1D-convolutional neural network and fast Walsh–Hadamard transform approach for diagnosing autism spectrum disorder
Autism spectrum disorder is a neuro-developmental disability that can lead to a variety of communication, social, and behavioral challenges. The disorder affects approximately 1 in 54 children. Traditional diagnostic methods for autism spectrum disorder often involve subjective observations and exte...
Saved in:
Published in | Neural computing & applications Vol. 37; no. 18; pp. 13039 - 13057 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.06.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0941-0643 1433-3058 |
DOI | 10.1007/s00521-025-11208-3 |
Cover
Abstract | Autism spectrum disorder is a neuro-developmental disability that can lead to a variety of communication, social, and behavioral challenges. The disorder affects approximately 1 in 54 children. Traditional diagnostic methods for autism spectrum disorder often involve subjective observations and extensive testing, which can be costly, time-consuming, and prone to inaccuracies. Electroencephalogram (EEG) presents a promising alternative because of its non-invasive, affordability, and ability to provide rapid results. This study combined the fast Walsh–Hadamard transform (FWHT) with one-dimensional convolutional neural network (1D-CNN) to propose an EEG-based solution for diagnosing autism spectrum disorder. The dataset has included resting-state EEG signals recorded from 62 subjects, including 31 autism spectrum disorder patients and 31 healthy controls using 17 channels. Multiscale principal component analysis (multiscale PCA) was used to improve the data quality by de-noising the raw EEG signals. FWHT coefficients were used to extract different feature sets and their performances were compared. The performance results of the FWHT feature extraction method and the 1D-CNN algorithm were computed as 0.971 precision, 0.972 specificity, 0.988 sensitivity, 0.979 f1-measure, 0.960 kappa statistic, 0.960 Matthew’s correlation coefficient, and 98.01% accuracy. Compared to the previous methods, the EEG-based deep learning model had a higher and more promising performance. |
---|---|
AbstractList | Autism spectrum disorder is a neuro-developmental disability that can lead to a variety of communication, social, and behavioral challenges. The disorder affects approximately 1 in 54 children. Traditional diagnostic methods for autism spectrum disorder often involve subjective observations and extensive testing, which can be costly, time-consuming, and prone to inaccuracies. Electroencephalogram (EEG) presents a promising alternative because of its non-invasive, affordability, and ability to provide rapid results. This study combined the fast Walsh–Hadamard transform (FWHT) with one-dimensional convolutional neural network (1D-CNN) to propose an EEG-based solution for diagnosing autism spectrum disorder. The dataset has included resting-state EEG signals recorded from 62 subjects, including 31 autism spectrum disorder patients and 31 healthy controls using 17 channels. Multiscale principal component analysis (multiscale PCA) was used to improve the data quality by de-noising the raw EEG signals. FWHT coefficients were used to extract different feature sets and their performances were compared. The performance results of the FWHT feature extraction method and the 1D-CNN algorithm were computed as 0.971 precision, 0.972 specificity, 0.988 sensitivity, 0.979 f1-measure, 0.960 kappa statistic, 0.960 Matthew’s correlation coefficient, and 98.01% accuracy. Compared to the previous methods, the EEG-based deep learning model had a higher and more promising performance. |
