A Rough Based Hybrid Binary PSO Algorithm for Flat Feature Selection and Classification in Gene Expression Data

Feature selection in high dimensional data, particularly, in gene expression data, is one of the challenging task in bioinformatics due to the curse of dimensionality, data redundancy and noise values. In gene expression data, insignificant features causes poor classification, hence feature selectio...

Full description

Saved in:
Bibliographic Details
Published inAnnals of data science Vol. 4; no. 3; pp. 341 - 360
Main Authors Dara, Suresh, Banka, Haider, Annavarapu, Chandra Sekhara Rao
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2198-5804
2198-5812
DOI10.1007/s40745-017-0106-3

Cover

Abstract Feature selection in high dimensional data, particularly, in gene expression data, is one of the challenging task in bioinformatics due to the curse of dimensionality, data redundancy and noise values. In gene expression data, insignificant features causes poor classification, hence feature selection reduces feature subset, improving classification accuracy. Feature selection algorithms in gene expression data(such as filter based, wrapper based and hybrid methods) performing poor accuracy, where as few methods takes too much time to converge for an acceptable results. For example, in NSGA-II, over 10,000 generations, on an average, to converge in the search space. where it incurs increased computational time. Proposed rough based hybrid binary PSO algorithm, which uses a heuristic based fast processing strategy to reduce crude domain features by statistical elimination of redundant features and then discretized subsequently into a binary table, known as distinction table, in rough set theory. This distinction table is later used as input to evaluate and optimize the objectives functions i.e., to generate reduct in rough set theory. The proposed hybrid binary PSO is then used to tune the objective functions, to choose the most important features (i:e:reduct). The fitness function is used in such a way that it can reduce the cardinality of the features and at the same time, improve the classification performance as well. Results have been demonstrated to show the effectiveness of the proposed method, on existing three benchmark datasets (i.e. colon cancer, lymphoma and leukemia data), from literature.
AbstractList Feature selection in high dimensional data, particularly, in gene expression data, is one of the challenging task in bioinformatics due to the curse of dimensionality, data redundancy and noise values. In gene expression data, insignificant features causes poor classification, hence feature selection reduces feature subset, improving classification accuracy. Feature selection algorithms in gene expression data(such as filter based, wrapper based and hybrid methods) performing poor accuracy, where as few methods takes too much time to converge for an acceptable results. For example, in NSGA-II, over 10,000 generations, on an average, to converge in the search space. where it incurs increased computational time. Proposed rough based hybrid binary PSO algorithm, which uses a heuristic based fast processing strategy to reduce crude domain features by statistical elimination of redundant features and then discretized subsequently into a binary table, known as distinction table, in rough set theory. This distinction table is later used as input to evaluate and optimize the objectives functions i.e., to generate reduct in rough set theory. The proposed hybrid binary PSO is then used to tune the objective functions, to choose the most important features (i:e:reduct). The fitness function is used in such a way that it can reduce the cardinality of the features and at the same time, improve the classification performance as well. Results have been demonstrated to show the effectiveness of the proposed method, on existing three benchmark datasets (i.e. colon cancer, lymphoma and leukemia data), from literature.
