A Rough Based Hybrid Binary PSO Algorithm for Flat Feature Selection and Classification in Gene Expression Data
Feature selection in high dimensional data, particularly, in gene expression data, is one of the challenging task in bioinformatics due to the curse of dimensionality, data redundancy and noise values. In gene expression data, insignificant features causes poor classification, hence feature selectio...
Saved in:
| Published in | Annals of data science Vol. 4; no. 3; pp. 341 - 360 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2017
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2198-5804 2198-5812 |
| DOI | 10.1007/s40745-017-0106-3 |
Cover
| Abstract | Feature selection in high dimensional data, particularly, in gene expression data, is one of the challenging task in bioinformatics due to the curse of dimensionality, data redundancy and noise values. In gene expression data, insignificant features causes poor classification, hence feature selection reduces feature subset, improving classification accuracy. Feature selection algorithms in gene expression data(such as filter based, wrapper based and hybrid methods) performing poor accuracy, where as few methods takes too much time to converge for an acceptable results. For example, in NSGA-II, over 10,000 generations, on an average, to converge in the search space. where it incurs increased computational time. Proposed rough based hybrid binary PSO algorithm, which uses a heuristic based fast processing strategy to reduce crude domain features by statistical elimination of redundant features and then discretized subsequently into a binary table, known as distinction table, in rough set theory. This distinction table is later used as input to evaluate and optimize the objectives functions i.e., to generate reduct in rough set theory. The proposed hybrid binary PSO is then used to tune the objective functions, to choose the most important features (i:e:reduct). The fitness function is used in such a way that it can reduce the cardinality of the features and at the same time, improve the classification performance as well. Results have been demonstrated to show the effectiveness of the proposed method, on existing three benchmark datasets (i.e. colon cancer, lymphoma and leukemia data), from literature. |
|---|---|
| AbstractList | Feature selection in high dimensional data, particularly, in gene expression data, is one of the challenging task in bioinformatics due to the curse of dimensionality, data redundancy and noise values. In gene expression data, insignificant features causes poor classification, hence feature selection reduces feature subset, improving classification accuracy. Feature selection algorithms in gene expression data(such as filter based, wrapper based and hybrid methods) performing poor accuracy, where as few methods takes too much time to converge for an acceptable results. For example, in NSGA-II, over 10,000 generations, on an average, to converge in the search space. where it incurs increased computational time. Proposed rough based hybrid binary PSO algorithm, which uses a heuristic based fast processing strategy to reduce crude domain features by statistical elimination of redundant features and then discretized subsequently into a binary