Author | Göker, Hanife |
Author_xml | – sequence: 1 givenname: Hanife orcidid: 0000-0003-0396-7885 surname: Göker fullname: Göker, Hanife email: gokerhanife@gazi.edu.tr organization: Health Services Vocational College, Gazi University |
BookMark | eNp9UEtOwzAUtFCRaAsXYGWJdcDfxFmi8ilSJTYglpYT221KYwc7AbHjDtyQk2AaJHasRk_z0ZuZgYnzzgBwitE5Rqi4iAhxgjNEeIYxQSKjB2CKGaUZRVxMwBSVLNE5o0dgFuMWIcRywaegx1dZ7d2r3w19453aQWeGsIf-zYdnqJyGVsUePqld3Hx9fC6VVq0KGvZBuWh9aKHquuBVvYHpgrpRa-dj49ZQpczYwtiZug9Dm6jogzbhGBzalGZOfnEOHm-uHxbLbHV_e7e4XGU1oZhmpSUFqcrC5gXJjaaaYV5zYwstKm01FoSbghpmBLeYmFqIKle5FYxVOUKK0Dk4G3PTey-Dib3c-iGkklFSgksmyoLQpCKjqg4-xmCs7EKTGr5LjOTPunJcV6Z15X5d-WOioykmsVub8Bf9j-sbA_aBxw |
Cites_doi | 10.18280/ts.380332 10.1186/s12916-018-1086-7 10.1016/S2215-0366(19)30289-5 10.1037/1082-989X.1.2.150 10.1289/ehp.84 10.1007/s10916-014-0031-3 10.1007/978-3-319-95720-3_16 10.1016/j.bbe.2020.01.008 10.1016/j.yebeh.2018.12.011 10.1038/s41598-018-24318-x 10.1007/s00521-023-09153-0 10.1016/j.bbr.2019.01.018 10.1177/15500594231178274 10.1109/ICFPT52863.2021.9609874 10.3389/fncel.2019.00385 10.1038/s42003-021-02494-3 10.18280/ts.390619 10.1007/s00521-021-06202-4 10.1007/s11571-023-10010-y 10.1016/j.compbiomed.2020.103722 10.1016/j.compbiomed.2021.104548 10.1016/j.aci.2019.10.001 10.1088/1742-6596/2070/1/012145 10.1109/SPMB50085.2020.9353626 10.3390/info14070410 10.1109/CVPR.2016.90 10.1155/2022/9340027 10.1007/s40489-019-00189-4 10.1016/j.dib.2023.109057 10.3390/sym14051003 10.1177/1550059420982424 10.4015/S1016237222500466 10.7554/eLife.35392 10.1109/MERCon.2019.8818814 10.1136/adc.2005.086280 10.1007/s11042-024-18341-6 10.61186/jcmh.10.4.8 10.1016/j.segan.2022.100839 10.1016/j.bbe.2017.08.006 10.1016/j.bspc.2021.102556 10.1007/s00521-017-3263-6 10.1016/j.cjche.2020.08.035 10.1007/s10803-020-04494-4 10.3390/ijerph16183502 10.1016/j.jneumeth.2019.108538 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Jun 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Jun 2025 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s00521-025-11208-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 13057 |
ExternalDocumentID | 10_1007_s00521_025_11208_3 |
GrantInformation_xml | – fundername: Gazi University |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX ABRTQ CITATION PQGLB PUEGO |
ID | FETCH-LOGICAL-c2313-9f272b97f6726ed3d415c5ef7d8bdfd1825e73e4e85f12ec88b6a6f844b600a23 |
IEDL.DBID | AGYKE |
ISSN | 0941-0643 |
IngestDate | Fri Jul 25 09:20:17 EDT 2025 Wed Sep 10 03:51:16 EDT 2025 Wed Jun 18 01:18:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Deep learning Signal processing Electroencephalogram signals Autism spectrum disorder Fast Walsh–Hadamard transform |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2313-9f272b97f6726ed3d415c5ef7d8bdfd1825e73e4e85f12ec88b6a6f844b600a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0396-7885 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/10.1007/s00521-025-11208-3 |
PQID | 3219489723 |
PQPubID | 2043988 |
PageCount | 19 |
ParticipantIDs | proquest_journals_3219489723 crossref_primary_10_1007_s00521_025_11208_3 springer_journals_10_1007_s00521_025_11208_3 |