Author Annavarapu, Chandra Sekhara Rao
Banka, Haider
Dara, Suresh
Author_xml – sequence: 1
  givenname: Suresh
  orcidid: 0000-0002-1626-8701
  surname: Dara
  fullname: Dara, Suresh
  email: darasuresh@live.in
  organization: B.V. Raju Inistitute of Technology
– sequence: 2
  givenname: Haider
  surname: Banka
  fullname: Banka, Haider
  organization: Department of Computer Science and Engineering, Indian Institute of Technology (ISM)
– sequence: 3
  givenname: Chandra Sekhara Rao
  surname: Annavarapu
  fullname: Annavarapu, Chandra Sekhara Rao
  organization: Department of Computer Science and Engineering, Indian Institute of Technology (ISM)
BookMark eNp9kEtLAzEQx4NU8PkBvAU8r05eu9ljW60KguLjHLK7SZuyJjXZgv32RisKgh6GGWbmN4__ARr54A1CJwTOCEB1njhUXBRAqmxQFmwH7VNSy0JIQkffMfA9dJzSEgAo4UCZ2EdhjB_Cer7AE51Mh683TXQdnjiv4wbfP97hcT8P0Q2LF2xDxLNeD3hm9LCOBj-a3rSDCx5r3-Fpr1Ny1rX6M-U8vjLe4Mu3VTS5kFMXetBHaNfqPpnjL3-InmeXT9Pr4vbu6mY6vi1ayggrZFfysgEmLGjTAUiQ0pZCMlPbXGta1nLBjBBtCRWzXMqybKSueUOpZTVhh-h0O3cVw-vapEEtwzr6vFJRXpUgiOR17iLbrjaGlKKxahXdS35dEVAf0qqttCpLqz6kVSwz1S-mdcPnz0PUrv-XpFsy5S1-buLPTX9D7xhdjS8
CitedBy_id crossref_primary_10_7763_IJCTE_2024_V16_1354
crossref_primary_10_1016_j_compbiomed_2024_108089
crossref_primary_10_1007_s11277_019_06863_4
crossref_primary_10_2139_ssrn_3351002
crossref_primary_10_1016_j_chemolab_2021_104305
crossref_primary_10_1016_j_matpr_2020_09_634
crossref_primary_10_1007_s00521_019_04197_7
crossref_primary_10_1063_5_0256260
crossref_primary_10_2139_ssrn_3368790
crossref_primary_10_1007_s00500_020_05349_x
crossref_primary_10_1109_ACCESS_2022_3142859
Cites_doi 10.1007/s10015-009-0712-z
10.1016/j.eswa.2014.10.044
10.1093/bioinformatics/btl386
10.1016/j.eswa.2014.08.014
10.1016/j.patrec.2006.09.003
10.1109/TCBB.2012.33
10.1093/bioinformatics/bth383
10.1016/S0004-3702(97)00043-X
10.1007/s12539-015-0272-y
10.1093/nar/gkv380
10.1093/bioinformatics/19.1.45
10.1016/S0377-2217(96)00382-7
10.1080/08839510490278916
10.1016/j.compbiolchem.2007.09.005
10.1007/s10115-010-0288-x
10.1142/S0219720005001004
10.1109/TSMCC.2007.897498
10.1016/j.eswa.2011.04.057
10.1038/nprot.2015.052
10.1016/j.fss.2011.09.009
10.2307/1937992
10.1007/978-3-540-78757-0_13
10.1007/978-94-015-7975-9_21
10.1109/ICEC.1998.699146
10.1109/CEC.2012.6256452
10.1109/CEC.1999.785511
10.1109/ICIINFS.2014.7036522
10.1145/1389095.1389114
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2017
Springer-Verlag Berlin Heidelberg 2017.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2017
– notice: Springer-Verlag Berlin Heidelberg 2017.
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
HCIFZ
K60
K6~
L.-
M0C
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s40745-017-0106-3
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Computer Science
EISSN 2198-5812
EndPage 360
ExternalDocumentID 10_1007_s40745_017_0106_3
GroupedDBID -EM
0R~
203
4.4
406
7WY
8FL
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ARAPS
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AYQZM
AZFZN
BAPOH
BENPR
BEZIV
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
HCIFZ
HVGLF
IKXTQ
IWAJR
IXD
J-C
JZLTJ
KOV
LLZTM
M0C
M4Y
NB0
NPVJJ
NQJWS
NU0
O9J
PQBIZ
PQBZA
PQQKQ
PT4
RLLFE
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z81
Z83
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
3V.
