1D-convolutional neural network and fast Walsh–Hadamard transform approach for diagnosing autism spectrum disorder

Autism spectrum disorder is a neuro-developmental disability that can lead to a variety of communication, social, and behavioral challenges. The disorder affects approximately 1 in 54 children. Traditional diagnostic methods for autism spectrum disorder often involve subjective observations and exte...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 37; no. 18; pp. 13039 - 13057
Main Author Göker, Hanife
Format Journal Article
LanguageEnglish
Published London Springer London 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-025-11208-3

Cover

Abstract Autism spectrum disorder is a neuro-developmental disability that can lead to a variety of communication, social, and behavioral challenges. The disorder affects approximately 1 in 54 children. Traditional diagnostic methods for autism spectrum disorder often involve subjective observations and extensive testing, which can be costly, time-consuming, and prone to inaccuracies. Electroencephalogram (EEG) presents a promising alternative because of its non-invasive, affordability, and ability to provide rapid results. This study combined the fast Walsh–Hadamard transform (FWHT) with one-dimensional convolutional neural network (1D-CNN) to propose an EEG-based solution for diagnosing autism spectrum disorder. The dataset has included resting-state EEG signals recorded from 62 subjects, including 31 autism spectrum disorder patients and 31 healthy controls using 17 channels. Multiscale principal component analysis (multiscale PCA) was used to improve the data quality by de-noising the raw EEG signals. FWHT coefficients were used to extract different feature sets and their performances were compared. The performance results of the FWHT feature extraction method and the 1D-CNN algorithm were computed as 0.971 precision, 0.972 specificity, 0.988 sensitivity, 0.979 f1-measure, 0.960 kappa statistic, 0.960 Matthew’s correlation coefficient, and 98.01% accuracy. Compared to the previous methods, the EEG-based deep learning model had a higher and more promising performance.
AbstractList Autism spectrum disorder is a neuro-developmental disability that can lead to a variety of communication, social, and behavioral challenges. The disorder affects approximately 1 in 54 children. Traditional diagnostic methods for autism spectrum disorder often involve subjective observations and extensive testing, which can be costly, time-consuming, and prone to inaccuracies. Electroencephalogram (EEG) presents a promising alternative because of its non-invasive, affordability, and ability to provide rapid results. This study combined the fast Walsh–Hadamard transform (FWHT) with one-dimensional convolutional neural network (1D-CNN) to propose an EEG-based solution for diagnosing autism spectrum disorder. The dataset has included resting-state EEG signals recorded from 62 subjects, including 31 autism spectrum disorder patients and 31 healthy controls using 17 channels. Multiscale principal component analysis (multiscale PCA) was used to improve the data quality by de-noising the raw EEG signals. FWHT coefficients were used to extract different feature sets and their performances were compared. The performance results of the FWHT feature extraction method and the 1D-CNN algorithm were computed as 0.971 precision, 0.972 specificity, 0.988 sensitivity, 0.979 f1-measure, 0.960 kappa statistic, 0.960 Matthew’s correlation coefficient, and 98.01% accuracy. Compared to the previous methods, the EEG-based deep learning model had a higher and more promising performance.