table, known as distinction table, in rough set theory. This distinction table is later used as input to evaluate and optimize the objectives functions i.e., to generate reduct in rough set theory. The proposed hybrid binary PSO is then used to tune the objective functions, to choose the most important features (i:e:reduct). The fitness function is used in such a way that it can reduce the cardinality of the features and at the same time, improve the classification performance as well. Results have been demonstrated to show the effectiveness of the proposed method, on existing three benchmark datasets (i.e. colon cancer, lymphoma and leukemia data), from literature. |
| Author | Annavarapu, Chandra Sekhara Rao Banka, Haider Dara, Suresh |
| Author_xml | – sequence: 1 givenname: Suresh orcidid: 0000-0002-1626-8701 surname: Dara fullname: Dara, Suresh email: darasuresh@live.in organization: B.V. Raju Inistitute of Technology – sequence: 2 givenname: Haider surname: Banka fullname: Banka, Haider organization: Department of Computer Science and Engineering, Indian Institute of Technology (ISM) – sequence: 3 givenname: Chandra Sekhara Rao surname: Annavarapu fullname: Annavarapu, Chandra Sekhara Rao organization: Department of Computer Science and Engineering, Indian Institute of Technology (ISM) |
| BookMark | eNp9kEtLAzEQx4NU8PkBvAU8r05eu9ljW60KguLjHLK7SZuyJjXZgv32RisKgh6GGWbmN4__ARr54A1CJwTOCEB1njhUXBRAqmxQFmwH7VNSy0JIQkffMfA9dJzSEgAo4UCZ2EdhjB_Cer7AE51Mh683TXQdnjiv4wbfP97hcT8P0Q2LF2xDxLNeD3hm9LCOBj-a3rSDCx5r3-Fpr1Ny1rX6M-U8vjLe4Mu3VTS5kFMXetBHaNfqPpnjL3-InmeXT9Pr4vbu6mY6vi1ayggrZFfysgEmLGjTAUiQ0pZCMlPbXGta1nLBjBBtCRWzXMqybKSueUOpZTVhh-h0O3cVw-vapEEtwzr6vFJRXpUgiOR17iLbrjaGlKKxahXdS35dEVAf0qqttCpLqz6kVSwz1S-mdcPnz0PUrv-XpFsy5S1-buLPTX9D7xhdjS8 |
| CitedBy_id | crossref_primary_10_7763_IJCTE_2024_V16_1354 crossref_primary_10_1016_j_compbiomed_2024_108089 crossref_primary_10_1007_s11277_019_06863_4 crossref_primary_10_2139_ssrn_3351002 crossref_primary_10_1016_j_chemolab_2021_104305 crossref_primary_10_1016_j_matpr_2020_09_634 crossref_primary_10_1007_s00521_019_04197_7 crossref_primary_10_1063_5_0256260 crossref_primary_10_2139_ssrn_3368790 crossref_primary_10_1007_s00500_020_05349_x crossref_primary_10_1109_ACCESS_2022_3142859 |
| Cites_doi | 10.1007/s10015-009-0712-z 10.1016/j.eswa.2014.10.044 10.1093/bioinformatics/btl386 10.1016/j.eswa.2014.08.014 10.1016/j.patrec.2006.09.003 10.1109/TCBB.2012.33 10.1093/bioinformatics/bth383 10.1016/S0004-3702(97)00043-X 10.1007/s12539-015-0272-y 10.1093/nar/gkv380 10.1093/bioinformatics/19.1.45 10.1016/S0377-2217(96)00382-7 10.1080/08839510490278916 10.1016/j.compbiolchem.2007.09.005 10.1007/s10115-010-0288-x 10.1142/S0219720005001004 10.1109/TSMCC.2007.897498 10.1016/j.eswa.2011.04.057 10.1038/nprot.2015.052 10.1016/j.fss.2011.09.009 10.2307/1937992 10.1007/978-3-540-78757-0_13 10.1007/978-94-015-7975-9_21 10.1109/ICEC.1998.699146 10.1109/CEC.2012.6256452 10.1109/CEC.1999.785511 10.1109/ICIINFS.2014.7036522 10.1145/1389095.1389114 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2017 Springer-Verlag Berlin Heidelberg 2017. |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2017 – notice: Springer-Verlag Berlin Heidelberg 2017. |
| DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G HCIFZ K60 K6~ L.- M0C P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PYYUZ Q9U |
| DOI | 10.1007/s40745-017-0106-3 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Computer Science |
| EISSN | 2198-5812 |
| EndPage | 360 |
| ExternalDocumentID | 10_1007_s40745_017_0106_3 |
| GroupedDBID | -EM 0R~ 203 4.4 406 7WY 8FL AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABUWG ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFKRA AFQWF AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ARAPS ASPBG AUKKA AVWKF AVXWI AXYYD AYQZM AZFZN BAPOH BENPR BEZIV BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FRNLG FRRFC FSGXE GGCAI GGRSB GJIRD HCIFZ HVGLF IKXTQ IWAJR IXD J-C JZLTJ KOV LLZTM M0C M4Y NB0 NPVJJ NQJWS NU0 O9J PQBIZ PQBZA PQQKQ PT4 RLLFE ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 Z81 Z83 Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 3V. 7XB 8FE 8FG 8FK K60 K6~ L.- P62 PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c2313-8d646b035f0aed008088f6583e9f8d6bc3c453e55c6073f48866b8a94b22f3913 |
| IEDL.DBID | AGYKE |
| ISSN | 2198-5804 |
| IngestDate | Sat Jul 26 00:00:51 EDT 2025 Thu Apr 24 22:55:03 EDT 2025 Wed Oct 01 05:03:34 EDT 2025 Fri Feb 21 02:42:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Microarray gene expression Rough set theory Classifications Binary PSO Feature selection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2313-8d646b035f0aed008088f6583e9f8d6bc3c453e55c6073f48866b8a94b22f3913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1626-8701 |
| PQID | 2476051849 |
| PQPubID | 2044270 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2476051849 crossref_primary_10_1007_s40745_017_0106_3 crossref_citationtrail_10_1007_s40745_017_0106_3 springer_journals_10_1007_s40745_017_0106_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20170900 2017-9-00 20170901 |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 9 year: 2017 text: 20170900 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Annals of data science |
| PublicationTitleAbbrev | Ann. Data. Sci |
| PublicationYear | 2017 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Lazar (CR8) 2012; 9 Deutsch (CR37) 2003; 19 Tang, Alelyani, Liu (CR6) 2014 Xia, Gill, Hancock (CR1) 2015; 10 CR18 Kar, Sharma, Maitra (CR4) 2015; 42 CR38 CR15 Wang, Yang, Teng, Xia, Jensen (CR19) 2007; 28 Duda, Hart, Stork (CR33) 2012 CR14 CR36 Montgomery, Runger, Hubele (CR34) 2009 CR35 CR12 CR31 Xia, Sinelnikov, Han, Wishart (CR2) 2015; 43 Li, Lei, Pang (CR3) 2015; 7 Banerjee, Mitra, Banka (CR16) 2007; 37 Xue, Zhang, Browne (CR17) 2013; 99 Yu, Liu (CR32) 2003; 3 Huang (CR28) 2004; 18 Li, Wang (CR7) 2009; 1 CR5 mohamad, Omatu, Deris, Yoshioka (CR27) 2009; 14 CR26 Rakotomamonjy (CR40) 2003; 3 CR25 CR24 Chuang, Chang, Tu, Yang (CR20) 2008; 32 CR23 El Akadi, Amine, El Ouardighi, Aboutajdine (CR11) 2011; 26 Cawley, Talbot (CR41) 2006; 22 Kohavi, John (CR44) 1997; 97 Atul, Jeya Sundara Sharmila (CR10) 2015; 8 Vieira, Sousa, Kaymak (CR13) 2012; 189 Ding, Peng (CR43) 2005; 3 Wei (CR42) 1981; 76 Pochet, De Smet, Suykens, De Moor (CR39) 2004; 20 Chuang, Tsai, Yang (CR30) 2011; 38 Pawlak (CR21) 1997; 99 Krishnapuram, Hartemink, Carin, Figueredo (CR29) 2004; 26 Park, Kim (CR9) 2015; 42 Wroblewski (CR22) 1995 A Akadi El (106_CR11) 2011; 26 106_CR5 L Wei (106_CR42) 1981; 76 C Ding (106_CR43) 2005; 3 Kumar Atul (106_CR10) 2015; 8 R Kohavi (106_CR44) 1997; 97 RO Duda (106_CR33) 2012 Jianguo Xia (106_CR2) 2015; 43 106_CR31 CJ Huang (106_CR28) 2004; 18 B Xue (106_CR17) 2013; 99 Jiangeng Li (106_CR3) 2015; 7 Subhajit Kar (106_CR4) 2015; 42 C Lazar (106_CR8) 2012; 9 106_CR38 106_CR18 MS mohamad (106_CR27) 2009; 14 J Tang (106_CR6) 2014 106_CR12 106_CR35 106_CR14 106_CR36 106_CR15 GC Cawley (106_CR41) 2006; 22 J Deutsch (106_CR37) 2003; 19 Chan Hee Park (106_CR9) 2015; 42 M Banerjee (106_CR16) 2007; 37 X Wang (106_CR19) 2007; 28 Gang-Guo Li (106_CR7) 2009; 1 Z Pawlak (106_CR21) 1997; 99 B Krishnapuram (106_CR29) 2004; 26 Jianguo Xia (106_CR1) 2015; 10 DC Montgomery (106_CR34) 2009 A Rakotomamonjy (106_CR40) 2003; 3 SM Vieira (106_CR13) 2012; 189 L Yu (106_CR32) 2003; 3 N Pochet (106_CR39) 2004; 20 LY Chuang (106_CR20) 2008; 32 J Wroblewski (106_CR22) 1995 106_CR23 LY Chuang (106_CR30) 2011; 38 106_CR24 106_CR25 106_CR26 |
| References_xml | – volume: 14 start-page: 16 year: 2009 end-page: 19 ident: CR27 article-title: Particle swarm optimization for gene selection in classifying cancer classes publication-title: Artif Life Robot doi: 10.1007/s10015-009-0712-z – year: 2014 ident: CR6 publication-title: Feature selection for classification: a review. Data classification: algorithms and applications – ident: CR18 – volume: 3 start-page: 856 year: 2003 end-page: 863 ident: CR32 article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution publication-title: ICML – volume: 42 start-page: 2336 issue: 5 year: 2015 end-page: 2342 ident: CR9 article-title: Sequential random k-nearest neighbor feature selection for high-dimensional data publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.10.044 – ident: CR14 – ident: CR12 – volume: 22 start-page: 2348 issue: 19 year: 2006 end-page: 2355 ident: CR41 article-title: Gene selection in cancer classification using sparse logistic regression with bayesian regularization publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl386 – volume: 76 start-page: 1006 issue: 376 year: 1981 end-page: 1009 ident: CR42 article-title: Asymptotic conservativeness and efficiency of kruskal-wallis test for k dependent samples publication-title: J Am Stat Assoc – volume: 42 start-page: 612 issue: 1 year: 2015 end-page: 627 ident: CR4 article-title: Gene selection from microarray gene expression data for classification of cancer subgroups employing pso and adaptive k-nearest neighborhood technique publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.08.014 – volume: 28 start-page: 459 issue: 4 year: 2007 end-page: 471 ident: CR19 article-title: Feature selection based on rough sets and particle swarm optimization publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2006.09.003 – volume: 9 start-page: 1106 issue: 4 year: 2012 end-page: 1119 ident: CR8 article-title: A survey on filter techniques for feature selection in gene expression microarray analysis publication-title: IEEE/ACM Trans Comput Biol Bioinf (TCBB) doi: 10.1109/TCBB.2012.33 – ident: CR35 – volume: 20 start-page: 3185 issue: 17 year: 2004 end-page: 3195 ident: CR39 article-title: Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth383 – volume: 1 start-page: 72 issue: 1 year: 2009 end-page: 