7XB
8FE
8FG
8FK
K60
K6~
L.-
P62
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c2313-8d646b035f0aed008088f6583e9f8d6bc3c453e55c6073f48866b8a94b22f3913
IEDL.DBID AGYKE
ISSN 2198-5804
IngestDate Sat Jul 26 00:00:51 EDT 2025
Thu Apr 24 22:55:03 EDT 2025
Wed Oct 01 05:03:34 EDT 2025
Fri Feb 21 02:42:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Microarray gene expression
Rough set theory
Classifications
Binary PSO
Feature selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2313-8d646b035f0aed008088f6583e9f8d6bc3c453e55c6073f48866b8a94b22f3913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1626-8701
PQID 2476051849
PQPubID 2044270
PageCount 20
ParticipantIDs proquest_journals_2476051849
crossref_primary_10_1007_s40745_017_0106_3
crossref_citationtrail_10_1007_s40745_017_0106_3
springer_journals_10_1007_s40745_017_0106_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170900
2017-9-00
20170901
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 9
  year: 2017
  text: 20170900
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Annals of data science
PublicationTitleAbbrev Ann. Data. Sci
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Lazar (CR8) 2012; 9
Deutsch (CR37) 2003; 19
Tang, Alelyani, Liu (CR6) 2014
Xia, Gill, Hancock (CR1) 2015; 10
CR18
Kar, Sharma, Maitra (CR4) 2015; 42
CR38
CR15
Wang, Yang, Teng, Xia, Jensen (CR19) 2007; 28
Duda, Hart, Stork (CR33) 2012
CR14
CR36
Montgomery, Runger, Hubele (CR34) 2009
CR35
CR12
CR31
Xia, Sinelnikov, Han, Wishart (CR2) 2015; 43
Li, Lei, Pang (CR3) 2015; 7
Banerjee, Mitra, Banka (CR16) 2007; 37
Xue, Zhang, Browne (CR17) 2013; 99
Yu, Liu (CR32) 2003; 3
Huang (CR28) 2004; 18
Li, Wang (CR7) 2009; 1
CR5
mohamad, Omatu, Deris, Yoshioka (CR27) 2009; 14
CR26
Rakotomamonjy (CR40) 2003; 3
CR25
CR24
Chuang, Chang, Tu, Yang (CR20) 2008; 32
CR23
El Akadi, Amine, El Ouardighi, Aboutajdine (CR11) 2011; 26
Cawley, Talbot (CR41) 2006; 22
Kohavi, John (CR44) 1997; 97
Atul, Jeya Sundara Sharmila (CR10) 2015; 8
Vieira, Sousa, Kaymak (CR13) 2012; 189
Ding, Peng (CR43) 2005; 3
Wei (CR42) 1981; 76
Pochet, De Smet, Suykens, De Moor (CR39) 2004; 20
Chuang, Tsai, Yang (CR30) 2011; 38
Pawlak (CR21) 1997; 99
Krishnapuram, Hartemink, Carin, Figueredo (CR29) 2004; 26
Park, Kim (CR9) 2015; 42
Wroblewski (CR22) 1995
A Akadi El (106_CR11) 2011; 26
106_CR5
L Wei (106_CR42) 1981; 76
C Ding (106_CR43) 2005; 3
Kumar Atul (106_CR10) 2015; 8
R Kohavi (106_CR44) 1997; 97
RO Duda (106_CR33) 2012
Jianguo Xia (106_CR2) 2015; 43
106_CR31
CJ Huang (106_CR28) 2004; 18
B Xue (106_CR17) 2013; 99
Jiangeng Li (106_CR3) 2015; 7
Subhajit Kar (106_CR4) 2015; 42
C Lazar (106_CR8) 2012; 9
106_CR38
106_CR18
MS mohamad (106_CR27) 2009; 14
J Tang (106_CR6) 2014
106_CR12
106_CR35
106_CR14
106_CR36
106_CR15
GC Cawley (106_CR41) 2006; 22
J Deutsch (106_CR37) 2003; 19
Chan Hee Park (106_CR9) 2015; 42
M Banerjee (106_CR16) 2007; 37
X Wang (106_CR19) 2007; 28
Gang-Guo Li (106_CR7) 2009; 1
Z Pawlak (106_CR21) 1997; 99
B Krishnapuram (106_CR29) 2004; 26
Jianguo Xia (106_CR1) 2015; 10
DC Montgomery (106_CR34) 2009
A Rakotomamonjy (106_CR40) 2003; 3
SM Vieira (106_CR13) 2012; 189
L Yu (106_CR32) 2003; 3
N Pochet (106_CR39) 2004; 20
LY Chuang (106_CR20) 2008; 32