Author Göker, Hanife
Author_xml – sequence: 1
  givenname: Hanife
  orcidid: 0000-0003-0396-7885
  surname: Göker
  fullname: Göker, Hanife
  email: gokerhanife@gazi.edu.tr
  organization: Health Services Vocational College, Gazi University
BookMark eNp9UEtOwzAUtFCRaAsXYGWJdcDfxFmi8ilSJTYglpYT221KYwc7AbHjDtyQk2AaJHasRk_z0ZuZgYnzzgBwitE5Rqi4iAhxgjNEeIYxQSKjB2CKGaUZRVxMwBSVLNE5o0dgFuMWIcRywaegx1dZ7d2r3w19453aQWeGsIf-zYdnqJyGVsUePqld3Hx9fC6VVq0KGvZBuWh9aKHquuBVvYHpgrpRa-dj49ZQpczYwtiZug9Dm6jogzbhGBzalGZOfnEOHm-uHxbLbHV_e7e4XGU1oZhmpSUFqcrC5gXJjaaaYV5zYwstKm01FoSbghpmBLeYmFqIKle5FYxVOUKK0Dk4G3PTey-Dib3c-iGkklFSgksmyoLQpCKjqg4-xmCs7EKTGr5LjOTPunJcV6Z15X5d-WOioykmsVub8Bf9j-sbA_aBxw
Cites_doi 10.18280/ts.380332
10.1186/s12916-018-1086-7
10.1016/S2215-0366(19)30289-5
10.1037/1082-989X.1.2.150
10.1289/ehp.84
10.1007/s10916-014-0031-3
10.1007/978-3-319-95720-3_16
10.1016/j.bbe.2020.01.008
10.1016/j.yebeh.2018.12.011
10.1038/s41598-018-24318-x
10.1007/s00521-023-09153-0
10.1016/j.bbr.2019.01.018
10.1177/15500594231178274
10.1109/ICFPT52863.2021.9609874
10.3389/fncel.2019.00385
10.1038/s42003-021-02494-3
10.18280/ts.390619
10.1007/s00521-021-06202-4
10.1007/s11571-023-10010-y
10.1016/j.compbiomed.2020.103722
10.1016/j.compbiomed.2021.104548
10.1016/j.aci.2019.10.001
10.1088/1742-6596/2070/1/012145
10.1109/SPMB50085.2020.9353626
10.3390/info14070410
10.1109/CVPR.2016.90
10.1155/2022/9340027
10.1007/s40489-019-00189-4
10.1016/j.dib.2023.109057
10.3390/sym14051003
10.1177/1550059420982424
10.4015/S1016237222500466
10.7554/eLife.35392
10.1109/MERCon.2019.8818814
10.1136/adc.2005.086280
10.1007/s11042-024-18341-6
10.61186/jcmh.10.4.8
10.1016/j.segan.2022.100839
10.1016/j.bbe.2017.08.006
10.1016/j.bspc.2021.102556
10.1007/s00521-017-3263-6
10.1016/j.cjche.2020.08.035
10.1007/s10803-020-04494-4
10.3390/ijerph16183502
10.1016/j.jneumeth.2019.108538
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Jun 2025
DBID C6C
AAYXX
CITATION
DOI 10.1007/s00521-025-11208-3
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 13057
ExternalDocumentID 10_1007_s00521_025_11208_3
GrantInformation_xml – fundername: Gazi University
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
ABRTQ
CITATION
PQGLB
PUEGO
ID FETCH-LOGICAL-c2313-9f272b97f6726ed3d415c5ef7d8bdfd1825e73e4e85f12ec88b6a6f844b600a23
IEDL.DBID AGYKE
ISSN 0941-0643
IngestDate Fri Jul 25 09:20:17 EDT 2025
Wed Sep 10 03:51:16 EDT 2025
Wed Jun 18 01:18:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Deep learning
Signal processing
Electroencephalogram signals
Autism spectrum disorder
Fast Walsh–Hadamard transform
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2313-9f272b97f6726ed3d415c5ef7d8bdfd1825e73e4e85f12ec88b6a6f844b600a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0396-7885
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s00521-025-11208-3
PQID 3219489723
PQPubID 2043988
PageCount 19
ParticipantIDs proquest_journals_3219489723
crossref_primary_10_1007_s00521_025_11208_3
springer_journals_10_1007_s00521_025_11208_3
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References PM Dietz (11208_CR4) 2020; 50
T Heunis (11208_CR2) 2018; 16
11208_CR23
D Abdolzadegan (11208_CR35) 2020; 40
Q Mohiud Din (11208_CR37) 2023; 35
H Hadoush (11208_CR17) 2019; 362
M Liao (11208_CR39) 2022
11208_CR43
11208_CR40
J Kang (11208_CR38) 2020; 120