PublicationCentury | 2000 |
PublicationDate | 20250600 2025-06-00 20250601 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2025 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | PM Dietz (11208_CR4) 2020; 50 T Heunis (11208_CR2) 2018; 16 11208_CR23 D Abdolzadegan (11208_CR35) 2020; 40 Q Mohiud Din (11208_CR37) 2023; 35 H Hadoush (11208_CR17) 2019; 362 M Liao (11208_CR39) 2022 11208_CR43 11208_CR40 J Kang (11208_CR38) 2020; 120 F Thabtah (11208_CR11) 2019; 16 11208_CR28 F Rabiei (11208_CR1) 2024; 10 11208_CR26 11208_CR8 R Alazrai (11208_CR24) 2019; 31 A Bochet (11208_CR15) 2021; 4 JP Welsh (11208_CR14) 2018; 7 M Nour (11208_CR31) 2021; 33 AK Ozcanli (11208_CR32) 2022; 32 E Gokgoz (11208_CR25) 2014; 38 QM Mohi-ud-Din (11208_CR20) 2022; 39 11208_CR34 R Menaka (11208_CR21) 2024; 55 T Wadhera (11208_CR42) 2021; 67 E Yücesoy (11208_CR30) 2024; 36 CJ Dover (11208_CR9) 2007; 92 S Ibrahim (11208_CR36) 2018; 38 L Xu (11208_CR18) 2020; 331 E Grossi (11208_CR12) 2021; 52 M-C Lai (11208_CR5) 2019; 6 M Radhakrishnan (11208_CR19) 2021; 38 Z Jafari (11208_CR44) 2023; 14 MM Duville (11208_CR22) 2023; 48 G McCormack (11208_CR10) 2020; 7 JK Singh (11208_CR41) 2024 AM Karim (11208_CR45) 2022; 14 M Baygin (11208_CR3) 2021; 134 MO Bertelli (11208_CR7) 2022 M Milovanovic (11208_CR13) 2019; 92 AB Cantor (11208_CR33) 1996; 1 L Rylaarsdam (11208_CR6) 2019; 13 M Nawaz (11208_CR27) 2021; 29 FJ Farsana (11208_CR29) 2020; 19 WJ Bosl (11208_CR16) 2018; 8 A Said (11208_CR46) 2024; 18 |
References_xml | – volume: 38 start-page: 853 issue: 3 year: 2021 ident: 11208_CR19 publication-title: Traitement Signal doi: 10.18280/ts.380332 – volume: 16 start-page: 1 year: 2018 ident: 11208_CR2 publication-title: BMC Med doi: 10.1186/s12916-018-1086-7 – volume: 6 start-page: 819 year: 2019 ident: 11208_CR5 publication-title: Lancet Psychiatr doi: 10.1016/S2215-0366(19)30289-5 – volume: 1 start-page: 150 issue: 2 year: 1996 ident: 11208_CR33 publication-title: Psychol Methods doi: 10.1037/1082-989X.1.2.150 – ident: 11208_CR8 doi: 10.1289/ehp.84 – volume: 38 start-page: 1 year: 2014 ident: 11208_CR25 publication-title: J Med Syst doi: 10.1007/s10916-014-0031-3 – start-page: 369 volume-title: Textbook of psychiatry for intellectual disability and autism spectrum disorder year: 2022 ident: 11208_CR7 doi: 10.1007/978-3-319-95720-3_16 – volume: 40 start-page: 482 issue: 1 year: 2020 ident: 11208_CR35 publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2020.01.008 – volume: 92 start-page: 45 year: 2019 ident: 11208_CR13 publication-title: Epilepsy Behav doi: 10.1016/j.yebeh.2018.12.011 – volume: 8 start-page: 6828 issue: 1 year: 2018 ident: 11208_CR16 publication-title: Sci Rep doi: 10.1038/s41598-018-24318-x – volume: 36 start-page: 3065 issue: 6 year: 2024 ident: 11208_CR30 publication-title: Neural Comput Appl doi: 10.1007/s00521-023-09153-0 – volume: 362 start-page: 240 year: 2019 ident: 11208_CR17 publication-title: Behav Brain Res doi: 10.1016/j.bbr.2019.01.018 – volume: 55 start-page: 43 issue: 1 year: 2024 ident: 11208_CR21 publication-title: Clin EEG Neurosci doi: 10.1177/15500594231178274 – ident: 11208_CR28 doi: 10.1109/ICFPT52863.2021.9609874 – volume: 13 start-page: 385 year: 2019 ident: 11208_CR6 publication-title: Front Cell Neurosci doi: 10.3389/fncel.2019.00385 – volume: 4 start-page: 968 issue: 