQ3Az5cAmyphfGllU2e6LbqPWosHfkxxiW0LuE78Vn43dqp0bZ7GozQkPWoxX0qaMYW4a2b5mxWtDuXWb9-_mtiyXsCtx8SQxMPhWCD5tUp-2nw805EtSeqCy0p9HPYLVAoL-Spi4WpWuwWoNIksysvg5LptqAx4SkTaUVQShKLmZVdCiB3L7oynzhE5eNIS8VqSthJqQ_I1adEFc8QNyQTFs-5CxGktcnVML0-W2yCYP08uH8mtbTE2iBmC2iBTNaMcal8kthjF8oqXD9at8rLWm7si24COZKKUNZxAqRQhmXIuBByTyjw4htQasaVWYbCJdxEEgdoQEMnpBORICCIlOifXmsmNcBr1FTXtTU4nbCxWs-J0V2ms1Rs7nVbB514HD-y3jGq_Hfx3uN7vN6iU3yhUN04Kixx-L1n8J2_he2Cyu-cwBbZrYHrenHp9lH3DFVXViO06sutJO018u6tWt9A95U1ao |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLSXCgSoW14-wAVkNfiRxAeElsdqYWGFEEh7arBjpyDRQJtFiD_Hb2PsTXYFEty45jGH8WfPjOebGYB1bnRhLOdUo62gwmhFlbQxNVYmLNYydsoXOJ_24-6lOB7IwRQ8N7UwnlbZnInhoLZ3ub8j_4VmCdGlWJTu3v-jfmqUz642IzR0PVrB7oQWY3VhR889PWIIV-0cHeB6bzDWObzY79J6ygDN0bdJaM6dNZxLbVihnGO50QZxbllU-ObmxpeqotNTaB3rPDVoUYu0UEKKgkfOxglHuV9gRnChMPib2Tvsn52Pb3l8gzAR5lmiIWRUKTloUqu-fg-NQaKoj-B8KEGT18Zx4vG-SdIG29eZhe-100raI5TNwZQr5-F3m3QaZhdB15ccjFh7KIH0bmzpnvBJyP6Qm5LUzJuKnI0auVYkkBVIGMrp6UoBIaR9-weVPrz-Wy3A5afocRGmy7vS_QAidSqEtgkuuMOIbFsJFJS4AvEkU8OjFkSNmrK8bmXuJ2rcZuMmzEGzGWo285rNkhZsjn-5H_Xx-Ojj5Ub3Wb2lq2wCwBZsNesxef2usJ8fC1uDr92L05Ps5KjfW4JvLIDBU9yWYXr4_8GtoM8zNKs1sAhcfTaWXwD6sBCp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Framework+for+Diagnosing+Kidney+Disease+in+Diabetes+Patients+Using+Classification+Algorithms&rft.jtitle=SN+computer+science&rft.au=Prasad%2C+Kashi+Sai&rft.au=Reddy%2C+N.+Chandra+Sekhar&rft.au=Puneeth%2C+B.+N.&rft.date=2020-03-01&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=1&rft.issue=2&rft_id=info:doi/10.1007%2Fs42979-020-0096-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42979_020_0096_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-995X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-995X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-995X&client=summon |