80 ident: CR7 article-title: Evaluation of similarity measures for gene expression data and their correspondent combined measures. Interdisciplinary Sciences: Computational publication-title: Life Sci – volume: 97 start-page: 273 issue: 1 year: 1997 end-page: 324 ident: CR44 article-title: Wrappers for feature subset selection publication-title: Artif Intell doi: 10.1016/S0004-3702(97)00043-X – ident: CR25 – volume: 3 start-page: 1357 year: 2003 end-page: 1370 ident: CR40 article-title: Variable selection using svm based criteria publication-title: J Mach Learn Res – ident: CR23 – volume: 7 start-page: 391 issue: 4 year: 2015 end-page: 396 ident: CR3 article-title: A filter feature selection method based on mfa score and redundancy excluding and its application to tumor gene expression data analysis publication-title: Interdiscip Sci doi: 10.1007/s12539-015-0272-y – year: 2009 ident: CR34 publication-title: Engineering statistics – volume: 8 start-page: 1 year: 2015 end-page: 7 ident: CR10 article-title: Algorithmic approach for removing the redundancy in diabetic gene categories based on semantic similarity and gene expression data publication-title: Interdiscip Sci – volume: 43 start-page: W251 issue: W1 year: 2015 end-page: W257 ident: CR2 article-title: Metaboanalyst 3.0 making metabolomics more meaningful publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv380 – year: 1995 ident: CR22 publication-title: Finding minimal reducts using genetic algorithms – volume: 19 start-page: 45 issue: 1 year: 2003 end-page: 52 ident: CR37 article-title: Evolutionary algorithms for finding optimal gene sets in microarray prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.1.45 – ident: CR15 – volume: 99 start-page: 48 year: 1997 end-page: 57 ident: CR21 article-title: Rough set approach to knowledge-based decision support publication-title: Eur J Oper Res doi: 10.1016/S0377-2217(96)00382-7 – ident: CR38 – volume: 18 start-page: 117 year: 2004 end-page: 128 ident: CR28 article-title: class prediction of cancer using probabilistic neural networks and relatice correlation metric publication-title: Appl Artif Intell doi: 10.1080/08839510490278916 – volume: 32 start-page: 29 issue: 1 year: 2008 end-page: 38 ident: CR20 article-title: Improved binary PSO for feature selection using gene expression data publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2007.09.005 – ident: CR31 – volume: 26 start-page: 487 issue: 3 year: 2011 end-page: 500 ident: CR11 article-title: A two-stage gene selection scheme utilizing mrmr filter and ga wrapper publication-title: Knowledge Inf Syst doi: 10.1007/s10115-010-0288-x – volume: 99 start-page: 1 year: 2013 end-page: 16 ident: CR17 article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach publication-title: IEEE Trans Cybern – year: 2012 ident: CR33 publication-title: Pattern classification – ident: CR36 – ident: CR5 – volume: 3 start-page: 185 issue: 02 year: 2005 end-page: 205 ident: CR43 article-title: Minimum redundancy feature selection from microarray gene expression data publication-title: J Bioinform and Comput Biol doi: 10.1142/S0219720005001004 – volume: 37 start-page: 622 year: 2007 end-page: 632 ident: CR16 article-title: Evolutionary rough feature selection in gene expression data publication-title: IEEE Trans Syst Man Cybern C Appl Rev doi: 10.1109/TSMCC.2007.897498 – ident: CR26 – ident: CR24 – volume: 38 start-page: 12699 year: 2011 end-page: 12707 ident: CR30 article-title: Improved binary particle swarm optimization using catfish effect for feature selection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.04.057 – volume: 10 start-page: 823 issue: 6 year: 2015 end-page: 844 ident: CR1 article-title: Networkanalyst for statistical, visual and network-based meta-analysis of gene expression data publication-title: Nat Protoc doi: 10.1038/nprot.2015.052 – volume: 26 start-page: 1105 issue: 9 year: 2004 end-page: 1111 ident: CR29 article-title: A Bayesian approach to joint feature selection and classifier design publication-title: Artif Life Robot – volume: 189 start-page: 1 year: 2012 end-page: 18 ident: CR13 article-title: Fuzzy criteria for feature selection publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2011.09.009 – volume: 99 start-page: 48 year: 1997 ident: 106_CR21 publication-title: Eur J Oper Res doi: 10.1016/S0377-2217(96)00382-7 – volume: 19 start-page: 45 issue: 1 year: 2003 ident: 106_CR37 publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.1.45 – volume: 26 start-page: 1105 issue: 9 year: 2004 ident: 106_CR29 publication-title: Artif Life Robot – volume: 76 start-page: 1006 issue: 376 year: 1981 ident: 106_CR42 publication-title: J Am Stat Assoc – volume: 43 start-page: W251 issue: W1 year: 2015 ident: 106_CR2 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv380 – volume: 42 start-page: 612 issue: 1 year: 2015 ident: 106_CR4 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.08.014 – volume: 32 start-page: 29 issue: 1 year: 2008 ident: 106_CR20 publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2007.09.005 – volume-title: Engineering statistics year: 2009 ident: 106_CR34 – ident: 106_CR35 doi: 10.2307/1937992 – ident: 106_CR31 – volume: 38 start-page: 12699 year: 2011 ident: 106_CR30 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.04.057 – volume: 189 start-page: 1 year: 2012 ident: 106_CR13 publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2011.09.009 – ident: 106_CR38 doi: 10.1007/978-3-540-78757-0_13 – ident: 106_CR12 – volume: 20 start-page: 3185 issue: 17 year: 2004 ident: 106_CR39 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth383 – ident: 106_CR5 doi: 10.1007/978-94-015-7975-9_21 – volume: 37 start-page: 622 year: 2007 ident: 106_CR16 publication-title: IEEE Trans Syst Man Cybern C Appl Rev doi: 10.1109/TSMCC.2007.897498 – volume: 99 start-page: 1 year: 2013 ident: 106_CR17 publication-title: IEEE Trans Cybern – ident: 106_CR18 – volume: 7 start-page: 391 issue: 4 year: 2015 ident: 106_CR3 publication-title: Interdiscip Sci doi: 10.1007/s12539-015-0272-y – volume: 14 start-page: 16 year: 2009 ident: 106_CR27 publication-title: Artif Life Robot doi: 10.1007/s10015-009-0712-z – volume-title: Finding minimal reducts using genetic algorithms year: 1995 ident: 106_CR22 – volume: 97 start-page: 273 issue: 1 year: 1997 ident: 106_CR44 publication-title: Artif Intell doi: 10.1016/S0004-3702(97)00043-X – volume-title: Feature selection for classification: a review. Data classification: algorithms and applications year: 2014 ident: 106_CR6 – volume: 3 