Deep Learning Network and Renyi-entropy Based Fusion Model for Emotion Recognition Using Multimodal Signals
Emotion recognition is a significant research topic for interactive intelligence system with the wide range of applications in different tasks, like education, social media analysis, and customer service. It is the process of perceiving user's emotional response automatically to the multimedia...
Saved in:
| Published in | International journal of modern education and computer science Vol. 14; no. 4; pp. 67 - 84 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Hong Kong
Modern Education and Computer Science Press
01.08.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2075-0161 2075-017X 2075-017X |
| DOI | 10.5815/ijmecs.2022.04.06 |
Cover
| Abstract | Emotion recognition is a significant research topic for interactive intelligence system with the wide range of applications in different tasks, like education, social media analysis, and customer service. It is the process of perceiving user's emotional response automatically to the multimedia information by means of implicit explanation. With initiation of speech recognition and the computer vision, research on emotion recognition with speech and facial expression modality has gained more popularity in recent decades. Due to non-linear polarity of signals, emotion recognition results a challenging task. To achieve facial emotion recognition using multimodal signals, an effective Bat Rider Optimization Algorithm (BROA)-based deep learning method is proposed in this research. However, the proposed optimization algorithm named BROA is derived by integrating Bat Algorithm (BA) with Rider Optimization Algorithm (ROA), respectively. Here, the multimodal signals include face image, EEG signals, and physiological signals such that the features extracted from these modalities are employed for the process of emotion recognition. The proposed method achieves better performance against exiting methods by acquiring maximum accuracy of 0.8794, and minimum FAR and minimum FRR of 0.1757 and 0.1806. |
|---|---|
| AbstractList | Emotion recognition is a significant research topic for interactive intelligence system with the wide range of applications in different tasks, like education, social media analysis, and customer service. It is the process of perceiving user's emotional response automatically to the multimedia information by means of implicit explanation. With initiation of speech recognition and the computer vision, research on emotion recognition with speech and facial expression modality has gained more popularity in recent decades. Due to non-linear polarity of signals, emotion recognition results a challenging task. To achieve facial emotion recognition using multimodal signals, an effective Bat Rider Optimization Algorithm (BROA)-based deep learning method is proposed in this research. However, the proposed optimization algorithm named BROA is derived by integrating Bat Algorithm (BA) with Rider Optimization Algorithm (ROA), respectively. Here, the multimodal signals include face image, EEG signals, and physiological signals such that the features extracted from these modalities are employed for the process of emotion recognition. The proposed method achieves better performance against exiting methods by acquiring maximum accuracy of 0.8794, and minimum FAR and minimum FRR of 0.1757 and 0.1806. |
| Author | M. Vala, Jaykumar K. Jaliya, Udesang |
| Author_xml | – sequence: 1 givenname: Jaykumar surname: Vala middlename: M fullname: Vala, Jaykumar M – sequence: 2 givenname: Udesang surname: Jaliya middlename: K fullname: Jaliya, Udesang K |
| BookMark | eNqFUMFOwzAMjdCQGGMfwC0S55YkbdP2CIMB0gbSYBK3KE3TKVublKTV1L-npYgDB_DFlu337PfOwUQbLQG4xMiPEhxdq30lhfMJIsRHoY_oCZgSFEcewvH75Kem-AzMndujPmgaEpROweFOyhquJLda6R18ls3R2APkOocbqTvlSd1YU3fwljuZw2XrlNFwbXJZwsJYeF-ZZuhspDA7rb7qrRuo1m3ZqMrkvISvaqd56S7AadEnOf_OM7Bd3r8tHr3Vy8PT4mblCRJg6iVhliWcFjkJhMxoQUUep2EeBSRAmPCYo5BGJKGklxAHPBT9BCVJEmQ5wZLiYAbIyNvqmndHXpastqritmMYscExNjrGBscYChmiPehqBNXWfLTSNWxvWju8zUicJlF_Ew3U8bglrHHOyoIJ1fBBdWO5Kv_kx7-Q___0CVjwkRc |