J Wroblewski (106_CR22) 1995
106_CR23
LY Chuang (106_CR30) 2011; 38
106_CR24
106_CR25
106_CR26
References_xml – volume: 14
  start-page: 16
  year: 2009
  end-page: 19
  ident: CR27
  article-title: Particle swarm optimization for gene selection in classifying cancer classes
  publication-title: Artif Life Robot
  doi: 10.1007/s10015-009-0712-z
– year: 2014
  ident: CR6
  publication-title: Feature selection for classification: a review. Data classification: algorithms and applications
– ident: CR18
– volume: 3
  start-page: 856
  year: 2003
  end-page: 863
  ident: CR32
  article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution
  publication-title: ICML
– volume: 42
  start-page: 2336
  issue: 5
  year: 2015
  end-page: 2342
  ident: CR9
  article-title: Sequential random k-nearest neighbor feature selection for high-dimensional data
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.10.044
– ident: CR14
– ident: CR12
– volume: 22
  start-page: 2348
  issue: 19
  year: 2006
  end-page: 2355
  ident: CR41
  article-title: Gene selection in cancer classification using sparse logistic regression with bayesian regularization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl386
– volume: 76
  start-page: 1006
  issue: 376
  year: 1981
  end-page: 1009
  ident: CR42
  article-title: Asymptotic conservativeness and efficiency of kruskal-wallis test for k dependent samples
  publication-title: J Am Stat Assoc
– volume: 42
  start-page: 612
  issue: 1
  year: 2015
  end-page: 627
  ident: CR4
  article-title: Gene selection from microarray gene expression data for classification of cancer subgroups employing pso and adaptive k-nearest neighborhood technique
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.08.014
– volume: 28
  start-page: 459
  issue: 4
  year: 2007
  end-page: 471
  ident: CR19
  article-title: Feature selection based on rough sets and particle swarm optimization
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2006.09.003
– volume: 9
  start-page: 1106
  issue: 4
  year: 2012
  end-page: 1119
  ident: CR8
  article-title: A survey on filter techniques for feature selection in gene expression microarray analysis
  publication-title: IEEE/ACM Trans Comput Biol Bioinf (TCBB)
  doi: 10.1109/TCBB.2012.33
– ident: CR35
– volume: 20
  start-page: 3185
  issue: 17
  year: 2004
  end-page: 3195
  ident: CR39
  article-title: Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth383
– volume: 1
  start-page: 72
  issue: 1
  year: 2009
  end-page: 80
  ident: CR7
  article-title: Evaluation of similarity measures for gene expression data and their correspondent combined measures. Interdisciplinary Sciences: Computational
  publication-title: Life Sci
– volume: 97
  start-page: 273
  issue: 1
  year: 1997
  end-page: 324
  ident: CR44
  article-title: Wrappers for feature subset selection
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(97)00043-X
– ident: CR25
– volume: 3
  start-page: 1357
  year: 2003
  end-page: 1370
  ident: CR40
  article-title: Variable selection using svm based criteria
  publication-title: J Mach Learn Res
– ident: CR23
– volume: 7
  start-page: 391
  issue: 4
  year: 2015
  end-page: 396
  ident: CR3