start-page: 856 year: 2003 ident: 106_CR32 publication-title: ICML – ident: 106_CR24 doi: 10.1109/ICEC.1998.699146 – volume: 9 start-page: 1106 issue: 4 year: 2012 ident: 106_CR8 publication-title: IEEE/ACM Trans Comput Biol Bioinf (TCBB) doi: 10.1109/TCBB.2012.33 – ident: 106_CR23 – volume: 1 start-page: 72 issue: 1 year: 2009 ident: 106_CR7 publication-title: Life Sci – volume: 3 start-page: 185 issue: 02 year: 2005 ident: 106_CR43 publication-title: J Bioinform and Comput Biol doi: 10.1142/S0219720005001004 – volume: 10 start-page: 823 issue: 6 year: 2015 ident: 106_CR1 publication-title: Nat Protoc doi: 10.1038/nprot.2015.052 – volume: 26 start-page: 487 issue: 3 year: 2011 ident: 106_CR11 publication-title: Knowledge Inf Syst doi: 10.1007/s10115-010-0288-x – volume: 3 start-page: 1357 year: 2003 ident: 106_CR40 publication-title: J Mach Learn Res – volume: 8 start-page: 1 year: 2015 ident: 106_CR10 publication-title: Interdiscip Sci – volume: 42 start-page: 2336 issue: 5 year: 2015 ident: 106_CR9 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.10.044 – volume: 28 start-page: 459 issue: 4 year: 2007 ident: 106_CR19 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2006.09.003 – ident: 106_CR36 – ident: 106_CR14 doi: 10.1109/CEC.2012.6256452 – volume: 18 start-page: 117 year: 2004 ident: 106_CR28 publication-title: Appl Artif Intell doi: 10.1080/08839510490278916 – volume: 22 start-page: 2348 issue: 19 year: 2006 ident: 106_CR41 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl386 – ident: 106_CR26 doi: 10.1109/CEC.1999.785511 – ident: 106_CR15 doi: 10.1109/ICIINFS.2014.7036522 – ident: 106_CR25 doi: 10.1145/1389095.1389114 – volume-title: Pattern classification year: 2012 ident: 106_CR33 |
| SSID | ssj0002140235 |
| Score | 2.0927773 |
| Snippet | Feature selection in high dimensional data, particularly, in gene expression data, is one of the challenging task in bioinformatics due to the curse of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 341 |
| SubjectTerms | Algorithms Artificial Intelligence Bioinformatics Business and Management Classification Colon Computing time Convergence Economics Feature selection Finance Gene expression Insurance Leukemia Management Redundancy Set theory Statistics for Business |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgXLjwRoyXfOAEquiapGsPCG2waUJiIB4StyptE0AaHY8iwb_HDu0mkOCcNFLtOP6c2P4A9oxWbdv2fc8SGPUkeVwvjgxFKcoIGdrQKssX-ufDcHArz-7U3QwM61oYTqusz0R3UOfjjO_IDwPZJuRN8Uh8_PziMWsUv67WFBq6olbIj1yLsVmYC7gzVgPmur3h5dXk1iWgeCJwrJtkqVxy5Mv6qZPr6Si6kZzLxtmYnBP201lNEeivR1Pni_pLsFCBSOx8a30ZZkyxAos1QQNW9roK4w5eMQsPdslX5Tj45PIs7LoSXLy8vsDO6J7-sXx4QsKu2B_pEhkTvr8avHYEOaQ11EWOjjuTs4qcIvGxQO5Xjb2PKo-2wFNd6jW47fduTgZexbDgZYTrhBfloQxTXyjra5MzeowiS5hEmNjSWJqJTCphlMpCOgosGXsYppGOZRoEVsQtsQ6NYlyYDcCU5mgrY5erKNNWarWSrSzOrPAj3fab4NeiTLKq_TizYIySSeNkJ_2EpJ-w9BPRhP3JJ8_fvTf-m7xd6yepzPAtmW6aJhzUOpsO_7nY5v-LbcF84DYJp5ptQ6N8fTc7hE3KdLfacF-mfdyo priority: 102 providerName: ProQuest |
| Title | A Rough Based Hybrid Binary PSO Algorithm for Flat Feature Selection and Classification in Gene Expression Data |
| URI | https://link.springer.com/article/10.1007/s40745-017-0106-3 https://www.proquest.com/docview/2476051849 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2198-5812 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140235 issn: 2198-5804 databaseCode: AFBBN dateStart: 20140301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2198-5812 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0002140235 issn: 2198-5804 databaseCode: BENPR dateStart: 20140301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2198-5812 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140235 issn: 2198-5804 databaseCode: AGYKE dateStart: 20140101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6N8sBegMEmCl11D3sCBaWxnSaP7dZSgWCIHxJ7iuzU3hAlRW0qAX_9zm7cCrQh8ZQHO1Zin33f-b67A_impWibdhgGhsBowEnjBmmiyUoRmvHYxEYYe6F_ehYPrvnxjbip4rinnu3uXZLupF4Eu5HpwS3RzFIlLWFrBVZduq0arHaOfp0sr1YiMhoiV1qTtqONKwq592f-a5yXGmkJM195Rp3C6W_Alf_UOc_k7nBWqsP8-VUWx3f-yyasVwAUO3OJ-QQfdLEFG764A1Z7fQvWfMjydBvGHbyw1XywSzpviIMnG-aFXRfKi-eXP7Ez-j2e3JZ_7pEwMPZHskSLLWcTjZeu0A6tPspiiK4Gp2UnOYHA2wJt3mvsPVZ83AJ_yFJ-hut-7-r7IKgqNQQ54UMWJMOYxypkwoRSDy0KTRJD2Ibp1FCbylnOBdNC5DEdKYYOjThWiUy5iiLD0hb7ArViXOgdQEV9pOGp4zxy1VJGCt7K09ywMJHtsA6hX60sr9KY22oao2yRgNlNbkaTm9nJzVgd9hevPMxzeLzVueFFIKu28zSLeJvMPjKG0zoc-BVdNv93sN139d6Dj5ETCctga0CtnMz0V4I8pWrCStI_alaCTs9u7-z84i_MN_Wa |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLSXQl_q8pxDe2kVNRvb2eSAql3Y1VJgi3hI3IKT2G2lbZZHEPDn-tuYMc6uWqncOMfxYfzZ8409Mx_AB6NVx3bCMLBERgNJHjdIE0NRijJCxja2yvKF_v4oHp7Ib6fqdA7-NLUwnFbZnInuoC4nBd-Rf4lkh5g3xSPp1_OLgFWj-HW1kdDQXlqh3HQtxnxhx665u6EQ7mpzZ5vW-2MUDfrHW8PAqwwEBXEbESRlLOM8FMqG2pTMoJLEkl8WJrX0LS9EIZUwShUxbQdLgI_jPNGpzKPIirQtaN5nsCCFTCn4W-j1RweH01ueiOKXyKl80snAJU6hbJ5WuX6PoinJuXOc_ck5aH87xxnj_eeR1vm-wRK89KQVuw8oewVzpnoNi40gBPrz4Q1MunjIqj_YI99Y4vCOy8Gw50p-8eDoO3bHP8im9c_fSFwZB2NdI3PQ60uDR06Qh1CCuirRaXVyFpMDDv6qkPtjY__W5-1WuK1r_RZOnsTW72C-mlTmPWBOY7SVqcuNlHk7t1rJdpEWVoSJ7oQtCBtTZoVvd86qG-Ns2qjZWT8j62ds_Uy04NP0l_OHXh-PDV5t1ifz2_4qm4G0BZ-bNZt9_u9ky49PtgHPh8f7e9nezmh3BV5EDjCc5rYK8_XltVkjXlTn6x58CGdPjfd7myMXnQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fTxQxEJ4IJMKLKGA8PWUefNIs7G3b_fF4COcpigQkwael3W2BcO5d7vYS9a932tveRYImxNdtt9ltp-037TfzAbzWUiQmCcPAEBgNOO24QZZq8lKEZjw2sRHGHuh_Por7Z_zjuThvdE4nnu3uryRnMQ02S1NV745KszsPfCM3hFvSmaVNWvLWEqzQo4QMfaX7_tvh4pglIgcicjKbNDVtjFHI_d3mXe38uTstIOetW1K3-fTW4cJ_9oxzcrMzrdVO8etWRsf_-K_H8KgBptidWdITeKCrDVj3og_YrAEbsOpDmSebMOziiVX5wT3aC0vs_7ThX7jnQnzx-PQLdgeXw_F1ffUdCRtjbyBrtJhzOtZ46gR4yCpQViU6bU7LWnKGgtcV2nzYePCj4elWuC9ruQVnvYOv7_pBo-AQFIQbWZCWMY9VyIQJpS4tOk1TQ5iH6cxQmSpYwQXTQhQxLTWGFpM4VqnMuIoiw7IOewrL1bDSzwAV1ZGGZ44LyVVHGSl4p8gKw8JUJmELQj9yedGkN7cqG4N8npjZdW5OnZvbzs1ZC97MXxnNcnv8q3Lbm0PeTPNJHvGE3EFykrMWvPWjuyj-a2PP71V7Gx4e7_fyTx-ODl_AWuSsw5Lc2rBcj6f6JaGiWr1qLP83udP-3Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Rough+Based+Hybrid+Binary+PSO+Algorithm+for+Flat+Feature+Selection+and+Classification+in+Gene+Expression+Data&rft.jtitle=Annals+of+data+science&rft.au=Dara%2C+Suresh&rft.au=Banka%2C+Haider&rft.au=Annavarapu%2C+Chandra+Sekhara+Rao&rft.date=2017-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2198-5804&rft.eissn=2198-5812&rft.volume=4&rft.issue=3&rft.spage=341&rft.epage=360&rft_id=info:doi/10.1007%2Fs40745-017-0106-3&rft.externalDocID=10_1007_s40745_017_0106_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-5804&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-5804&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-5804&client=summon |