A Framework for Diagnosing Kidney Disease in Diabetes Patients Using Classification Algorithms

Data mining algorithms are widely used to extract latent trends or patterns from databases. They are used to predict unknown class labels in order to help in accurate decision making process. The machine learning techniques are very useful in applications of healthcare domain. In this domain, the te...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 1; no. 2; p. 101
Main Authors Prasad, Kashi Sai, Reddy, N. Chandra Sekhar, Puneeth, B. N.
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.03.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2662-995X
2661-8907
DOI10.1007/s42979-020-0096-7

Cover

Abstract Data mining algorithms are widely used to extract latent trends or patterns from databases. They are used to predict unknown class labels in order to help in accurate decision making process. The machine learning techniques are very useful in applications of healthcare domain. In this domain, the techniques are employed to diagnose diseases and even predicting the probabilities related to health and other aspects. Since diabetes is one of the diseases that prevail in Indians now and it causes other diseases as well, in this paper we studied the kidney disease diagnosis in diabetes patients. Kidney disease dataset is used to explore four different data mining algorithms. They are known as Naive Bayes, decision table, J48 and random forest. The dataset is used to have both training and testing sets and produce prediction details. These algorithms are evaluated by using measures like accuracy, mean absolute error (MAE) and root-mean-squared error (RMSE). The results revealed that all the machine learning algorithms are able to predict the disease. However, they differ in accuracy levels. With tenfold cross-validation, it is understood that random forest showed the highest accuracy, while Naive Bayes showed least MAE and RMSE. We built prototype application to demonstrate proof of the concept. Our experimental results revealed that the proposed framework to evaluate machine learning algorithms is useful.
AbstractList Data mining algorithms are widely used to extract latent trends or patterns from databases. They are used to predict unknown class labels in order to help in accurate decision making process. The machine learning techniques are very useful in applications of healthcare domain. In this domain, the techniques are employed to diagnose diseases and even predicting the probabilities related to health and other aspects. Since diabetes is one of the diseases that prevail in Indians now and it causes other diseases as well, in this paper we studied the kidney disease diagnosis in diabetes patients. Kidney disease dataset is used to explore four different data mining algorithms. They are known as Naive Bayes, decision table, J48 and random forest. The dataset is used to have both training and testing sets and produce prediction details. These algorithms are evaluated by using measures like accuracy, mean absolute error (MAE) and root-mean-squared error (RMSE). The results revealed that all the machine learning algorithms are able to predict the disease. However, they differ in accuracy levels. With tenfold cross-validation, it is understood that random forest showed the highest accuracy, while Naive Bayes showed least MAE and RMSE. We built prototype application to demonstrate proof of the concept. Our experimental results revealed that the proposed framework to evaluate machine learning algorithms is useful.
ArticleNumber 101
Author Puneeth, B. N.
Reddy, N. Chandra Sekhar
Prasad, Kashi Sai
Author_xml – sequence: 1
  givenname: Kashi Sai
  surname: Prasad
  fullname: Prasad, Kashi Sai
  email: saiprasad.kashi@gmail.com
  organization: Department of Computer Science and Engineering, MLR Institute of Technology
– sequence: 2
  givenname: N. Chandra Sekhar
  surname: Reddy
  fullname: Reddy, N. Chandra Sekhar
  organization: Department of Computer Science and Engineering, MLR Institute of Technology
– sequence: 3
  givenname: B. N.
  surname: Puneeth
  fullname: Puneeth, B. N.
  organization: Department of Computer Science and Engineering, MLR Institute of Technology
BookMark eNp9UNFKwzAUDTLBOfcBvhV8rt4mbZM8julUHOiDA58MaZvUzC6ZSYfs721XQRD06V7OPefce88pGllnFULnCVwmAPQqpJhTHgOGGIDnMT1CY5znScw40NGhxzHn2csJmoawBgCcQZrm2Ri9zqKFlxv16fx7pJ2Pro2srQvG1tGDqazad0hQMqjI2H5YqFaF6Em2Rtk2RKsDc97IEIw2ZQc7G82a2nnTvm3CGTrWsglq-l0naLW4eZ7fxcvH2_v5bBmXmCQ0LomqCkIyWWDNlcJlIYuEkQqDThiGbpSyPMu1lLksWUEZ1kzzNEs1AVXllEzQxeC79e5jp0Ir1m7nbbdSYE5wRjkG1rGSgVV6F4JXWmy92Ui_FwmIPkkxJCm6JEWfpOid6S9NadrDm62XpvlXiQdl6LbYWvmfm_4WfQG4h4ny
CitedBy_id crossref_primary_10_1016_j_matpr_2022_04_907
crossref_primary_10_1007_s42979_023_02545_y
crossref_primary_10_1016_j_matpr_2022_04_809
crossref_primary_10_1016_j_mlwa_2022_100418
crossref_primary_10_53759_7669_jmc202303027
Cites_doi 10.17485/ijst/2015/v8i8/69272
10.1016/j.procs.2011.01.018
10.17485/ijst/2016/v9i43/93874
10.17485/ijst/2016/v9i47/106827
10.4236/jsea.2013.63013
10.1109/ACCESS.2017.2694446
10.5121/ijdkp.2015.5101
ContentType Journal Article
Copyright Springer Nature Singapore Pte Ltd 2020. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Springer Nature Singapore Pte Ltd 2020. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s42979-020-0096-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_020_0096_7
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
BSONS
CCPQU
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2317-c3edb335ab2f9ee2cbab183d20f1820b3348656faa6ac8b782f8f9454f30ed673
IEDL.DBID BENPR
ISSN 2662-995X
IngestDate Sat Jul 26 02:22:38 EDT 2025
Wed Oct 01 03:59:05 EDT 2025
Thu Apr 24 22:56:38 EDT 2025
Fri Feb 21 02:41:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Naive Bayes
Classification
Random forest
Data mining
Kidney disease diagnosis
Decision table
J48
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2317-c3edb335ab2f9ee2cbab183d20f1820b3348656faa6ac8b782f8f9454f30ed673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2932579208
PQPubID 6623307
ParticipantIDs proquest_journals_2932579208
crossref_primary_10_1007_s42979_020_0096_7
crossref_citationtrail_10_1007_s42979_020_0096_7
springer_journals_10_1007_s42979_020_0096_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200300
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 3
  year: 2020
  text: 20200300
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2020
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Devi, alias Balamurugan, Kris (CR20) 2016; 9
Thiyagarajan, AnandhaKumar, Bharathi (CR29) 2016; 11
Saravananathan, Velmurugan (CR30) 2016; 9
Kalantari, Kamsin, Shamshirband, Gani, Alinejad-Rokny, Chronopoulos (CR32) 2018; 276
Rajesh, Sangeetha (CR6) 2012; 2
Karthikeyani, PhD, Begum, Shahina Begam (CR11) 2012; 60
Li, Li, Yao (CR16) 2018; 2018
Selvakumar, SenthamaraiKannan, GothaiNachiyar (CR14) 2017; 12
Garga, Mahajanb, Kamal (CR5) 2017; 465
CR12
Vembandasamy, Karthikeyan (CR31) 2016; 11
Durairaj, Kalaiselvi (CR22) 2015; 1
Sengamuthu, Abirami, Karthik (CR25) 2018; 5
Thirumal, Nagarajan (CR10) 2015; 10
Vijayalakshmi, Jenifer (CR15) 2017; 6
Yldma, Karahocaa, Uçara (CR4) 2011; 3
Sharmila, VethaManickam (CR21) 2015; 2
Pandeeswari, Rajeswari (CR23) 2015; 2
Sa’di, Maleki, Hashemi, Panbechi, Chalabi (CR17) 2015; 5
Ahmed (CR13) 2016; 90
Nagarajan, Chandrasekaran (CR3) 2015; 8
Shinde, Rajmane, Chindage, Gundale, Mane (CR18) 2018; 3
Esmaily, Tayefi, Doosti, Nezami, Amirabadizadeh (CR19) 2018; 18
Ramanakumar, KrishnamohanRao (CR24) 2018; 13
Vijayan, Ravikumar (CR8) 2014; 95
Soltani, Jafarian (CR28) 2016; 7
Rahman, Afroz (CR2) 2013; 6
Mirza, Mittal, Zaman (CR26) 2013; 13
Iyer, Jeyalatha, Sumbaly (CR9) 2015; 5
Chen, Hao, Hwang, Wang, Wang (CR1) 2017; 5
Kaur, Chhabra (CR7) 2014; 98
Verma, Ghosh (CR27) 2017; 7
CV Verma (96_CR27) 2017; 7
K Vembandasamy (96_CR31) 2016; 11
SB Garga (96_CR5) 2017; 465
Z Soltani (96_CR28) 2016; 7
S Nagarajan (96_CR3) 2015; 8
H Esmaily (96_CR19) 2018; 18
C Thiyagarajan (96_CR29) 2016; 11
PC Thirumal (96_CR10) 2015; 10
K Saravananathan (96_CR30) 2016; 9
V Vijayan (96_CR8) 2014; 95
D Ramanakumar (96_CR24) 2018; 13
R Sengamuthu (96_CR25) 2018; 5
M Durairaj (96_CR22) 2015; 1
M Chen (96_CR1) 2017; 5
S Selvakumar (96_CR14) 2017; 12
RM Rahman (96_CR2) 2013; 6
G Kaur (96_CR7) 2014; 98
K Rajesh (96_CR6) 2012; 2
TM Ahmed (96_CR13) 2016; 90
SS Shinde (96_CR18) 2018; 3
V Karthikeyani (96_CR11) 2012; 60
Y Li (96_CR16) 2018; 2018
MN Devi (96_CR20) 2016; 9
EG Yldma (96_CR4) 2011; 3
A Iyer (96_CR9) 2015; 5
96_CR12
N Vijayalakshmi (96_CR15) 2017; 6
K Sharmila (96_CR21) 2015; 2
A Kalantari (96_CR32) 2018; 276
S Sa’di (96_CR17) 2015; 5
S Mirza (96_CR26) 2013; 13
L Pandeeswari (96_CR23) 2015; 2
References_xml – volume: 465
  start-page: 202
  year: 2017
  end-page: 218
  ident: CR5
  article-title: An approach for diabetes detection using data mining classification techniques
  publication-title: Int J Eng Sci
– volume: 12
  start-page: p183
  issue: 2
  year: 2017
  end-page: p188
  ident: CR14
  article-title: Prediction of diabetes diagnosis using classification based data mining techniques
  publication-title: Int J Stat Syst
– volume: 10
  start-page: 8
  issue: 1
  year: 2015
  end-page: 13
  ident: CR10
  article-title: Utilization of data mining techniques for diagnosis of diabetes mellitus—a case study
  publication-title: ARPN J Eng Appl Sci
– volume: 5
  start-page: 676
  issue: 5
  year: 2018
  end-page: 679
  ident: CR25
  article-title: Various data mining techniques analysis to predict diabetes mellitus
  publication-title: Int Res J Eng Technol (IRJET).
– volume: 11
  start-page: 1810
  issue: 3
  year: 2016
  end-page: 1814
  ident: CR29
  article-title: A survey on diabetes mellitus prediction using machine learning techniques
  publication-title: Int J Appl Eng Res
– volume: 8
  start-page: 771
  issue: 8
  year: 2015
  end-page: 776
  ident: CR3
  article-title: Design and implementation of expert clinical system for diagnosing diabetes using data mining techniques
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2015/v8i8/69272
– volume: 13
  start-page: 9277
  issue: 11
  year: 2013
  end-page: 9282
  ident: CR26
  article-title: Decision support predictive model for prognosis of diabetes using SMOTE and decision tree
  publication-title: Int J Appl Eng Res.
– volume: 3
  start-page: 1374
  year: 2011
  end-page: 1380
  ident: CR4
  article-title: Dosage planning for diabetes patients using data mining methods
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2011.01.018
– volume: 9
  start-page: 1
  issue: 43
  year: 2016
  end-page: 6
  ident: CR30
  article-title: Analyzing diabetic data using classification algorithms in data mining
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2016/v9i43/93874
– volume: 95
  start-page: 12
  issue: 17
  year: 2014
  end-page: 16
  ident: CR8
  article-title: Study of data mining algorithms for prediction and diagnosis of diabetes mellitus
  publication-title: Int J Comput Appl
– ident: CR12
– volume: 90
  start-page: 181
  issue: 2
  year: 2016
  end-page: 187
  ident: CR13
  article-title: Developing a predicted model for diabetes type 2 treatment plans by using data mining
  publication-title: J Theor Appl Inf Technol
– volume: 6
  start-page: 166
  issue: 7
  year: 2017
  end-page: 172
  ident: CR15
  article-title: An analysis of risk factors for diabetes using data mining approach
  publication-title: Int J Comput Sci Mobile Comput
– volume: 2
  start-page: 56
  issue: 9
  year: 2015
  end-page: 58
  ident: CR21
  article-title: Efficient prediction and classification of diabetic patients from bigdata using R
  publication-title: Int J Adv Eng Res Sci (IJAERS)
– volume: 9
  start-page: 1
  issue: 4
  year: 2016
  end-page: 8
  ident: CR20
  article-title: Developing a modified logistic regression model for diabetes mellitus and identifying the important factors of type II DM
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2016/v9i47/106827
– volume: 2
  start-page: 179
  issue: 1
  year: 2015
  end-page: 185
  ident: CR23
  article-title: K-means clustering and naïve bayes classifier for categorization of diabetes patients
  publication-title: IJISET Int J Innov Sci Eng Technol
– volume: 6
  start-page: p85
  year: 2013
  end-page: p97
  ident: CR2
  article-title: Comparison of various classification techniques using different data mining tools for diabetes diagnosis