| CitedBy_id | crossref_primary_10_1007_s11277_024_11656_5 |
| ContentType | Journal Article |
| Copyright | 2022. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://www.mecs-press.org/ijcnis/terms.html |
| Copyright_xml | – notice: 2022. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://www.mecs-press.org/ijcnis/terms.html |
| CorporateAuthor | Computer/IT Engineering, Gujarat Technological University, Chandkheda, Gandhinagar, Gujarat 382424, India |
| CorporateAuthor_xml | – name: Computer/IT Engineering, Gujarat Technological University, Chandkheda, Gandhinagar, Gujarat 382424, India |
| DBID | AAYXX CITATION 0-V 3V. 7XB 88B 8AL 8FE 8FG 8FK ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BGLVJ BVBZV CCPQU CJNVE DWQXO GNUQQ HCIFZ JQ2 K7- M0N M0P P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEDU PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY |
| DOI | 10.5815/ijmecs.2022.04.06 |
| DatabaseName | CrossRef ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Education Database (Alumni) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection East & South Asia Database ProQuest One Education Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Computing Database ProQuest Education Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Education Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection Social Science Premium Collection ProQuest Computing Education Collection ProQuest Central Basic ProQuest Education Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection East & South Asia Database Advanced Technologies & Aerospace Database ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Education Journals (Alumni Edition) ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Mathematics |
| EISSN | 2075-017X |
| EndPage | 84 |
| ExternalDocumentID | 10.5815/ijmecs.2022.04.06 10_5815_ijmecs_2022_04_06 |
| GroupedDBID | 0-V 5VS 8FE 8FG AAYXX AFKRA ALMA_UNASSIGNED_HOLDINGS ALSLI ARALO ARAPS AZQEC BENPR BGLVJ BPHCQ BVBZV CITATION CJNVE HCIFZ K6V K7- KQ8 M0P OK1 P62 PIMPY PQQKQ PROAC RNS 3V. 7XB 8AL 8FK ABUWG CCPQU DWQXO GNUQQ JQ2 M0N PHGZM PHGZT PKEHL PQEDU PQEST PQGLB PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2316-84bb8a6fd23ceb6f6cd794d5323012a7a0465286294273a4c53208883bd21e613 |
| IEDL.DBID | UNPAY |
| ISSN | 2075-0161 2075-017X |
| IngestDate | Tue Aug 19 19:04:55 EDT 2025 Sun Aug 10 13:10:50 EDT 2025 Thu Apr 24 22:52:11 EDT 2025 Tue Jul 01 00:31:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2316-84bb8a6fd23ceb6f6cd794d5323012a7a0465286294273a4c53208883bd21e613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.mecs-press.org/ijmecs/ijmecs-v14-n4/IJMECS-V14-N4-6.pdf |
| PQID | 2798546501 |
| PQPubID | 2026674 |
| PageCount | 18 |
| ParticipantIDs | unpaywall_primary_10_5815_ijmecs_2022_04_06 proquest_journals_2798546501 crossref_citationtrail_10_5815_ijmecs_2022_04_06 crossref_primary_10_5815_ijmecs_2022_04_06 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hong Kong |
| PublicationPlace_xml | – name: Hong Kong |
| PublicationTitle | International journal of modern education and computer science |
| PublicationYear | 2022 |
| Publisher | Modern Education and Computer Science Press |
| Publisher_xml | – name: Modern Education and Computer Science Press |
| SSID | ssj0000694209 |
| Score | 2.2069867 |
| Snippet | Emotion recognition is a significant research topic for interactive intelligence system with the wide range of applications in different tasks, like education,... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 67 |