1 year: 2021 ident: 11208_CR15 publication-title: Commun Biol doi: 10.1038/s42003-021-02494-3 – volume: 39 start-page: 2069 issue: 6 year: 2022 ident: 11208_CR20 publication-title: Traitement Signal doi: 10.18280/ts.390619 – volume: 33 start-page: 15815 year: 2021 ident: 11208_CR31 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06202-4 – volume: 18 start-page: 597 issue: 2 year: 2024 ident: 11208_CR46 publication-title: Cogn Neurodyn doi: 10.1007/s11571-023-10010-y – volume: 120 start-page: 103722 year: 2020 ident: 11208_CR38 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.103722 – volume: 134 start-page: 104548 year: 2021 ident: 11208_CR3 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104548 – volume: 19 start-page: 239 issue: 3/4 year: 2020 ident: 11208_CR29 publication-title: Appl Comput Inf doi: 10.1016/j.aci.2019.10.001 – ident: 11208_CR26 doi: 10.1088/1742-6596/2070/1/012145 – ident: 11208_CR40 doi: 10.1109/SPMB50085.2020.9353626 – volume: 14 start-page: 410 issue: 7 year: 2023 ident: 11208_CR44 publication-title: Information doi: 10.3390/info14070410 – ident: 11208_CR23 – ident: 11208_CR43 doi: 10.1109/CVPR.2016.90 – year: 2022 ident: 11208_CR39 publication-title: J Healthc Eng doi: 10.1155/2022/9340027 – volume: 7 start-page: 226 issue: 3 year: 2020 ident: 11208_CR10 publication-title: Rev J Autism Dev Disord doi: 10.1007/s40489-019-00189-4 – volume: 48 start-page: 109057 year: 2023 ident: 11208_CR22 publication-title: Data Brief doi: 10.1016/j.dib.2023.109057 – volume: 14 start-page: 1003 issue: 5 year: 2022 ident: 11208_CR45 publication-title: Symmetry doi: 10.3390/sym14051003 – volume: 52 start-page: 330 issue: 5 year: 2021 ident: 11208_CR12 publication-title: Clin EEG Neurosci doi: 10.1177/1550059420982424 – volume: 35 start-page: 2250046 issue: 01 year: 2023 ident: 11208_CR37 publication-title: Biomed Eng Appl Basis Commun doi: 10.4015/S1016237222500466 – volume: 7 start-page: e35392 year: 2018 ident: 11208_CR14 publication-title: Elife doi: 10.7554/eLife.35392 – ident: 11208_CR34 doi: 10.1109/MERCon.2019.8818814 – volume: 92 start-page: 540 issue: 6 year: 2007 ident: 11208_CR9 publication-title: Arch Dis Child doi: 10.1136/adc.2005.086280 – year: 2024 ident: 11208_CR41 publication-title: Multimed Tools Appl doi: 10.1007/s11042-024-18341-6 – volume: 10 start-page: 93 issue: 4 year: 2024 ident: 11208_CR1 publication-title: J Child Ment Health doi: 10.61186/jcmh.10.4.8 – volume: 32 start-page: 100839 year: 2022 ident: 11208_CR32 publication-title: Sustain Energy Grids Netw doi: 10.1016/j.segan.2022.100839 – volume: 38 start-page: 16 issue: 1 year: 2018 ident: 11208_CR36 publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2017.08.006 – volume: 67 start-page: 102556 year: 2021 ident: 11208_CR42 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102556 – volume: 31 start-page: 3187 year: 2019 ident: 11208_CR24 publication-title: Neural Comput Applic doi: 10.1007/s00521-017-3263-6 – volume: 29 start-page: 253 year: 2021 ident: 11208_CR27 publication-title: Chin J Chem Eng doi: 10.1016/j.cjche.2020.08.035 – volume: 50 start-page: 4258 year: 2020 ident: 11208_CR4 publication-title: J Autism Dev Disord doi: 10.1007/s10803-020-04494-4 – volume: 16 start-page: 3502 issue: 18 year: 2019 ident: 11208_CR11 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph16183502 – volume: 331 start-page: 108538 year: 2020 ident: 11208_CR18 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2019.108538 |
SSID | ssj0004685 |
Score | 2.384839 |
Snippet | Autism spectrum disorder is a neuro-developmental disability that can lead to a variety of communication, social, and behavioral challenges. The disorder... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 13039 |
SubjectTerms | Artificial Intelligence Artificial neural networks Autism Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Correlation coefficients Data Mining and Knowledge Discovery Electroencephalography Feature extraction Image Processing and Computer Vision Machine learning Neural networks Original Article Principal components analysis Probability and Statistics in Computer Science |
Title | 1D-convolutional neural network and fast Walsh–Hadamard transform approach for diagnosing autism spectrum disorder |
URI | https://link.springer.com/article/10.1007/s00521-025-11208-3 https://www.proquest.com/docview/3219489723 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RsrBQnqJQKg9skKq1nddYlZdAMFFRpiiObSGhBkTThYn_wD_kl3B2bQoVDF0SRUks5-7sfGfffQdwVHCdCiHCoNsVxkEpuoFgKg606qaJ0GGR2vTom9vocsivRuHIJYVNfLS735K0M_V3sptZwUTXl4YBYgSzqleD1dA4KHVY7V88XJ_9yIe0pTjRczFRPZy5ZJm_W_n9Q5qjzIWNUfu_OW_A0Pd0Fmby1JlWolO8LZA4LvspG7DuACjpzyxmE1ZUuQUNX9yBuLG-DVXvNDAh6c408RVDfWlPNnCc5KUkOp9U5B4t-PHz_QMnsXyMBkcqD4aJZywneEXkLKoPO0pybHMyJjbN83U6JtJxgO7A8PzsbnAZuBINQYHAkAWppjEVaayjmEZKMol4oAiVjmUipJbovIQqZoqrJNQ9qookEVEe6YRzgUgrp2wX6uVzqfaARFrGyqTxcpVzqoXQaV7IJJUpMyQ5qgnHXk_Zy4yJI_vmXLYCzVCgmRVoxprQ8qrM3KicZAynZ56YOmtNOPGamd_-v7X95R4_gDVqlGsXa1pQR0mqQ8QulWg7U21DbRAN8Dik_S9Yw-lK |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5BGWDhH1Eo4IENgtrYSZwRQaHQ0qkVMEVxbAsJtSCaLky8A2_Ik3B2bQoVDExRlMRy7s72d_bddwCHBdOpECIK6nVhHJSiHgiqkkCresqFjorUpkffdONWn13fRXcuKWzko939kaSdqb-S3cwOJrq-YRQgRjC7evOwwBqcswosnF7et5vf8iFtKU70XExUD6MuWeb3Vn4uSFOUOXMwatebixXo-55OwkweT8alOCleZ0gc__srq7DsACg5nVjMGsyp4Tqs-OIOxI31DSgb54EJSXemiZ8Y6kt7sYHjJB9KovNRSW7Rgh8-3t5xEssHaHCk9GCYeMZygndETqL6sKMkxzZHA2LTPF_GAyIdB-gm9C-avbNW4Eo0BAUCQxqkOkxCkSY6TsJYSSoRDxSR0onkQmqJzkukEqqY4pFuhKrgXMR5rDljApFWHtItqAyfhmobSKxlokwaL1M5C7UQOs0LyVOZUkOSo6pw5PWUPU-YOLIvzmUr0AwFmlmBZrQKNa_KzI3KUUZxembc1FmrwrHXzPTx363t_O_1A1hs9W46Weeq296FpdAo2m7c1KCCUlV7iGNKse_M9hOBy-p1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELagSIiFf0ShgAc2sBpsJ3HGilKVv4qBim5WHNtiaaho2HkH3pAn4ewkbUEwMEVREis6n33fne-7Q-g04zZRSoUkCJRzULKAKGZiYk2QCGXDLPH06PtB1B_ym1E4WmDx-2z3-kiy5DS4Kk150Z5o254R31w0E9xgGhLACy7Ct4xWONhq534NaWeBGembcoIP4_J7OKtoM7-P8d00zfHmjyNSb3l6m2i9goy4U87xFloy-TbaqNsx4Gp17qDioktcEnmlTPCJK1bpLz7VG6e5xjadFvgJdO758_0Dtp10DCqCixq-4rrGOIY7rMs8PPgrnMKY0zH2xMzXtzHWVdXOXTTsXT1e9knVVIFkAOUYSSyNqUpiG8U0MpppsOBZaGyshdJWg7sRmpgZbkRoL6jJhFBRGlnBuQJslFK2hxr5S272EY6sjo0j3nKTcmqVskmaaZHohLmyNqaJzmp5yklZO0POqiR76UuQvvTSl6yJWrXIZbWOppLBhsqF64zWROf1NMwf_z3awf9eP0GrD92evLse3B6iNeqUwkdaWqgBQjVHADwKdex16wtAJtHL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1D-convolutional+neural+network+and+fast+Walsh%E2%80%93Hadamard+transform+approach+for+diagnosing+autism+spectrum+disorder&rft.jtitle=Neural+computing+%26+applications&rft.au=G%C3%B6ker%2C+Hanife&rft.date=2025-06-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=18&rft.spage=13039&rft.epage=13057&rft_id=info:doi/10.1007%2Fs00521-025-11208-3&rft.externalDocID=10_1007_s00521_025_11208_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |