House Price Prediction using a Machine Learning Model: A Survey of Literature
Data mining is now commonly applied in the real estate market. Data mining's ability to extract relevant knowledge from raw data makes it very useful to predict house prices, key housing attributes, and many more. Research has stated that the fluctuations in house prices are often a concern for...
Saved in:
Published in | International journal of modern education and computer science Vol. 12; no. 6; pp. 46 - 54 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hong Kong
Modern Education and Computer Science Press
08.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2075-0161 2075-017X |
DOI | 10.5815/ijmecs.2020.06.04 |
Cover
Abstract | Data mining is now commonly applied in the real estate market. Data mining's ability to extract relevant knowledge from raw data makes it very useful to predict house prices, key housing attributes, and many more. Research has stated that the fluctuations in house prices are often a concern for house owners and the real estate market. A survey of literature is carried out to analyze the relevant attributes and the most efficient models to forecast the house prices. The findings of this analysis verified the use of the Artificial Neural Network, Support Vector Regression and XGBoost as the most efficient models compared to others. Moreover, our findings also suggest that locational attributes and structural attributes are prominent factors in predicting house prices. This study will be of tremendous benefit, especially to housing developers and researchers, to ascertain the most significant attributes to determine house prices and to acknowledge the best machine learning model to be used to conduct a study in this field. |
---|---|
AbstractList | Data mining is now commonly applied in the real estate market. Data mining's ability to extract relevant knowledge from raw data makes it very useful to predict house prices, key housing attributes, and many more. Research has stated that the fluctuations in house prices are often a concern for house owners and the real estate market. A survey of literature is carried out to analyze the relevant attributes and the most efficient models to forecast the house prices. The findings of this analysis verified the use of the Artificial Neural Network, Support Vector Regression and XGBoost as the most efficient models compared to others. Moreover, our findings also suggest that locational attributes and structural attributes are prominent factors in predicting house prices. This study will be of tremendous benefit, especially to housing developers and researchers, to ascertain the most significant attributes to determine house prices and to acknowledge the best machine learning model to be used to conduct a study in this field. |
Author | Abdul Rahman, Shuzlina Ibrahim, Ismail Ubaidullah, Nor Hasbiah Hamizah Zulkifley, Nor |
Author_xml | – sequence: 1 givenname: Nor surname: Hamizah Zulkifley fullname: Hamizah Zulkifley, Nor – sequence: 2 givenname: Shuzlina surname: Abdul Rahman fullname: Abdul Rahman, Shuzlina – sequence: 3 givenname: Nor Hasbiah surname: Ubaidullah fullname: Ubaidullah, Nor Hasbiah – sequence: 4 givenname: Ismail surname: Ibrahim fullname: Ibrahim, Ismail |
BookMark | eNp9kEFLw0AQhRepYK39Ad4WPCfObrKbxFspaoUUBRW8LZvNRLe02bqbCP33JlQ8eHAOM8Pw3hv4zsmkdS0ScskgFjkT13azQxNiDhxikDGkJ2TKIRMRsOxt8rtLdkbmIWxgKFmkHIopWa9cH5A-eWvGjrU1nXUt7YNt36mma20-bIu0RO3b8bR2NW5v6II-9_4LD9Q1tLQdet31Hi_IaaO3Aec_c0Ze725flquofLx_WC7KyPCEpRGmFWRZXjWirmrQMk04CixEYjJZMVlBJZAzUQOvK2MaTFmisSlELWWii4YnM3J1zN1799lj6NTG9b4dXiqeFblIpeD5oGJHlfEuBI-N2nu70_6gGKgRnDqCUyM4BVJBOniyPx5jOz0i6by223-c31aodiU |
CitedBy_id | crossref_primary_10_2139_ssrn_4856312 crossref_primary_10_29128_geomatik_1454915 crossref_primary_10_2478_remav_2025_0001 crossref_primary_10_1007_s00138_023_01464_5 crossref_primary_10_1108_IJHMA_02_2022_0025 crossref_primary_10_1016_j_cities_2024_105115 crossref_primary_10_1108_IJHMA_09_2023_0120 crossref_primary_10_3390_stats8010012 crossref_primary_10_3390_app122412938 crossref_primary_10_1145_3501806 crossref_primary_10_22495_rgcv15i1p3 crossref_primary_10_3390_ijgi13050159 crossref_primary_10_32628_IJSRSET229228 crossref_primary_10_3390_app14209185 crossref_primary_10_59324_ejtas_2023_1_5__22 crossref_primary_10_1108_IJHMA_11_2022_0172 crossref_primary_10_2478_remav_2024_0027 |
ContentType | Journal Article |
Copyright | 2020. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://www.mecs-press.org/ijcnis/terms.html |
Copyright_xml | – notice: 2020. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://www.mecs-press.org/ijcnis/terms.html |
CorporateAuthor | Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor |
CorporateAuthor_xml | – name: Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor |
DBID | AAYXX CITATION 0-V 3V. 7X5 7XB 88B 8AL 8FE 8FG 8FK ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ BVBZV CCPQU CJNVE DWQXO GNUQQ HCIFZ JQ2 K6~ K7- M0N M0P P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEDU PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.5815/ijmecs.2020.06.04 |
DatabaseName | CrossRef ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) Proquest Entrepreneurship ProQuest Central (purchase pre-March 2016) Education Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection Technology Collection (via ProQuest SciTech Premium Collection) East & South Asia Database ProQuest One Community College Education Collection ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database Computing Database Education Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Education Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ProQuest Entrepreneurship Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ProQuest Computing Education Collection ProQuest Central Basic ProQuest Education Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection East & South Asia Database Advanced Technologies & Aerospace Database ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Education Journals (Alumni Edition) ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Education |
EISSN | 2075-017X |
EndPage | 54 |
ExternalDocumentID | 10_5815_ijmecs_2020_06_04 |
GroupedDBID | 0-V 5VS 8FE 8FG AAYXX ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ALSLI ARALO ARAPS AZQEC BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION CJNVE DWQXO GNUQQ HCIFZ K6V K7- KQ8 M0P OK1 P62 PHGZM PHGZT PIMPY PQEDU PQQKQ PROAC RNS 3V. 7X5 7XB 8AL 8FK BEZIV JQ2 K6~ M0N PKEHL PQEST PQGLB PQUKI PUEGO Q9U |
ID | FETCH-LOGICAL-c2314-e4b0778bf5dbd0a6432e5e953c76b16b0b5e215d02dbccfe413aef95d663a9f23 |
IEDL.DBID | 8FG |
ISSN | 2075-0161 |
IngestDate | Wed Aug 27 14:43:58 EDT 2025 Tue Jul 01 00:31:18 EDT 2025 Thu Apr 24 22:50:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2314-e4b0778bf5dbd0a6432e5e953c76b16b0b5e215d02dbccfe413aef95d663a9f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2798546528?pq-origsite=%requestingapplication% |