  publication-title: J Softw Eng Appl
  doi: 10.4236/jsea.2013.63013
– volume: 5
  start-page: 8869
  year: 2017
  end-page: 8879
  ident: CR1
  article-title: Disease prediction by machine learning over big data from health care communities
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2694446
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  end-page: 14
  ident: CR9
  article-title: Diagnosis of diabetes using classification mining techniques
  publication-title: Int J Data Mining Knowl Manag Process (IJDKP)
  doi: 10.5121/ijdkp.2015.5101
– volume: 18
  start-page: 1
  issue: 2
  year: 2018
  end-page: 7
  ident: CR19
  article-title: A comparison between decision tree and random forest in determining the risk factors associated with type 2 diabetes
  publication-title: J Res Health Sci
– volume: 60
  start-page: 26
  issue: 12
  year: 2012
  end-page: 31
  ident: CR11
  article-title: Comparative of data mining classification algorithm (CDMCA) in diabetes disease prediction
  publication-title: Int J Comput Appl
– volume: 13
  start-page: 59
  issue: 1
  year: 2018
  end-page: 65
  ident: CR24
  article-title: Healthcare system: stream machine learning classifier for features prediction in diabetes therapy
  publication-title: Int J Appl Eng Res
– volume: 7
  start-page: 11982
  issue: 5
  year: 2017
  end-page: 11986
  ident: CR27
  article-title: Review of cardiovascular disease in diabetic patients using data mining techniques
  publication-title: Int J Eng Sci Comput
– volume: 11
  start-page: 1400
  issue: 2
  year: 2016
  end-page: 1403
  ident: CR31
  article-title: Novel outlier detection in diabetics classification using data mining novel outlier detection in diabetics classification using data mining novel outlier detection in diabetics classification using data mining
  publication-title: Int J Appl Eng Res
– volume: 2
  start-page: 224
  issue: 3
  year: 2012
  end-page: 229
  ident: CR6
  article-title: Application of data mining methods and techniques for diabetes diagnosis
  publication-title: Int J Eng Innov Technol (IJEIT)
– volume: 276
  start-page: 2
  year: 2018
  end-page: 22
  ident: CR32
  article-title: Computational intelligence approaches for classification of medical data: state-of-the- art, future challenges and research directions
  publication-title: Neuro Comput
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 8
  ident: CR16
  article-title: Analysis and study of diabetes follow-up data using a data- mining-based approach in new urban area of Urumqi, Xinjiang, China, 2016–2017
  publication-title: Hindawi Comput Math Methods Med
– volume: 7
  start-page: 89
  issue: 6
  year: 2016
  end-page: 94
  ident: CR28
  article-title: A new artificial neural networks approach for diagnosing diabetes disease type II
  publication-title: (IJACSA) Int J Adv Comput Sci Appl
– volume: 5
  start-page: 1
  issue: 5
  year: 2015
  end-page: 12
  ident: CR17
  article-title: Comparison of data mining algorithms in the diagnosis of type II diabetes
  publication-title: Int J Comput Sci Appl (IJCSA)
– volume: 98
  start-page: 13
  issue: 22
  year: 2014
  end-page: 17
  ident: CR7
  article-title: Improved J48 classification algorithm for the prediction of diabetes
  publication-title: Int J Comput Appl
– volume: 1
  start-page: 21
  issue: 8
  year: 2015
  end-page: 25
  ident: CR22
  article-title: Prediction of diabetes using back propagation algorithm
  publication-title: Int J Emerg Technol Innov Eng
– volume: 3
  start-page: 561
  issue: 3
  year: 2018
  end-page: 564
  ident: CR18
  article-title: A survey on prediction of diabetes using data mining
  publication-title: Int J Sci Res Comput Sci Eng Inf Technol
– volume: 2018
  start-page: 1
  year: 2018
  ident: 96_CR16
  publication-title: Hindawi Comput Math Methods Med
– volume: 18
  start-page: 1
  issue: 2
  year: 2018
  ident: 96_CR19
  publication-title: J Res Health Sci
– volume: 9
  start-page: 1
  issue: 4
  year: 2016
  ident: 96_CR20
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2016/v9i47/106827
– volume: 5
  start-page: 676
  issue: 5
  year: 2018
  ident: 96_CR25
  publication-title: Int Res J Eng Technol (IRJET).