  article-title: A filter feature selection method based on mfa score and redundancy excluding and its application to tumor gene expression data analysis
  publication-title: Interdiscip Sci
  doi: 10.1007/s12539-015-0272-y
– year: 2009
  ident: CR34
  publication-title: Engineering statistics
– volume: 8
  start-page: 1
  year: 2015
  end-page: 7
  ident: CR10
  article-title: Algorithmic approach for removing the redundancy in diabetic gene categories based on semantic similarity and gene expression data
  publication-title: Interdiscip Sci
– volume: 43
  start-page: W251
  issue: W1
  year: 2015
  end-page: W257
  ident: CR2
  article-title: Metaboanalyst 3.0 making metabolomics more meaningful
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv380
– year: 1995
  ident: CR22
  publication-title: Finding minimal reducts using genetic algorithms
– volume: 19
  start-page: 45
  issue: 1
  year: 2003
  end-page: 52
  ident: CR37
  article-title: Evolutionary algorithms for finding optimal gene sets in microarray prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/19.1.45
– ident: CR15
– volume: 99
  start-page: 48
  year: 1997
  end-page: 57
  ident: CR21
  article-title: Rough set approach to knowledge-based decision support
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(96)00382-7
– ident: CR38
– volume: 18
  start-page: 117
  year: 2004
  end-page: 128
  ident: CR28
  article-title: class prediction of cancer using probabilistic neural networks and relatice correlation metric
  publication-title: Appl Artif Intell
  doi: 10.1080/08839510490278916
– volume: 32
  start-page: 29
  issue: 1
  year: 2008
  end-page: 38
  ident: CR20
  article-title: Improved binary PSO for feature selection using gene expression data
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2007.09.005
– ident: CR31
– volume: 26
  start-page: 487
  issue: 3
  year: 2011
  end-page: 500
  ident: CR11
  article-title: A two-stage gene selection scheme utilizing mrmr filter and ga wrapper
  publication-title: Knowledge Inf Syst
  doi: 10.1007/s10115-010-0288-x
– volume: 99
  start-page: 1
  year: 2013
  end-page: 16
  ident: CR17
  article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach
  publication-title: IEEE Trans Cybern
– year: 2012
  ident: CR33
  publication-title: Pattern classification
– ident: CR36
– ident: CR5
– volume: 3
  start-page: 185
  issue: 02
  year: 2005
  end-page: 205
  ident: CR43
  article-title: Minimum redundancy feature selection from microarray gene expression data
  publication-title: J Bioinform and Comput Biol
  doi: 10.1142/S0219720005001004
– volume: 37
  start-page: 622
  year: 2007
  end-page: 632
  ident: CR16
  article-title: Evolutionary rough feature selection in gene expression data
  publication-title: IEEE Trans Syst Man Cybern C Appl Rev
  doi: 10.1109/TSMCC.2007.897498
– ident: CR26
– ident: CR24
– volume: 38
  start-page: 12699
  year: 2011
  end-page: 12707
  ident: CR30
  article-title: Improved binary particle swarm optimization using catfish effect for feature selection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.04.057
– volume: 10
  start-page: 823
  issue: 6
  year: 2015
  end-page: 844
  ident: CR1
  article-title: Networkanalyst for statistical, visual and network-based meta-analysis of gene expression data
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2015.052
– volume: 26
  start-page: 1105
  issue: 9
  year: 2004
  end-page: 1111
  ident: CR29
  article-title: A Bayesian approach to joint feature selection and classifier design
  publication-title: Artif Life Robot
– volume: 189
  start-page: 1
  year: 2012
  end-page: 18
  ident: CR13
  article-title: Fuzzy criteria for feature selection
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2011.09.009
– volume: 99
  start-page: 48
  year: 1997
  ident: 106_CR21
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(96)00382-7
– volume: 19
  start-page: 45
  issue: 1
  year: 2003
  ident: 106_CR37
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/19.1.45
– volume: 26
  start-page: 1105
  issue: 9
  year: 2004
  ident: 106_CR29
  publication-title: Artif Life Robot
– volume: 76
  start-page: 1006
  issue: 376
  year: 1981
  ident: 106_CR42
  publication-title: J Am Stat Assoc
– volume: 43
  start-page: W251
  issue: W1
  year: 2015
  ident: 106_CR2
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv380
– volume: 42
  start-page: 612
  issue: 1
  year: 2015
  ident: 106_CR4
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.08.014
– volume: 32
  start-page: 29
  issue: 1
  year: 2008
  ident: 106_CR20
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2007.09.005
– volume-title: Engineering statistics
  year: 2009
  ident: 106_CR34
– ident: 106_CR35
  doi: 10.2307/1937992
– ident: 106_CR31
– volume: 38
  start-page: 12699
  year: 2011
  ident: 106_CR30
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.04.057
– volume: 189
  start-page: 1
  year: 2012
  ident: 106_CR13
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2011.09.009
– ident: 106_CR38
  doi: 10.1007/978-3-540-78757-0_13
– ident: 106_CR12
– volume: 20
  start-page: 3185
  issue: 17
  year: 2004
  ident: 106_CR39
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth383
– ident: 106_CR5
  doi: 10.1007/978-94-015-7975-9_21
– volume: 37
  start-page: 622
  year: 2007
  ident: 106_CR16
  publication-title: IEEE Trans Syst Man Cybern C Appl Rev
  doi: 10.1109/TSMCC.2007.897498
– volume: 99
  start-page: 1
  year: 2013
  ident: 106_CR17
  publication-title: IEEE Trans Cybern
– ident: 106_CR18
– volume: 7
  start-page: 391
  issue: 4
  year: 2015
  ident: 106_CR3
  publication-title: Interdiscip Sci
  doi: 10.1007/s12539-015-0272-y
– volume: 14
  start-page: 16
  year: 2009
  ident: 106_CR27
  publication-title: Artif Life Robot
  doi: 10.1007/s10015-009-0712-z
– volume-title: Finding minimal reducts using genetic algorithms
  year: 1995
  ident: 106_CR22
– volume: 97
  start-page: 273
  issue: 1
  year: 1997
  ident: 106_CR44
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(97)00043-X
– volume-title: Feature selection for classification: a review. Data classification: algorithms and applications
  year: 2014
  ident: 106_CR6
– volume: 3
  start-page: 856
  year: 2003
  ident: 106_CR32
  publication-title: ICML
– ident: 106_CR24
  doi: 10.1109/ICEC.1998.699146
– volume: 9
  start-page: 1106
  issue: 4
  year: 2012
  ident: 106_CR8
  publication-title: IEEE/ACM Trans Comput Biol Bioinf (TCBB)
  doi: 10.1109/TCBB.2012.33
– ident: 106_CR23
– volume: 1
  start-page: 72
  issue: 1
  year: 2009
  ident: 106_CR7
  publication-title: Life Sci
– volume: 3
  start-page: 185
  issue: 02
  year: 2005
  ident: 106_CR43
  publication-title: J Bioinform and Comput Biol
  doi: 10.1142/S0219720005001004
– volume: 10
  start-page: 823
  issue: 6
  year: 2015
  ident: 106_CR1
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2015.052
– volume: 26
  start-page: 487
  issue: 3
  year: 2011
  ident: 106_CR11
  publication-title: Knowledge Inf Syst
  doi: 10.1007/s10115-010-0288-x
– volume: 3
  start-page: 1357
  year: 2003
  ident: 106_CR40
  publication-title: J Mach Learn Res
– volume: 8
  start-page: 1
  year: 2015
  ident: 106_CR10
  publication-title: Interdiscip Sci
– volume: 42
  start-page: 2336
  issue: 5
  year: 2015
  ident: 106_CR9
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.10.044
– volume: 28
  start-page: 459
  issue: 4
  year: 2007
  ident: 106_CR19
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2006.09.003
– ident: 106_CR36
– ident: 106_CR14
  doi: 10.1109/CEC.2012.6256452
– volume: 18
  start-page: 117
  year: 2004
  ident: 106_CR28
  publication-title: Appl Artif Intell
  doi: 10.1080/08839510490278916
– volume: 22
  start-page: 2348
  issue: 19
  year: 2006
  ident: 106_CR41
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl386
– ident: 106_CR26
  doi: 10.1109/CEC.1999.785511
– ident: 106_CR15
  doi: 10.1109/ICIINFS.2014.7036522
– ident: 106_CR25
  doi: 10.1145/1389095.1389114
– volume-title: Pattern classification
  year: 2012
  ident: 106_CR33
SSID ssj0002140235
Score 2.0927773
Snippet Feature selection in high dimensional data, particularly, in gene expression data, is one of the challenging task in bioinformatics due to the curse of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 341
SubjectTerms Algorithms
Artificial Intelligence
Bioinformatics
Business and Management
Classification
Colon
Computing time
Convergence
Economics
Feature selection
Finance
Gene expression
Insurance
Leukemia
Management
Redundancy
Set theory
Statistics for Business
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgXLjwRoyXfOAEquiapGsPCG2waUJiIB4StyptE0AaHY8iwb_HDu0mkOCcNFLtOP6c2P4A9oxWbdv2fc8SGPUkeVwvjgxFKcoIGdrQKssX-ufDcHArz-7U3QwM61oYTqusz0R3UOfjjO_IDwPZJuRN8Uh8_PziMWsUv67WFBq6olbIj1yLsVmYC7gzVgPmur3h5dXk1iWgeCJwrJtkqVxy5Mv6qZPr6Si6kZzLxtmYnBP201lNEeivR1Pni_pLsFCBSOx8a30ZZkyxAos1QQNW9roK4w5eMQsPdslX5Tj45PIs7LoSXLy8vsDO6J7-sXx4QsKu2B_pEhkTvr8avHYEOaQ11EWOjjuTs4qcIvGxQO5Xjb2PKo-2wFNd6jW47fduTgZexbDgZYTrhBfloQxTXyjra5MzeowiS5hEmNjSWJqJTCphlMpCOgosGXsYppGOZRoEVsQtsQ6NYlyYDcCU5mgrY5erKNNWarWSrSzOrPAj3fab4NeiTLKq_TizYIySSeNkJ_2EpJ-w9BPRhP3JJ8_fvTf-m7xd6yepzPAtmW6aJhzUOpsO_7nY5v-LbcF84DYJp5ptQ6N8fTc7hE3KdLfacF-mfdyo
  priority: 102
  providerName: ProQuest
Title A Rough Based Hybrid Binary PSO Algorithm for Flat Feature Selection and Classification in Gene Expression Data
URI https://link.springer.com/article/10.1007/s40745-017-0106-3
https://www.proquest.com/docview/2476051849
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2198-5812
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140235
  issn: 2198-5804
  databaseCode: AFBBN
  dateStart: 20140301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2198-5812
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0002140235
  issn: 2198-5804
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2198-5812
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140235
  issn: 2198-5804
  databaseCode: AGYKE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6N8sBegMEmCl11D3sCBaWxnSaP7dZSgWCIHxJ7iuzU3hAlRW0qAX_9zm7cCrQh8ZQHO1Zin33f-b67A_impWibdhgGhsBowEnjBmmiyUoRmvHYxEYYe6F_ehYPrvnxjbip4rinnu3uXZLupF4Eu5HpwS3RzFIlLWFrBVZduq0arHaOfp0sr1YiMhoiV1qTtqONKwq592f-a5yXGmkJM195Rp3C6W_Alf_UOc_k7nBWqsP8-VUWx3f-yyasVwAUO3OJ-QQfdLEFG764A1Z7fQvWfMjydBvGHbyw1XywSzpviIMnG-aFXRfKi-eXP7Ez-j2e3JZ_7pEwMPZHskSLLWcTjZeu0A6tPspiiK4Gp2UnOYHA2wJt3mvsPVZ83AJ_yFJ-hut-7-r7IKgqNQQ54UMWJMOYxypkwoRSDy0KTRJD2Ibp1FCbylnOBdNC5DEdKYYOjThWiUy5iiLD0hb7ArViXOgdQEV9pOGp4zxy1VJGCt7K09ywMJHtsA6hX60sr9KY22oao2yRgNlNbkaTm9nJzVgd9hevPMxzeLzVueFFIKu28zSLeJvMPjKG0zoc-BVdNv93sN139d6Dj5ETCctga0CtnMz0V4I8pWrCStI_alaCTs9u7-z84i_MN_Wa
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLSXQl_q8pxDe2kVNRvb2eSAql3Y1VJgi3hI3IKT2G2lbZZHEPDn-tuYMc6uWqncOMfxYfzZ8409Mx_AB6NVx3bCMLBERgNJHjdIE0NRijJCxja2yvKF_v4oHp7Ib6fqdA7-NLUwnFbZnInuoC4nBd-Rf4lkh5g3xSPp1_OLgFWj-HW1kdDQXlqh3HQtxnxhx665u6EQ7mpzZ5vW-2MUDfrHW8PAqwwEBXEbESRlLOM8FMqG2pTMoJLEkl8WJrX0LS9EIZUwShUxbQdLgI_jPNGpzKPIirQtaN5nsCCFTCn4W-j1RweH01ueiOKXyKl80snAJU6hbJ5WuX6PoinJuXOc_ck5aH87xxnj_eeR1vm-wRK89KQVuw8oewVzpnoNi40gBPrz4Q1MunjIqj_YI99Y4vCOy8Gw50p-8eDoO3bHP8im9c_fSFwZB2NdI3PQ60uDR06Qh1CCuirRaXVyFpMDDv6qkPtjY__W5-1WuK1r_RZOnsTW72C-mlTmPWBOY7SVqcuNlHk7t1rJdpEWVoSJ7oQtCBtTZoVvd86qG-Ns2qjZWT8j62ds_Uy04NP0l_OHXh-PDV5t1ifz2_4qm4G0BZ-bNZt9_u9ky49PtgHPh8f7e9nezmh3BV5EDjCc5rYK8_XltVkjXlTn6x58CGdPjfd7myMXnQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fTxQxEJ4IJMKLKGA8PWUefNIs7G3b_fF4COcpigQkwael3W2BcO5d7vYS9a932tveRYImxNdtt9ltp-037TfzAbzWUiQmCcPAEBgNOO24QZZq8lKEZjw2sRHGHuh_Por7Z_zjuThvdE4nnu3uryRnMQ02S1NV745KszsPfCM3hFvSmaVNWvLWEqzQo4QMfaX7_tvh4pglIgcicjKbNDVtjFHI_d3mXe38uTstIOetW1K3-fTW4cJ_9oxzcrMzrdVO8etWRsf_-K_H8KgBptidWdITeKCrDVj3og_YrAEbsOpDmSebMOziiVX5wT3aC0vs_7ThX7jnQnzx-PQLdgeXw_F1ffUdCRtjbyBrtJhzOtZ46gR4yCpQViU6bU7LWnKGgtcV2nzYePCj4elWuC9ruQVnvYOv7_pBo-AQFIQbWZCWMY9VyIQJpS4tOk1TQ5iH6cxQmSpYwQXTQhQxLTWGFpM4VqnMuIoiw7IOewrL1bDSzwAV1ZGGZ44LyVVHGSl4p8gKw8JUJmELQj9yedGkN7cqG4N8npjZdW5OnZvbzs1ZC97MXxnNcnv8q3Lbm0PeTPNJHvGE3EFykrMWvPWjuyj-a2PP71V7Gx4e7_fyTx-ODl_AWuSsw5Lc2rBcj6f6JaGiWr1qLP83udP-3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Rough+Based+Hybrid+Binary+PSO+Algorithm+for+Flat+Feature+Selection+and+Classification+in+Gene+Expression+Data&rft.jtitle=Annals+of+data+science&rft.au=Dara%2C+Suresh&rft.au=Banka%2C+Haider&rft.au=Annavarapu%2C+Chandra+Sekhara+Rao&rft.date=2017-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2198-5804&rft.eissn=2198-5812&rft.volume=4&rft.issue=3&rft.spage=341&rft.epage=360&rft_id=info:doi/10.1007%2Fs40745-017-0106-3&rft.externalDocID=10_1007_s40745_017_0106_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-5804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-5804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-5804&client=summon