PQID | 2798546528 |
PQPubID | 2026674 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2798546528 crossref_primary_10_5815_ijmecs_2020_06_04 crossref_citationtrail_10_5815_ijmecs_2020_06_04 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-08 |
PublicationDateYYYYMMDD | 2020-12-08 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Hong Kong |
PublicationPlace_xml | – name: Hong Kong |
PublicationTitle | International journal of modern education and computer science |
PublicationYear | 2020 |
Publisher | Modern Education and Computer Science Press |
Publisher_xml | – name: Modern Education and Computer Science Press |
SSID | ssj0000694209 |
Score | 2.3556027 |
Snippet | Data mining is now commonly applied in the real estate market. Data mining's ability to extract relevant knowledge from raw data makes it very useful to... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 46 |
SubjectTerms | Artificial Intelligence Artificial neural networks Computer science Data mining Education Houses Housing Housing prices International organizations Machine learning Neighborhoods Neural networks Price increases Pricing Purchasing Real estate Shopping Support vector machines |
Title | House Price Prediction using a Machine Learning Model: A Survey of Literature |
URI | https://www.proquest.com/docview/2798546528 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLCy8EY-CPDAhRU2cOIlZUEGUCtEKAa0qlsh2zhUIWigtEv8eX-JE6sKSDJdkuPge9n13HyFnscgh0Ty2liakFxmjPBH54AmtwMqCJC7YG3r9uDuI7kZ85A7cvh2ssvKJhaPOpxrPyFssESkSd7P08vPLQ9YorK46Co1VshYwG2uxU7xzW5-xYFNnifJgNjJ6mN2UhU2eBrz1-vYBGid2M78Y4Rkth6Zlz1yEm84W2XB5Im2XP3abrMBkh2xWHAzUmeQOsi47hMYu6XXtNh5oweRur1iCQQFFbPuYStorgJNA3UzVMUUitPcL2qZPi9kP_NKpoff1mOU9MujcPF93PUeX4GmbpEUeRMpPklQZnqvclzbVYMBB8FAnsQpi5SsONsDnPsuV1gZs-JJgBM9t0iGFYeE-aUymEzggFHsDQgiYSSREMhUyVEoGMjVJwALJ9CHxK01l2s0SR0qL98zuKVC5WancDJWbIXIuOiTn9Suf5SCN_x5uVurPnE1Zcb0Cjv4XH5N1_FQBOkmbpDGfLeDEpg5zdVqsj1OydnXTf3jE-_DqZfgH7HjFCQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Bb9MwFH6augNctlFAFAr4ABekbIlrJ_EkDi0wtazdhW2auATbeZ4GpUVbu2n8Ff4KPw6_xKk0DrtN2iWXl0SK38t7z_bn7wN4k6oSMytT_6cpHQnnTKREjJGyBr0tydJKvWFykA6PxOcTebIGf5qzMASrbHJilajLuaU18h2eqZyEu3keEJT7eH3l52cX70cfvTPfcr736fDDMAoSApH1jYuIUJg4y3LjZGnKWPvyy1Gikj2bpSZJTWwk-qJXxrw01jr0KV2jU7L0hVgrR6wGPr-v-6DuiRasD44HX49XSzh0ZrQGkXBfeCNqnup9U5kncufs-0-0RAjO44ohVNysfDcTf1XN9jbhbzMONYjlx_ZyYbbt7_8oIu_pQG3BRuiiWb8O-0ewhrM2bDYKFSwkrDZpUgf8ymOYDOfLC2SVzr2_0gYVGRgh_0-ZZpMKVoosMM6eMpKJm-6yPvuyPL_EazZ3bLwioX4CR3fygU-hNZvP8BkwOjnRw4S7TKPQudI9Y3Sic5clPNHcdiBuHF3YwLROgh_Tws-4KDaKOjYKio2CcIWiA-9Wj_yqaUZuu7nbeL4IGcebV25_frv5NTwYHk7GxXh0sP8CHtJrK3hO3oXW4nyJL32TtTCvQrAz-HbXYfMPVBs1Kw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=House+Price+Prediction+using+a+Machine+Learning+Model%3A+A+Survey+of+Literature&rft.jtitle=International+journal+of+modern+education+and+computer+science&rft.au=Nor+Hamizah+Zulkifley&rft.au=Shuzlina+Abdul+Rahman&rft.au=Nor+Hasbiah+Ubaidullah&rft.au=Ismail%2C+Ibrahim&rft.date=2020-12-08&rft.pub=Modern+Education+and+Computer+Science+Press&rft.issn=2075-0161&rft.eissn=2075-017X&rft.volume=13&rft.issue=6&rft.spage=46&rft_id=info:doi/10.5815%2Fijmecs.2020.06.04 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-0161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-0161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-0161&client=summon |