– volume: 465
  start-page: 202
  year: 2017
  ident: 96_CR5
  publication-title: Int J Eng Sci
– volume: 2
  start-page: 56
  issue: 9
  year: 2015
  ident: 96_CR21
  publication-title: Int J Adv Eng Res Sci (IJAERS)
– volume: 95
  start-page: 12
  issue: 17
  year: 2014
  ident: 96_CR8
  publication-title: Int J Comput Appl
– volume: 8
  start-page: 771
  issue: 8
  year: 2015
  ident: 96_CR3
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2015/v8i8/69272
– volume: 2
  start-page: 179
  issue: 1
  year: 2015
  ident: 96_CR23
  publication-title: IJISET Int J Innov Sci Eng Technol
– volume: 13
  start-page: 9277
  issue: 11
  year: 2013
  ident: 96_CR26
  publication-title: Int J Appl Eng Res.
– volume: 6
  start-page: 166
  issue: 7
  year: 2017
  ident: 96_CR15
  publication-title: Int J Comput Sci Mobile Comput
– volume: 9
  start-page: 1
  issue: 43
  year: 2016
  ident: 96_CR30
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2016/v9i43/93874
– volume: 98
  start-page: 13
  issue: 22
  year: 2014
  ident: 96_CR7
  publication-title: Int J Comput Appl
– volume: 7
  start-page: 11982
  issue: 5
  year: 2017
  ident: 96_CR27
  publication-title: Int J Eng Sci Comput
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  ident: 96_CR9
  publication-title: Int J Data Mining Knowl Manag Process (IJDKP)
  doi: 10.5121/ijdkp.2015.5101
– volume: 3
  start-page: 1374
  year: 2011
  ident: 96_CR4
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2011.01.018
– volume: 12
  start-page: p183
  issue: 2
  year: 2017
  ident: 96_CR14
  publication-title: Int J Stat Syst
– volume: 276
  start-page: 2
  year: 2018
  ident: 96_CR32
  publication-title: Neuro Comput
– volume: 5
  start-page: 8869
  year: 2017
  ident: 96_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2694446
– volume: 10
  start-page: 8
  issue: 1
  year: 2015
  ident: 96_CR10
  publication-title: ARPN J Eng Appl Sci
– volume: 90
  start-page: 181
  issue: 2
  year: 2016
  ident: 96_CR13
  publication-title: J Theor Appl Inf Technol
– volume: 13
  start-page: 59
  issue: 1
  year: 2018
  ident: 96_CR24
  publication-title: Int J Appl Eng Res
– volume: 3
  start-page: 561
  issue: 3
  year: 2018
  ident: 96_CR18
  publication-title: Int J Sci Res Comput Sci Eng Inf Technol
– volume: 60
  start-page: 26
  issue: 12
  year: 2012
  ident: 96_CR11
  publication-title: Int J Comput Appl
– volume: 7
  start-page: 89
  issue: 6
  year: 2016
  ident: 96_CR28
  publication-title: (IJACSA) Int J Adv Comput Sci Appl
– ident: 96_CR12
– volume: 6
  start-page: p85
  year: 2013
  ident: 96_CR2
  publication-title: J Softw Eng Appl
  doi: 10.4236/jsea.2013.63013
– volume: 1
  start-page: 21
  issue: 8
  year: 2015
  ident: 96_CR22
  publication-title: Int J Emerg Technol Innov Eng
– volume: 11
  start-page: 1400
  issue: 2
  year: 2016
  ident: 96_CR31
  publication-title: Int J Appl Eng Res
– volume: 2
  start-page: 224
  issue: 3
  year: 2012
  ident: 96_CR6
  publication-title: Int J Eng Innov Technol (IJEIT)
– volume: 5
  start-page: 1
  issue: 5
  year: 2015
  ident: 96_CR17
  publication-title: Int J Comput Sci Appl (IJCSA)
– volume: 11
  start-page: 1810
  issue: 3
  year: 2016
  ident: 96_CR29
  publication-title: Int J Appl Eng Res
SSID ssj0002504465
Score 2.2603276
Snippet Data mining algorithms are widely used to extract latent trends or patterns from databases. They are used to predict unknown class labels in order to help in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101
SubjectTerms Accuracy
Advances in Computational Intelligence
Algorithms
Case studies
Classification
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data mining
Data Structures and Information Theory
Datasets
Decision trees
Diabetes
Error analysis
Evaluation
Experiments
Information Systems and Communication Service
Kidney diseases
Machine learning
Neural networks
Original Research
Paradigms and Applications
Pattern Recognition and Graphics
Performance evaluation
Root-mean-square errors
Software Engineering/Programming and Operating Systems
Vision
Title A Framework for Diagnosing Kidney Disease in Diabetes Patients Using Classification Algorithms
URI https://link.springer.com/article/10.1007/s42979-020-0096-7
https://www.proquest.com/docview/2932579208
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2662-995X
  databaseCode: AFBBN
  dateStart: 20190625
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2661-8907
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0002504465
  issn: 2662-995X
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgu3BBIECMx5QDJ1BEaZq2OSDUAQWBqCbEpJ2okiYFJOgGGwf-PU7WbgIJrn34YDvxl9j-DHDAlCyVZoxKjBU0UFJQwXVIleaRH0oeGmEbnO-y8HoQ3Az5cAmyphfGllU2e6LbqPWosHfkxxiW0LuE78Vn43dqp0bZ7GozQkPWoxX0qaMYW4a2b5mxWtDuXWb9-_mtiyXsCtx8SQxMPhWCD5tUp-2nw805EtSeqCy0p9HPYLVAoL-Spi4WpWuwWoNIksysvg5LptqAx4SkTaUVQShKLmZVdCiB3L7oynzhE5eNIS8VqSthJqQ_I1adEFc8QNyQTFs-5CxGktcnVML0-W2yCYP08uH8mtbTE2iBmC2iBTNaMcal8kthjF8oqXD9at8rLWm7si24COZKKUNZxAqRQhmXIuBByTyjw4htQasaVWYbCJdxEEgdoQEMnpBORICCIlOifXmsmNcBr1FTXtTU4nbCxWs-J0V2ms1Rs7nVbB514HD-y3jGq_Hfx3uN7vN6iU3yhUN04Kixx-L1n8J2_he2Cyu-cwBbZrYHrenHp9lH3DFVXViO06sutJO018u6tWt9A95U1ao
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLSXCgSoW14-wAVkNfiRxAeElsdqYWGFEEh7arBjpyDRQJtFiD_Hb2PsTXYFEty45jGH8WfPjOebGYB1bnRhLOdUo62gwmhFlbQxNVYmLNYydsoXOJ_24-6lOB7IwRQ8N7UwnlbZnInhoLZ3ub8j_4VmCdGlWJTu3v-jfmqUz642IzR0PVrB7oQWY3VhR889PWIIV-0cHeB6bzDWObzY79J6ygDN0bdJaM6dNZxLbVihnGO50QZxbllU-ObmxpeqotNTaB3rPDVoUYu0UEKKgkfOxglHuV9gRnChMPib2Tvsn52Pb3l8gzAR5lmiIWRUKTloUqu-fg-NQaKoj-B8KEGT18Zx4vG-SdIG29eZhe-100raI5TNwZQr5-F3m3QaZhdB15ccjFh7KIH0bmzpnvBJyP6Qm5LUzJuKnI0auVYkkBVIGMrp6UoBIaR9-weVPrz-Wy3A5afocRGmy7vS_QAidSqEtgkuuMOIbFsJFJS4AvEkU8OjFkSNmrK8bmXuJ2rcZuMmzEGzGWo285rNkhZsjn-5H_Xx-Ojj5Ub3Wb2lq2wCwBZsNesxef2usJ8fC1uDr92L05Ps5KjfW4JvLIDBU9yWYXr4_8GtoM8zNKs1sAhcfTaWXwD6sBCp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Framework+for+Diagnosing+Kidney+Disease+in+Diabetes+Patients+Using+Classification+Algorithms&rft.jtitle=SN+computer+science&rft.au=Prasad%2C+Kashi+Sai&rft.au=Reddy%2C+N.+Chandra+Sekhar&rft.au=Puneeth%2C+B.+N.&rft.date=2020-03-01&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=1&rft.issue=2&rft_id=info:doi/10.1007%2Fs42979-020-0096-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42979_020_0096_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-995X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-995X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-995X&client=summon