| SubjectTerms | Algorithms Computer vision Customer services Deep learning Electroencephalography Emotion recognition Emotional factors Emotional Response Emotions Entropy (Information theory) Interactive systems Machine learning Mathematics Multimedia Optimization Optimization algorithms Psychological Patterns Scientific Concepts Speech recognition |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9tAEB6lyaHlQCFQNZSiPfREtcJeP3NAqLSJIqRGKBCJm7Uvo7TGMY8I5d8z4xftJdxseb2ydrw738zOfh_AtyhOjRSOx-3QOhxXScvlUOOtG2kvFUq6tqzynYaTuX9xE9x0YNqchaGyymZNLBdqs9SUIz8R0TAm4W7HPSvuOalG0e5qI6Eha2kFc1pSjL2DniBmrC70zkfTy1mbdaFjnlXdh0BfyQnvVFudQewGJ4s_d1YTh7cQJf9p-L-zekWg71d5IdfPMsv-cUbjHdiuUST7UZl9Fzo278PHRqGB1RO2D1u_W1bWxz34-8vagtWMqrdsWlWAM5kbNrP5esEp07ss1uwcXZth4xVl0hippWUMsS0bVZI_bNYUHeF1WXLAymO8d0uD33S1uCVK5n2Yj0fXPye8FlvgGiFeyGNfqViGqRGetipMQ21wqprAwxjFFTKSGEgHAuMfHMDIk74mRQkMnz1lhGsRFHyCbr7M7WdgaSSHnlYiQvCE8VAsdRQY4UvsQKkwsANwmlFNdM1EToIYWYIRCRkiqQyRkCESx0-ccADH7StFRcOxqfFhY6qknpH4uP1_BvC9Nd_bnR1s7uwLfKC2VUngIXSfHlb2K8KUJ3VU_3svP9XmJg priority: 102 providerName: ProQuest |
| Title | Deep Learning Network and Renyi-entropy Based Fusion Model for Emotion Recognition Using Multimodal Signals |
| URI | https://www.proquest.com/docview/2798546501 http://www.mecs-press.org/ijmecs/ijmecs-v14-n4/IJMECS-V14-N4-6.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-017X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000694209 issn: 2075-0161 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2075-017X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000694209 issn: 2075-0161 databaseCode: 8FG dateStart: 20091001 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH5i7QEujJ9a2ah84ARySRzHSY7baBmTiKaOonKK_CtTWZdGrAWVv57nxNlASCDEKXbiWEls533P_vw-gBdJWhrJgojazAYU_5KWykxjNkx0VDIlQ9uwfHNxMuOn83ju98J4VuWV1de0YYE2K_mLz-6EP9CvIacVf_3u9P34-Jx-xFzOqRjVptyBvogRj_egP8vPDj85VTm0h9Rhmtt0Mm-XNuM0jH2d6CQy1sQ7Fb8ap1vEeXdT1XL7TS6XPxmfyS7obgtPyzm5HG3WaqS__x7R8T_e6wHc99iUHLad6SHcsdUj2O10H4j_DTyGyzfW1sRHZr0gecskJ7IyZGqr7YK6GeNVvSVHaCINmWzcjBxxqmtLghiZjFvpIDLtyEuYbqgLpNkOfLUy-BTniwsX2vkJzCbjD8cn1Is2UI1QUdCUK5VKURoWaatEKbTBIW_iCH2dkMlEokMeM_SjMo7ISXLtlCnQDY-UYaFFcPEUetWqsntAykRmkVYsQRCGflUqdRIbxiVWoJSI7QCCrrUK7SOaO2GNZYGejWvgov24hWvgIuBFIAbw8uaWug3n8afCB10XKPzIxstJljoB-SAcwKubbvH3yp79U-l9uOcyLdPwAHrrLxv7HNHPWg1hJ528HUL_aJyfTYe-s_8AnQoFCw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9RQEJ8gHNCDKGpcBH0HvWheaF-_D8SA7GYR2JgVEm7lfZWsLN0qbMj-c_5tzLSvVS944tam7aR5M5n5zXsz8wN4n6SFkcILuM2sx9FLWi4zjbd-ooNCKOnbusp3FA9Pw69n0dkS_G57YaissvWJtaM2M0175NsiyVIi7vb8z9VPTqxRdLraUmhIR61gduoRY66x49AubjGFu9452Ed9fxBi0D_5MuSOZYBrxDYxT0OlUhkXRgTaqriItUEbNVGA4NwXMpGYQUYCgX8WYqiXoSYqBcwbA2WEbzEaotxHsBIGYYbJ38pef_Rt3O3yUFtpU2ciMDZzwlfN0WqU-tH25MeV1TQzXIh63mr8b3D8g3hX52UlF7dyOv0r-A2ewVOHWtluY2bPYcmW67DWMkIw5yDW4clxNwX2-gVc7ltbMTfB9YKNmopzJkvDxrZcTDjtLM-qBdvDUGrYYE47d4zY2aYMsTTrNxRDbNwWOeF1XeLA6rbhq5nBf_o-uaAR0C_h9EGW_RUsl7PSvgZWJDILtBIJgjXMv1Kpk8iIUKIApeLI9sBrVzXXbvI5EXBMc8yASBF5o4icFJF7Ye7FPfjYfVI1Yz_ue3mzVVXuPAA-7uy1B5869f1f2Mb9wt7B6vDk-Cg_OhgdvoHH9F1TjrgJyze_5nYLIdKNeuvskMH5Q5v-HSl2IH0 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD7aysP2AoxtWrnJD3sCuUscx0keGbRiSKsmWKfuKfItqKOkEbSg8ut3nDhchLRp2lPsxLGS2M75jv35fAAfk7QwkgURtZkNKP4lLZWZxmyY6KhgSoa2ZvkOxfGIn4zjsd8L41mVl1Zf05oFWq_kT365E_5Ab0JOS_7py8nX_uEZ_YG5IaeiV5niJayIGPF4B1ZGw28HP52qHNpD6jDNQzoZN0ubcRrGvk50Ehmr452Kp8bpAXG-WpSVXN7K6fSR8RmsgW638DSck4veYq56-u55RMf_eK91WPXYlBw0nekNvLDlBqy1ug_E_wbewsWRtRXxkVnPybBhkhNZGnJqy-WEuhnjWbUkn9FEGjJYuBk54lTXpgQxMuk30kHktCUvYbqmLpB6O_DlzOBTnE3OXWjndzAa9L8fHlMv2kA1QkVBU65UKkVhWKStEoXQBoe8iSP0dUImE4kOeczQj8o4IifJtVOmQDc8UoaFFsHFe-iUs9J-AFIkMou0YgmCMPSrUqmT2DAusQKlRGy7ELStlWsf0dwJa0xz9GxcA-fNx81dA-cBzwPRhb37W6omnMefCm-3XSD3IxsvJ1nqBOSDsAv7993i75Vt_lPpLXjtMg3TcBs686uF3UH0M1e7vnv_Bm5dAos |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Network+and+Renyi-entropy+Based+Fusion+Model+for+Emotion+Recognition+Using+Multimodal+Signals&rft.jtitle=International+journal+of+modern+education+and+computer+science&rft.au=M.+Vala%2C+Jaykumar&rft.au=K.+Jaliya%2C+Udesang&rft.date=2022-08-01&rft.issn=2075-0161&rft.eissn=2075-017X&rft.volume=14&rft.issue=4&rft.spage=67&rft.epage=84&rft_id=info:doi/10.5815%2Fijmecs.2022.04.06&rft.externalDBID=n%2Fa&rft.externalDocID=10_5815_ijmecs_2022_04_06 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-0161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-0161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-0161&client=summon |