F Thabtah (11208_CR11) 2019; 16
11208_CR28
F Rabiei (11208_CR1) 2024; 10
11208_CR26
11208_CR8
R Alazrai (11208_CR24) 2019; 31
A Bochet (11208_CR15) 2021; 4
JP Welsh (11208_CR14) 2018; 7
M Nour (11208_CR31) 2021; 33
AK Ozcanli (11208_CR32) 2022; 32
E Gokgoz (11208_CR25) 2014; 38
QM Mohi-ud-Din (11208_CR20) 2022; 39
11208_CR34
R Menaka (11208_CR21) 2024; 55
T Wadhera (11208_CR42) 2021; 67
E Yücesoy (11208_CR30) 2024; 36
CJ Dover (11208_CR9) 2007; 92
S Ibrahim (11208_CR36) 2018; 38
L Xu (11208_CR18) 2020; 331
E Grossi (11208_CR12) 2021; 52
M-C Lai (11208_CR5) 2019; 6
M Radhakrishnan (11208_CR19) 2021; 38
Z Jafari (11208_CR44) 2023; 14
MM Duville (11208_CR22) 2023; 48
G McCormack (11208_CR10) 2020; 7
JK Singh (11208_CR41) 2024
AM Karim (11208_CR45) 2022; 14
M Baygin (11208_CR3) 2021; 134
MO Bertelli (11208_CR7) 2022
M Milovanovic (11208_CR13) 2019; 92
AB Cantor (11208_CR33) 1996; 1
L Rylaarsdam (11208_CR6) 2019; 13
M Nawaz (11208_CR27) 2021; 29
FJ Farsana (11208_CR29) 2020; 19
WJ Bosl (11208_CR16) 2018; 8
A Said (11208_CR46) 2024; 18
References_xml – volume: 38
  start-page: 853
  issue: 3
  year: 2021
  ident: 11208_CR19
  publication-title: Traitement Signal
  doi: 10.18280/ts.380332
– volume: 16
  start-page: 1
  year: 2018
  ident: 11208_CR2
  publication-title: BMC Med
  doi: 10.1186/s12916-018-1086-7
– volume: 6
  start-page: 819
  year: 2019
  ident: 11208_CR5
  publication-title: Lancet Psychiatr
  doi: 10.1016/S2215-0366(19)30289-5
– volume: 1
  start-page: 150
  issue: 2
  year: 1996
  ident: 11208_CR33
  publication-title: Psychol Methods
  doi: 10.1037/1082-989X.1.2.150
– ident: 11208_CR8
  doi: 10.1289/ehp.84
– volume: 38
  start-page: 1
  year: 2014
  ident: 11208_CR25
  publication-title: J Med Syst
  doi: 10.1007/s10916-014-0031-3
– start-page: 369
  volume-title: Textbook of psychiatry for intellectual disability and autism spectrum disorder
  year: 2022
  ident: 11208_CR7
  doi: 10.1007/978-3-319-95720-3_16
– volume: 40
  start-page: 482
  issue: 1
  year: 2020
  ident: 11208_CR35
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2020.01.008
– volume: 92
  start-page: 45
  year: 2019
  ident: 11208_CR13
  publication-title: Epilepsy Behav
  doi: 10.1016/j.yebeh.2018.12.011
– volume: 8
  start-page: 6828
  issue: 1
  year: 2018
  ident: 11208_CR16
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-24318-x
– volume: 36
  start-page: 3065
  issue: 6
  year: 2024
  ident: 11208_CR30
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-023-09153-0
– volume: 362
  start-page: 240
  year: 2019
  ident: 11208_CR17
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2019.01.018
– volume: 55
  start-page: 43
  issue: 1
  year: 2024
  ident: 11208_CR21
  publication-title: Clin EEG Neurosci
  doi: 10.1177/15500594231178274
– ident: 11208_CR28
  doi: 10.1109/ICFPT52863.2021.9609874
– volume: 13
  start-page: 385
  year: 2019
  ident: 11208_CR6
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2019.00385
– volume: 4
  start-page: 968
  issue: 1
  year: 2021
  ident: 11208_CR15
  publication-title: Commun Biol
  doi: 10.1038/s42003-021-02494-3
– volume: 39
  start-page: 2069
  issue: 6
  year: 2022
  ident: 11208_CR20
  publication-title: Traitement Signal
  doi: 10.18280/ts.390619
– volume: 33
  start-page: 15815
  year: 2021
  ident: 11208_CR31
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06202-4
– volume: 18
  start-page: 597
  issue: 2
  year: 2024
  ident: 11208_CR46
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-023-10010-y
– volume: 120
  start-page: 103722
  year: 2020
  ident: 11208_CR38
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103722
– volume: 134
  start-page: 104548
  year: 2021
  ident: 11208_CR3
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104548
– volume: 19
  start-page: 239
  issue: 3/4
  year: 2020
  ident: 11208_CR29
  publication-title: Appl Comput Inf
  doi: 10.1016/j.aci.2019.10.001
– ident: 11208_CR26
  doi: 10.1088/1742-6596/2070/1/012145
– ident: 11208_CR40
  doi: 10.1109/SPMB50085.2020.9353626
– volume: 14
  start-page: 410
  issue: 7
  year: 2023
  ident: 11208_CR44
  publication-title: Information
  doi: 10.3390/info14070410
– ident: 11208_CR23
– ident: 11208_CR43
  doi: 10.1109/CVPR.2016.90
– year: 2022
  ident: 11208_CR39
  publication-title: J Healthc Eng
  doi: 10.1155/2022/9340027
– volume: 7
  start-page: 226
  issue: 3
  year: 2020
  ident: 11208_CR10
  publication-title: Rev J Autism Dev Disord
  doi: 10.1007/s40489-019-00189-4
– volume: 48
  start-page: 109057
  year: 2023
  ident: 11208_CR22
  publication-title: Data Brief
  doi: 10.1016/j.dib.2023.109057
– volume: 14
  start-page: 1003
  issue: 5
  year: 2022
  ident: 11208_CR45
  publication-title: Symmetry
  doi: 10.3390/sym14051003
– volume: 52
  start-page: 330
  issue: 5
  year: 2021
  ident: 11208_CR12
  publication-title: Clin EEG Neurosci
  doi: 10.1177/1550059420982424
– volume: 35
  start-page: 2250046
  issue: 01
  year: 2023
  ident: 11208_CR37
  publication-title: Biomed Eng Appl Basis Commun
  doi: 10.4015/S1016237222500466
– volume: 7
  start-page: e35392
  year: 2018
  ident: 11208_CR14
  publication-title: Elife
  doi: 10.7554/eLife.35392
– ident: 11208_CR34
  doi: 10.1109/MERCon.2019.8818814
– volume: 92
  start-page: 540
  issue: 6
  year: 2007
  ident: 11208_CR9
  publication-title: Arch Dis Child
  doi: 10.1136/adc.2005.086280
– year: 2024
  ident: 11208_CR41
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-024-18341-6
– volume: 10
  start-page: 93
  issue: 4
  year: 2024
  ident: 11208_CR1
  publication-title: J Child Ment Health
  doi: 10.61186/jcmh.10.4.8
– volume: 32
  start-page: 100839
  year: 2022
  ident: 11208_CR32
  publication-title: Sustain Energy Grids Netw
  doi: 10.1016/j.segan.2022.100839
– volume: 38
  start-page: 16
  issue: 1
  year: 2018
  ident: 11208_CR36
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2017.08.006
– volume: 67
  start-page: 102556
  year: 2021
  ident: 11208_CR42
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102556
– volume: 31
  start-page: 3187
  year: 2019
  ident: 11208_CR24
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-017-3263-6
– volume: 29
  start-page: 253
  year: 2021
  ident: 11208_CR27
  publication-title: Chin J Chem Eng
  doi: 10.1016/j.cjche.2020.08.035
– volume: 50
  start-page: 4258
  year: 2020
  ident: 11208_CR4
  publication-title: J Autism Dev Disord
  doi: 10.1007/s10803-020-04494-4
– volume: 16
  start-page: 3502
  issue: 18
  year: 2019
  ident: 11208_CR11
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph16183502
– volume: 331
  start-page: 108538
  year: 2020
  ident: 11208_CR18
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2019.108538
SSID ssj0004685
Score 2.384839
Snippet Autism spectrum disorder is a neuro-developmental disability that can lead to a variety of communication, social, and behavioral challenges. The disorder...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 13039
SubjectTerms Artificial Intelligence
Artificial neural networks
Autism
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Correlation coefficients
Data Mining and Knowledge Discovery
Electroencephalography
Feature extraction
Image Processing and Computer Vision
Machine learning
Neural networks
Original Article
Principal components analysis
Probability and Statistics in Computer Science
Title 1D-convolutional neural network and fast Walsh–Hadamard transform approach for diagnosing autism spectrum disorder
URI https://link.springer.com/article/10.1007/s00521-025-11208-3
https://www.proquest.com/docview/3219489723
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RsrBQnqJQKg9skKq1nddYlZdAMFFRpiiObSGhBkTThYn_wD_kl3B2bQoVDF0SRUks5-7sfGfffQdwVHCdCiHCoNsVxkEpuoFgKg606qaJ0GGR2vTom9vocsivRuHIJYVNfLS735K0M_V3sptZwUTXl4YBYgSzqleD1dA4KHVY7V88XJ_9yIe0pTjRczFRPZy5ZJm_W_n9Q5qjzIWNUfu_OW_A0Pd0Fmby1JlWolO8LZA4LvspG7DuACjpzyxmE1ZUuQUNX9yBuLG-DVXvNDAh6c408RVDfWlPNnCc5KUkOp9U5B4t-PHz_QMnsXyMBkcqD4aJZywneEXkLKoPO0pybHMyJjbN83U6JtJxgO7A8PzsbnAZuBINQYHAkAWppjEVaayjmEZKMol4oAiVjmUipJbovIQqZoqrJNQ9qookEVEe6YRzgUgrp2wX6uVzqfaARFrGyqTxcpVzqoXQaV7IJJUpMyQ5qgnHXk_Zy4yJI_vmXLYCzVCgmRVoxprQ8qrM3KicZAynZ56YOmtNOPGamd_-v7X95R4_gDVqlGsXa1pQR0mqQ8QulWg7U21DbRAN8Dik_S9Yw-lK
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5BGWDhH1Eo4IENgtrYSZwRQaHQ0qkVMEVxbAsJtSCaLky8A2_Ik3B2bQoVDExRlMRy7s72d_bddwCHBdOpECIK6nVhHJSiHgiqkkCresqFjorUpkffdONWn13fRXcuKWzko939kaSdqb-S3cwOJrq-YRQgRjC7evOwwBqcswosnF7et5vf8iFtKU70XExUD6MuWeb3Vn4uSFOUOXMwatebixXo-55OwkweT8alOCleZ0gc__srq7DsACg5nVjMGsyp4Tqs-OIOxI31DSgb54EJSXemiZ8Y6kt7sYHjJB9KovNRSW7Rgh8-3t5xEssHaHCk9GCYeMZygndETqL6sKMkxzZHA2LTPF_GAyIdB-gm9C-avbNW4Eo0BAUCQxqkOkxCkSY6TsJYSSoRDxSR0onkQmqJzkukEqqY4pFuhKrgXMR5rDljApFWHtItqAyfhmobSKxlokwaL1M5C7UQOs0LyVOZUkOSo6pw5PWUPU-YOLIvzmUr0AwFmlmBZrQKNa_KzI3KUUZxembc1FmrwrHXzPTx363t_O_1A1hs9W46Weeq296FpdAo2m7c1KCCUlV7iGNKse_M9hOBy-p1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELagSIiFf0ShgAc2sBpsJ3HGilKVv4qBim5WHNtiaaho2HkH3pAn4ewkbUEwMEVREis6n33fne-7Q-g04zZRSoUkCJRzULKAKGZiYk2QCGXDLPH06PtB1B_ym1E4WmDx-2z3-kiy5DS4Kk150Z5o254R31w0E9xgGhLACy7Ct4xWONhq534NaWeBGembcoIP4_J7OKtoM7-P8d00zfHmjyNSb3l6m2i9goy4U87xFloy-TbaqNsx4Gp17qDioktcEnmlTPCJK1bpLz7VG6e5xjadFvgJdO758_0Dtp10DCqCixq-4rrGOIY7rMs8PPgrnMKY0zH2xMzXtzHWVdXOXTTsXT1e9knVVIFkAOUYSSyNqUpiG8U0MpppsOBZaGyshdJWg7sRmpgZbkRoL6jJhFBRGlnBuQJslFK2hxr5S272EY6sjo0j3nKTcmqVskmaaZHohLmyNqaJzmp5yklZO0POqiR76UuQvvTSl6yJWrXIZbWOppLBhsqF64zWROf1NMwf_z3awf9eP0GrD92evLse3B6iNeqUwkdaWqgBQjVHADwKdex16wtAJtHL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1D-convolutional+neural+network+and+fast+Walsh%E2%80%93Hadamard+transform+approach+for+diagnosing+autism+spectrum+disorder&rft.jtitle=Neural+computing+%26+applications&rft.au=G%C3%B6ker%2C+Hanife&rft.date=2025-06-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=18&rft.spage=13039&rft.epage=13057&rft_id=info:doi/10.1007%2Fs00521-025-11208-3&rft.externalDocID=10_1007_s00521_025_11208_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon