House Price Prediction using a Machine Learning Model: A Survey of Literature

Data mining is now commonly applied in the real estate market. Data mining's ability to extract relevant knowledge from raw data makes it very useful to predict house prices, key housing attributes, and many more. Research has stated that the fluctuations in house prices are often a concern for...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of modern education and computer science Vol. 12; no. 6; pp. 46 - 54
Main Authors Hamizah Zulkifley, Nor, Abdul Rahman, Shuzlina, Ubaidullah, Nor Hasbiah, Ibrahim, Ismail
Format Journal Article
LanguageEnglish
Published Hong Kong Modern Education and Computer Science Press 08.12.2020
Subjects
Online AccessGet full text
ISSN2075-0161
2075-017X
DOI10.5815/ijmecs.2020.06.04

Cover

Abstract Data mining is now commonly applied in the real estate market. Data mining's ability to extract relevant knowledge from raw data makes it very useful to predict house prices, key housing attributes, and many more. Research has stated that the fluctuations in house prices are often a concern for house owners and the real estate market. A survey of literature is carried out to analyze the relevant attributes and the most efficient models to forecast the house prices. The findings of this analysis verified the use of the Artificial Neural Network, Support Vector Regression and XGBoost as the most efficient models compared to others. Moreover, our findings also suggest that locational attributes and structural attributes are prominent factors in predicting house prices. This study will be of tremendous benefit, especially to housing developers and researchers, to ascertain the most significant attributes to determine house prices and to acknowledge the best machine learning model to be used to conduct a study in this field.
AbstractList Data mining is now commonly applied in the real estate market. Data mining's ability to extract relevant knowledge from raw data makes it very useful to predict house prices, key housing attributes, and many more. Research has stated that the fluctuations in house prices are often a concern for house owners and the real estate market. A survey of literature is carried out to analyze the relevant attributes and the most efficient models to forecast the house prices. The findings of this analysis verified the use of the Artificial Neural Network, Support Vector Regression and XGBoost as the most efficient models compared to others. Moreover, our findings also suggest that locational attributes and structural attributes are prominent factors in predicting house prices. This study will be of tremendous benefit, especially to housing developers and researchers, to ascertain the most significant attributes to determine house prices and to acknowledge the best machine learning model to be used to conduct a study in this field.
Author Abdul Rahman, Shuzlina
Ibrahim, Ismail
Ubaidullah, Nor Hasbiah
Hamizah Zulkifley, Nor
Author_xml – sequence: 1
  givenname: Nor
  surname: Hamizah Zulkifley
  fullname: Hamizah Zulkifley, Nor
– sequence: 2
  givenname: Shuzlina
  surname: Abdul Rahman
  fullname: Abdul Rahman, Shuzlina
– sequence: 3
  givenname: Nor Hasbiah
  surname: Ubaidullah
  fullname: Ubaidullah, Nor Hasbiah
– sequence: 4
  givenname: Ismail
  surname: Ibrahim
  fullname: Ibrahim, Ismail
BookMark eNp9kEFLw0AQhRepYK39Ad4WPCfObrKbxFspaoUUBRW8LZvNRLe02bqbCP33JlQ8eHAOM8Pw3hv4zsmkdS0ScskgFjkT13azQxNiDhxikDGkJ2TKIRMRsOxt8rtLdkbmIWxgKFmkHIopWa9cH5A-eWvGjrU1nXUt7YNt36mma20-bIu0RO3b8bR2NW5v6II-9_4LD9Q1tLQdet31Hi_IaaO3Aec_c0Ze725flquofLx_WC7KyPCEpRGmFWRZXjWirmrQMk04CixEYjJZMVlBJZAzUQOvK2MaTFmisSlELWWii4YnM3J1zN1799lj6NTG9b4dXiqeFblIpeD5oGJHlfEuBI-N2nu70_6gGKgRnDqCUyM4BVJBOniyPx5jOz0i6by223-c31aodiU
CitedBy_id crossref_primary_10_2139_ssrn_4856312
crossref_primary_10_29128_geomatik_1454915
crossref_primary_10_2478_remav_2025_0001
crossref_primary_10_1007_s00138_023_01464_5
crossref_primary_10_1108_IJHMA_02_2022_0025
crossref_primary_10_1016_j_cities_2024_105115
crossref_primary_10_1108_IJHMA_09_2023_0120
crossref_primary_10_3390_stats8010012
crossref_primary_10_3390_app122412938
crossref_primary_10_1145_3501806
crossref_primary_10_22495_rgcv15i1p3
crossref_primary_10_3390_ijgi13050159
crossref_primary_10_32628_IJSRSET229228
crossref_primary_10_3390_app14209185
crossref_primary_10_59324_ejtas_2023_1_5__22
crossref_primary_10_1108_IJHMA_11_2022_0172
crossref_primary_10_2478_remav_2024_0027
ContentType Journal Article
Copyright 2020. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://www.mecs-press.org/ijcnis/terms.html
Copyright_xml – notice: 2020. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://www.mecs-press.org/ijcnis/terms.html
CorporateAuthor Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor
CorporateAuthor_xml – name: Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor
DBID AAYXX
CITATION
0-V
3V.
7X5
7XB
88B
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
BVBZV
CCPQU
CJNVE
DWQXO
GNUQQ
HCIFZ
JQ2
K6~
K7-
M0N
M0P
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEDU
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.5815/ijmecs.2020.06.04
DatabaseName CrossRef
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
Proquest Entrepreneurship
ProQuest Central (purchase pre-March 2016)
Education Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
East & South Asia Database
ProQuest One Community College
Education Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
Computing Database
Education Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Education
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ProQuest Entrepreneurship
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ProQuest Computing
Education Collection
ProQuest Central Basic
ProQuest Education Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
East & South Asia Database
Advanced Technologies & Aerospace Database
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Education Journals (Alumni Edition)
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Education
EISSN 2075-017X
EndPage 54
ExternalDocumentID 10_5815_ijmecs_2020_06_04
GroupedDBID 0-V
5VS
8FE
8FG
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ARALO
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
CITATION
CJNVE
DWQXO
GNUQQ
HCIFZ
K6V
K7-
KQ8
M0P
OK1
P62
PHGZM
PHGZT
PIMPY
PQEDU
PQQKQ
PROAC
RNS
3V.
7X5
7XB
8AL
8FK
BEZIV
JQ2
K6~
M0N
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
Q9U
ID FETCH-LOGICAL-c2314-e4b0778bf5dbd0a6432e5e953c76b16b0b5e215d02dbccfe413aef95d663a9f23
IEDL.DBID 8FG
ISSN 2075-0161
IngestDate Wed Aug 27 14:43:58 EDT 2025
Tue Jul 01 00:31:18 EDT 2025
Thu Apr 24 22:50:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2314-e4b0778bf5dbd0a6432e5e953c76b16b0b5e215d02dbccfe413aef95d663a9f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2798546528?pq-origsite=%requestingapplication%
PQID 2798546528
PQPubID 2026674
PageCount 9
ParticipantIDs proquest_journals_2798546528
crossref_primary_10_5815_ijmecs_2020_06_04
crossref_citationtrail_10_5815_ijmecs_2020_06_04
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-08
PublicationDateYYYYMMDD 2020-12-08
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-08
  day: 08
PublicationDecade 2020
PublicationPlace Hong Kong
PublicationPlace_xml – name: Hong Kong
PublicationTitle International journal of modern education and computer science
PublicationYear 2020
Publisher Modern Education and Computer Science Press
Publisher_xml – name: Modern Education and Computer Science Press
SSID ssj0000694209
Score 2.3556027
Snippet Data mining is now commonly applied in the real estate market. Data mining's ability to extract relevant knowledge from raw data makes it very useful to...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 46
SubjectTerms Artificial Intelligence
Artificial neural networks
Computer science
Data mining
Education
Houses
Housing
Housing prices
International organizations
Machine learning
Neighborhoods
Neural networks
Price increases
Pricing
Purchasing
Real estate
Shopping
Support vector machines
Title House Price Prediction using a Machine Learning Model: A Survey of Literature
URI https://www.proquest.com/docview/2798546528
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLCy8EY-CPDAhRU2cOIlZUEGUCtEKAa0qlsh2zhUIWigtEv8eX-JE6sKSDJdkuPge9n13HyFnscgh0Ty2liakFxmjPBH54AmtwMqCJC7YG3r9uDuI7kZ85A7cvh2ssvKJhaPOpxrPyFssESkSd7P08vPLQ9YorK46Co1VshYwG2uxU7xzW5-xYFNnifJgNjJ6mN2UhU2eBrz1-vYBGid2M78Y4Rkth6Zlz1yEm84W2XB5Im2XP3abrMBkh2xWHAzUmeQOsi47hMYu6XXtNh5oweRur1iCQQFFbPuYStorgJNA3UzVMUUitPcL2qZPi9kP_NKpoff1mOU9MujcPF93PUeX4GmbpEUeRMpPklQZnqvclzbVYMBB8FAnsQpi5SsONsDnPsuV1gZs-JJgBM9t0iGFYeE-aUymEzggFHsDQgiYSSREMhUyVEoGMjVJwALJ9CHxK01l2s0SR0qL98zuKVC5WancDJWbIXIuOiTn9Suf5SCN_x5uVurPnE1Zcb0Cjv4XH5N1_FQBOkmbpDGfLeDEpg5zdVqsj1OydnXTf3jE-_DqZfgH7HjFCQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Bb9MwFH6augNctlFAFAr4ABekbIlrJ_EkDi0wtazdhW2auATbeZ4GpUVbu2n8Ff4KPw6_xKk0DrtN2iWXl0SK38t7z_bn7wN4k6oSMytT_6cpHQnnTKREjJGyBr0tydJKvWFykA6PxOcTebIGf5qzMASrbHJilajLuaU18h2eqZyEu3keEJT7eH3l52cX70cfvTPfcr736fDDMAoSApH1jYuIUJg4y3LjZGnKWPvyy1Gikj2bpSZJTWwk-qJXxrw01jr0KV2jU7L0hVgrR6wGPr-v-6DuiRasD44HX49XSzh0ZrQGkXBfeCNqnup9U5kncufs-0-0RAjO44ohVNysfDcTf1XN9jbhbzMONYjlx_ZyYbbt7_8oIu_pQG3BRuiiWb8O-0ewhrM2bDYKFSwkrDZpUgf8ymOYDOfLC2SVzr2_0gYVGRgh_0-ZZpMKVoosMM6eMpKJm-6yPvuyPL_EazZ3bLwioX4CR3fygU-hNZvP8BkwOjnRw4S7TKPQudI9Y3Sic5clPNHcdiBuHF3YwLROgh_Tws-4KDaKOjYKio2CcIWiA-9Wj_yqaUZuu7nbeL4IGcebV25_frv5NTwYHk7GxXh0sP8CHtJrK3hO3oXW4nyJL32TtTCvQrAz-HbXYfMPVBs1Kw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=House+Price+Prediction+using+a+Machine+Learning+Model%3A+A+Survey+of+Literature&rft.jtitle=International+journal+of+modern+education+and+computer+science&rft.au=Nor+Hamizah+Zulkifley&rft.au=Shuzlina+Abdul+Rahman&rft.au=Nor+Hasbiah+Ubaidullah&rft.au=Ismail%2C+Ibrahim&rft.date=2020-12-08&rft.pub=Modern+Education+and+Computer+Science+Press&rft.issn=2075-0161&rft.eissn=2075-017X&rft.volume=13&rft.issue=6&rft.spage=46&rft_id=info:doi/10.5815%2Fijmecs.2020.06.04
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-0161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-0161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-0161&client=summon