Jacobi Elliptic Function Expansion Method for Solving KdV Equation with Conformable Derivative and Dual-Power Law Nonlinearity
In this work, the KdV equation with conformable derivative and dual-power law nonlinearity is considered. It is exceedingly used as a model to depict the feeble nonlinear long waves in different fields of sciences. Furthermore, it explains the comparable effects of weak dispersion and weak nonlinear...
Saved in:
| Published in | International journal of applied and computational mathematics Vol. 5; no. 5; pp. 1 - 10 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New Delhi
Springer India
01.10.2019
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2349-5103 2199-5796 |
| DOI | 10.1007/s40819-019-0710-3 |
Cover
| Abstract | In this work, the KdV equation with conformable derivative and dual-power law nonlinearity is considered. It is exceedingly used as a model to depict the feeble nonlinear long waves in different fields of sciences. Furthermore, it explains the comparable effects of weak dispersion and weak nonlinearity on the evolvement of the nonlinear waves. Using the Jacobi elliptic function expansion method, new exact solutions of that equation have been found. As results, some obtained solutions behave as periodic traveling waves, bright soliton, and dark soliton. |
|---|---|
| AbstractList | In this work, the KdV equation with conformable derivative and dual-power law nonlinearity is considered. It is exceedingly used as a model to depict the feeble nonlinear long waves in different fields of sciences. Furthermore, it explains the comparable effects of weak dispersion and weak nonlinearity on the evolvement of the nonlinear waves. Using the Jacobi elliptic function expansion method, new exact solutions of that equation have been found. As results, some obtained solutions behave as periodic traveling waves, bright soliton, and dark soliton. |
| ArticleNumber | 127 |
| Author | Osman, M. S Rezazadeh, Hadi Eslami, Mostafa Izadi, Franoosh Kumar, V. Senthil |
| Author_xml | – sequence: 1 givenname: V. Senthil surname: Kumar fullname: Kumar, V. Senthil organization: Government Higher Secondary School – sequence: 2 givenname: Hadi surname: Rezazadeh fullname: Rezazadeh, Hadi organization: Faculty of Engineering Technology, Amol University of Special Modern Technologies – sequence: 3 givenname: Mostafa surname: Eslami fullname: Eslami, Mostafa organization: Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran – sequence: 4 givenname: Franoosh surname: Izadi fullname: Izadi, Franoosh organization: Department of Applied Mathematics, Faculty of Mathematical Sciences, Islamic Azad University – sequence: 5 givenname: M. S orcidid: 0000-0002-5783-0940 surname: Osman fullname: Osman, M. S email: mofatzi@sci.cu.edu.eg organization: Department of Mathematics, Faculty of Science, Cairo University, Department of Mathematics, Faculty of Applied Science, Umm Alqura University |
| BookMark | eNp9kEtLAzEUhYMoqLU_wF3A9Wge006zlNr6qg_wsR3uZJI2MiZtMtPajb_dtCMIgi4u90DOd084h2jXOqsQOqbklBKSnYWUDKhIyGYyShK-gw4YFSLpZaK_GzVPo6aE76NuCG-EEEbTjLDBAfq8AekKg0dVZea1kXjcWFkbZ_HoYw42bNSdqmeuxNp5_OSqpbFTfFu-4tGiga1zZeoZHjobDe9QVApfKG-W8W2pMNgSXzRQJY9upTyewArfO1sZq8Cben2E9jRUQXW_dwe9jEfPw6tk8nB5PTyfJJJxypNMFbwomaZUc8JZwSVJUz0QsiwlG2hBQAipU1oUoFiPas0BIFNMAPQpTTXvoJP27ty7RaNCnb-5xtsYmTOWMdbvpzGng2jrkt6F4JXO5968g1_nlOSbpvO26ZxsJjad88hkvxhp6m0vtQdT_UuylgwxxU6V__nT39AXvlGV0Q |
| CitedBy_id | crossref_primary_10_1016_j_aej_2022_05_046 crossref_primary_10_1016_j_physleta_2021_127744 crossref_primary_10_1016_j_ijleo_2020_165418 crossref_primary_10_3390_axioms12090856 crossref_primary_10_1515_ijnsns_2019_0205 crossref_primary_10_1007_s11082_022_04530_w crossref_primary_10_1016_j_rinp_2020_103762 crossref_primary_10_1016_j_joes_2019_12_004 crossref_primary_10_3390_fractalfract7070539 crossref_primary_10_1016_j_rinp_2021_104013 crossref_primary_10_1016_j_rinp_2020_103329 crossref_primary_10_61383_ejam_20231347 crossref_primary_10_1016_j_jksus_2020_06_014 crossref_primary_10_1007_s10598_023_09563_8 crossref_primary_10_1186_s13662_020_02973_7 crossref_primary_10_1142_S0217984921504649 crossref_primary_10_1155_2021_6643512 crossref_primary_10_1080_00207160_2021_1923014 crossref_primary_10_1140_epjp_s13360_020_00573_8 crossref_primary_10_3934_math_2024966 crossref_primary_10_1016_j_ijleo_2020_165389 crossref_primary_10_1088_1402_4896_abe499 crossref_primary_10_1142_S0218348X23400042 crossref_primary_10_1016_j_rinp_2021_103954 crossref_primary_10_1007_s11082_024_06361_3 crossref_primary_10_1016_j_rinp_2020_103696 crossref_primary_10_1016_j_ijleo_2022_169111 crossref_primary_10_1142_S0217984920501742 crossref_primary_10_1142_S0217979221500284 crossref_primary_10_1016_j_rinp_2021_103995 crossref_primary_10_1016_j_chaos_2019_109552 crossref_primary_10_1088_1402_4896_ac41ed crossref_primary_10_1515_ijnsns_2019_0064 crossref_primary_10_1007_s11082_023_05999_9 crossref_primary_10_1016_j_chaos_2020_110321 crossref_primary_10_1142_S0217732320500285 crossref_primary_10_1007_s11082_024_07093_0 crossref_primary_10_1142_S0219887822501493 crossref_primary_10_1371_journal_pone_0285178 crossref_primary_10_1142_S012918312050059X crossref_primary_10_1007_s12596_024_01966_z crossref_primary_10_1080_17455030_2020_1831711 crossref_primary_10_1016_j_aej_2020_10_053 crossref_primary_10_1007_s40819_022_01291_8 crossref_primary_10_1016_j_ijleo_2020_164589 crossref_primary_10_1088_1402_4896_ab95af crossref_primary_10_1016_j_ijleo_2024_171714 crossref_primary_10_1007_s11082_022_03710_y crossref_primary_10_1007_s11082_023_04783_z crossref_primary_10_1016_j_rinp_2020_103581 crossref_primary_10_1016_j_aej_2020_10_009 crossref_primary_10_1016_j_rinp_2022_105642 crossref_primary_10_1063_5_0038038 crossref_primary_10_1016_j_asej_2020_09_027 crossref_primary_10_1142_S179396232550014X crossref_primary_10_30931_jetas_1108028 crossref_primary_10_1007_s11071_024_10495_0 crossref_primary_10_1016_j_asej_2020_11_029 crossref_primary_10_1186_s13662_020_03087_w crossref_primary_10_1088_1572_9494_abd849 crossref_primary_10_1007_s40819_022_01285_6 crossref_primary_10_1007_s40819_024_01727_3 crossref_primary_10_1016_j_chaos_2021_110775 crossref_primary_10_1007_s11071_023_08929_2 crossref_primary_10_1186_s13662_020_2540_3 crossref_primary_10_2478_amns_2021_2_00008 crossref_primary_10_1007_s40819_020_00818_1 crossref_primary_10_1016_j_aej_2023_10_022 crossref_primary_10_3934_math_2021515 crossref_primary_10_1002_mma_7022 crossref_primary_10_11948_20210081 crossref_primary_10_3934_math_2020154 crossref_primary_10_1007_s11082_020_02711_z crossref_primary_10_1016_j_aej_2023_04_020 crossref_primary_10_1016_j_cjph_2021_01_015 crossref_primary_10_3390_sym14020197 crossref_primary_10_1016_j_asej_2020_10_030 crossref_primary_10_1088_1572_9494_ab6181 crossref_primary_10_1142_S0217984921503176 crossref_primary_10_1016_j_physa_2019_124077 |
| Cites_doi | 10.1002/mma.5721 10.1142/S0217984918503177 10.1143/JPSJ.38.681 10.1142/8180 10.1007/s11082-017-1287-x 10.1007/s11082-018-1416-1 10.5666/KMJ.2013.53.4.680 10.3233/FI-2019-1795 10.1016/S0960-0779(02)00152-2 10.1007/s11082-017-1224-z 10.1063/1.5087647 10.1016/j.ijleo.2018.03.123 10.1140/epjp/i2019-12586-1 10.1016/j.joes.2019.03.002 10.1016/j.ijleo.2016.12.032 10.1088/0253-6102/71/4/362 10.1016/j.ijleo.2018.03.006 10.1016/j.cjph.2018.06.009 10.1088/0305-4470/19/1/003 10.1016/j.ijleo.2018.02.086 10.1142/S0217984919501999 10.1007/s12043-019-1785-4 10.1137/0150093 10.1016/j.chaos.2018.10.007 10.1016/j.ijleo.2018.06.111 10.1515/nleng-2018-0033 10.1007/s12043-017-1374-3 10.1143/JPSJ.38.673 10.1007/s10092-015-0158-8 10.1007/s11082-017-1288-9 10.1007/s11082-017-1225-y 10.7763/IJMO.2014.V4.392 10.1016/j.cam.2014.01.002 10.1016/j.rinp.2019.102157 10.1140/epjp/i2019-12442-4 10.1142/S0217984918503530 10.1007/s12043-011-0201-5 10.1007/s11082-016-0831-4 10.1007/s11071-019-04866-1 10.1186/s13662-019-1964-0 10.3233/FI-2019-1796 10.22436/jnsa.009.09.14 10.1515/nleng-2018-0163 10.1016/j.cjph.2018.08.001 10.1002/num.22236 10.1515/phys-2015-0056 10.3390/e21040397 10.1007/s11082-017-1178-1 10.1007/s40324-018-0152-6 10.1016/S0375-9601(02)01515-3 10.1016/S0960-0779(00)00272-1 10.1002/mma.5521 10.7566/JPSJ.82.044004 10.1016/j.cam.2014.10.016 |
| ContentType | Journal Article |
| Copyright | Springer Nature India Private Limited 2019 Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: Springer Nature India Private Limited 2019 – notice: Copyright Springer Nature B.V. 2019 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s40819-019-0710-3 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 2199-5796 |
| EndPage | 10 |
| ExternalDocumentID | 10_1007_s40819_019_0710_3 |
| GroupedDBID | -EM 0R~ 203 4.4 406 AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AVXWI AXYYD AZFZN BAPOH BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GGRSB GJIRD GQ6 HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c2313-7eb3bd2f11f3032b3c044f89cddc28f90a99cf41bbae251ff3aaa7e29aa6114f3 |
| ISSN | 2349-5103 |
| IngestDate | Wed Sep 17 23:58:06 EDT 2025 Thu Apr 24 23:02:04 EDT 2025 Wed Oct 01 05:00:11 EDT 2025 Fri Feb 21 02:35:54 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Dual-power law nonlinearity KdV equation with conformable derivative Traveling wave solutions |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2313-7eb3bd2f11f3032b3c044f89cddc28f90a99cf41bbae251ff3aaa7e29aa6114f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5783-0940 |
| PQID | 2272266431 |
| PQPubID | 2044256 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2272266431 crossref_primary_10_1007_s40819_019_0710_3 crossref_citationtrail_10_1007_s40819_019_0710_3 springer_journals_10_1007_s40819_019_0710_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20191000 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 20191000 |
| PublicationDecade | 2010 |
| PublicationPlace | New Delhi |
| PublicationPlace_xml | – name: New Delhi – name: Heidelberg |
| PublicationTitle | International journal of applied and computational mathematics |
| PublicationTitleAbbrev | Int. J. Appl. Comput. Math |
| PublicationYear | 2019 |
| Publisher | Springer India Springer Nature B.V |
| Publisher_xml | – name: Springer India – name: Springer Nature B.V |
| References | Postolache, Gurefe, Sonmezoglu, Ekici, Misirli (CR28) 2014; 76 Oldham, Spanier (CR12) 2006 Osman, Rezazadeh, Eslami (CR51) 2019; 8 Wadati (CR33) 1975; 38 Eslami, Rezazadeh (CR39) 2016; 53 Miller, Ross (CR20) 1993 Rezazadeh, Mirhosseini-Alizamini, Eslami, Rezazadeh, Mirzazadeh, Abbagari (CR49) 2018; 172 Dey (CR35) 1986; 19 Arqub, Maayah (CR14) 2018; 117 Tchier, Yusuf (CR10) 2019; 134 Rezazadeh, Osman, Eslami, Mirzazadeh, Zhou, Badri, Korkmaz (CR66) 2019; 8 Rezazadeh, Korkmaz, Eslami, Vahidi, Asghari (CR45) 2018; 50 Rezazadeh, Tariq, Eslami, Mirzazadeh, Zhou (CR48) 2018; 56 Li, Kumar, Kumar, Yang (CR25) 2016; 9 Osman, Wazwaz (CR57) 2019 Osman, Ghanbari, Machado (CR53) 2019; 134 Khater, Attia, Lu (CR5) 2019; 21 Ghanbari, Yusuf, Baleanu (CR9) 2019; 2019 Arqub (CR16) 2019; 166 Khodadad, Nazari, Eslami, Rezazadeh (CR41) 2017; 49 Bulut, Sulaiman, Baskonus (CR62) 2018; 163 Bulut, Belgacem, Baskonus (CR23) 2015; 2 Aminikhah, Sheikhani, Rezazadeh (CR42) 2016; 23 Biswas, Al-Amr, Rezazadeh, Mirzazadeh, Eslami, Zhou, Moshokoa, Belic (CR44) 2018; 165 Osman (CR58) 2019; 96 Osman, Korkmaz, Rezazadeh, Mirzazadeh, Eslami, Zhou (CR63) 2018; 56 Gurefe, Sonmezoglu, Misirli (CR29) 2011; 77 Hosseini, Bekir, Kaplan, Güner (CR46) 2017; 49 Javid, Raza, Osman (CR59) 2019; 71 Eslami, Khodadad, Nazari, Rezazadeh (CR40) 2017; 49 Miller, Ross (CR11) 1993 Arqub (CR17) 2019; 166 Arqub (CR15) 2018; 34 Bulut, Sulaiman, Baskonus (CR31) 2016; 48 Hosseini, Bekir, Ansari (CR56) 2017; 132 Khater, Lu, Attia (CR1) 2019; 9 Kilbas, Srivastava, Trujillo (CR21) 2006 Khalil, Horani, Yousef, Sababheh (CR37) 2014; 264 Zhang, Chang, Jiang (CR27) 2002; 13 CR19 Attia, Lu, Khater (CR3) 2019; 24 Osman (CR61) 2016; 14 Inc, Abdel-Gawad, Tantawy, Yusuf (CR7) 2019; 42 Abdel-Gawad, Tantawy, Inc, Yusuf (CR8) 2018; 32 CR13 Rezazadeh, Osman, Eslami, Ekici, Sonmezoglu, Asma, Othman, Wong, Mirzazadeh, Zhou, Biswas (CR55) 2018; 164 Tariq, Younis, Rezazadeh, Rizvi, Osman (CR64) 2018; 32 Khater, Lu, Attia (CR2) 2019; 33 Wadati (CR34) 1975; 38 Yusuf, Aliyu, Baleanu (CR43) 2018; 50 Osman (CR67) 2017; 88 Li, Chen, Zhang (CR30) 2002; 305 Podlubny (CR18) 1999 Aydi, Marasi, Piri, Talebi (CR26) 2017; 8 Osman, Lu, Khater (CR52) 2019; 13 Khater, Attia, Lu (CR4) 2019; 4 Li, Chen, Zhang (CR32) 2003; 15 Abdeljawad (CR38) 2015; 279 Zhang (CR24) 2014; 2014 Coffey (CR36) 1990; 50 Bulut, Pandir, Demiray (CR22) 2014; 4 Khater, Attia, Lu (CR6) 2019; 24 Akram, Batool, Riaz (CR47) 2018; 50 Abdel-Gawad, Osman (CR54) 2013; 53 Osman (CR50) 2019; 93 Abdel-Gawad, Elazab, Osman (CR60) 2013; 82 Ali, Osman, Husnine (CR65) 2019; 76 MM Khater (710_CR1) 2019; 9 Y Gurefe (710_CR29) 2011; 77 MM Khater (710_CR4) 2019; 4 A Yusuf (710_CR43) 2018; 50 M Eslami (710_CR40) 2017; 49 MS Osman (710_CR63) 2018; 56 AA Kilbas (710_CR21) 2006 H Rezazadeh (710_CR49) 2018; 172 MS Osman (710_CR58) 2019; 96 H Bulut (710_CR62) 2018; 163 M Wadati (710_CR33) 1975; 38 H Aydi (710_CR26) 2017; 8 C Li (710_CR25) 2016; 9 MS Osman (710_CR53) 2019; 134 KB Oldham (710_CR12) 2006 HI Abdel-Gawad (710_CR60) 2013; 82 OA Arqub (710_CR15) 2018; 34 Y Zhang (710_CR24) 2014; 2014 HI Abdel-Gawad (710_CR54) 2013; 53 K Hosseini (710_CR46) 2017; 49 H Bulut (710_CR23) 2015; 2 W Zhang (710_CR27) 2002; 13 MS Osman (710_CR52) 2019; 13 B Ghanbari (710_CR9) 2019; 2019 OA Arqub (710_CR14) 2018; 117 B Li (710_CR30) 2002; 305 MM Khater (710_CR2) 2019; 33 A Javid (710_CR59) 2019; 71 MN Ali (710_CR65) 2019; 76 K Hosseini (710_CR56) 2017; 132 I Podlubny (710_CR18) 1999 HI Abdel-Gawad (710_CR8) 2018; 32 MW Coffey (710_CR36) 1990; 50 B Dey (710_CR35) 1986; 19 MM Khater (710_CR6) 2019; 24 KS Miller (710_CR20) 1993 M Eslami (710_CR39) 2016; 53 MS Osman (710_CR57) 2019 H Bulut (710_CR31) 2016; 48 H Rezazadeh (710_CR48) 2018; 56 H Aminikhah (710_CR42) 2016; 23 H Rezazadeh (710_CR55) 2018; 164 710_CR19 FS Khodadad (710_CR41) 2017; 49 F Tchier (710_CR10) 2019; 134 R Khalil (710_CR37) 2014; 264 MS Osman (710_CR51) 2019; 8 OA Arqub (710_CR16) 2019; 166 M Inc (710_CR7) 2019; 42 MS Osman (710_CR67) 2017; 88 H Rezazadeh (710_CR45) 2018; 50 H Bulut (710_CR22) 2014; 4 OA Arqub (710_CR17) 2019; 166 MM Khater (710_CR5) 2019; 21 H Rezazadeh (710_CR66) 2019; 8 KS Miller (710_CR11) 1993 MS Osman (710_CR61) 2016; 14 710_CR13 KU Tariq (710_CR64) 2018; 32 RA Attia (710_CR3) 2019; 24 T Abdeljawad (710_CR38) 2015; 279 G Akram (710_CR47) 2018; 50 A Biswas (710_CR44) 2018; 165 MS Osman (710_CR50) 2019; 93 B Li (710_CR32) 2003; 15 M Postolache (710_CR28) 2014; 76 M Wadati (710_CR34) 1975; 38 |
| References_xml | – volume: 2014 start-page: 1 issue: 66 year: 2014 end-page: 12 ident: CR24 article-title: Solution of the KdV equation with fractional time derivative via variational method publication-title: Electron. J. Differ. Equ. – volume: 8 start-page: 147 issue: 4 year: 2017 end-page: 155 ident: CR26 article-title: A solution to the new Caputo–Fabrizio fractional KDV equation via stability publication-title: J. Math. Anal. – volume: 71 start-page: 362 issue: 4 year: 2019 ident: CR59 article-title: Multi-solitons of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported graphene sheets publication-title: Commun. Theor. Phys. – volume: 15 start-page: 647 issue: 4 year: 2003 end-page: 654 ident: CR32 article-title: Explicit exact solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order publication-title: Chaos Solitons Fractals – volume: 56 start-page: 2500 issue: 5 year: 2018 end-page: 2506 ident: CR63 article-title: The unified method for conformable time fractional Schrödinger equation with perturbation terms publication-title: Chin. J. Phys. – year: 1999 ident: CR18 publication-title: Fractional Differential Equations – volume: 96 start-page: 1491 issue: 2 year: 2019 end-page: 1496 ident: CR58 article-title: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation publication-title: Nonlinear Dyn. – volume: 49 start-page: 384 issue: 11 year: 2017 ident: CR41 article-title: Soliton solutions of the conformable fractional Zakharov–Kuznetsov equation with dual-power law nonlinearity publication-title: Opt. Quantum Electron. – volume: 33 start-page: 1950199 issue: 18 year: 2019 ident: CR2 article-title: Lump soliton wave solutions for the (2+ 1)-dimensional Konopelchenko–Dubrovsky equation and KdV equation publication-title: Mod. Phys. Lett. B – volume: 38 start-page: 681 issue: 3 year: 1975 end-page: 686 ident: CR34 article-title: Wave propagation in nonlinear lattice. II publication-title: J. Phys. Soc. Jpn. – volume: 50 start-page: 150 issue: 3 year: 2018 ident: CR45 article-title: Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method publication-title: Opt. Quantum Electron. – volume: 32 start-page: 1850353 issue: 29 year: 2018 ident: CR8 article-title: On multi-fusion solitons induced by inelastic collision for quasi-periodic propagation with nonlinear refractive index and stability analysis publication-title: Mod. Phys. Lett. B – year: 1993 ident: CR20 publication-title: An Introduction to the Fractional Calculus and Fractional Differential Equations – volume: 53 start-page: 475 issue: 3 year: 2016 end-page: 485 ident: CR39 article-title: The first integral method for Wu–Zhang system with conformable time-fractional derivative publication-title: Calcolo – volume: 9 start-page: 5463 year: 2016 end-page: 5470 ident: CR25 article-title: On the approximate solution of nonlinear time-fractional KdV equation via modified homotopy analysis Laplace transform method publication-title: J. Nonlinear Sci. Appl. – volume: 93 start-page: 26 issue: 2 year: 2019 ident: CR50 article-title: New analytical study of water waves described by coupled fractional variant Boussinesq equation in fluid dynamics publication-title: Pramana – volume: 50 start-page: 1580 issue: 6 year: 1990 end-page: 1592 ident: CR36 article-title: On series expansions giving closed-form solutions of Korteweg–de Vries-like equations publication-title: SIAM J. Appl. Math. – volume: 42 start-page: 2455 issue: 7 year: 2019 end-page: 2464 ident: CR7 article-title: On multiple soliton similariton-pair solutions, conservation laws via multiplier and stability analysis for the Whitham–Broer–Kaup equations in weakly dispersive media publication-title: Math. Methods Appl. Sci. – volume: 49 start-page: 391 issue: 12 year: 2017 ident: CR40 article-title: The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative publication-title: Opt. Quantum Electron. – volume: 2 start-page: 3 year: 2015 ident: CR23 article-title: Some new analytical solutions for the nonlinear time-fractional KdV-Burgers-Kuramoto equation publication-title: Adv. Math. Stat. Sci. – volume: 38 start-page: 673 issue: 3 year: 1975 end-page: 680 ident: CR33 article-title: Wave propagation in nonlinear lattice. I publication-title: J. Phys. Soc. Jpn. – volume: 279 start-page: 57 year: 2015 end-page: 66 ident: CR38 article-title: On conformable fractional calculus publication-title: J. Comput. Appl. Math. – volume: 4 start-page: 315 issue: 4 year: 2014 end-page: 320 ident: CR22 article-title: Exact solutions of time-fractional KdV equations by using generalized Kudryashov method publication-title: Int. J. Model. Optim. – ident: CR19 – volume: 9 start-page: 025003 issue: 2 year: 2019 ident: CR1 article-title: Dispersive long wave of nonlinear fractional Wu–Zhang system via a modified auxiliary equation method publication-title: AIP Adv. – volume: 13 start-page: 102157 year: 2019 ident: CR52 article-title: A study of optical wave propagation in the nonautonomous Schrödinger–Hirota equation with power-law nonlinearity publication-title: Results Phys. – volume: 50 start-page: 20 issue: 1 year: 2018 ident: CR43 article-title: Soliton structures to some time-fractional nonlinear differential equations with conformable derivative publication-title: Opt. Quantum Electron. – volume: 2019 start-page: 49 year: 2019 ident: CR9 article-title: The new exact solitary wave solutions and stability analysis for the (2+ 1)-dimensional Zakharov–Kuznetsov equation publication-title: Adv. Differ. Equ. – volume: 88 start-page: 67 issue: 4 year: 2017 ident: CR67 article-title: Multiwave solutions of time-fractional (2+ 1)-dimensional Nizhnik–Novikov–Veselov equations publication-title: Pramana – volume: 165 start-page: 233 year: 2018 end-page: 239 ident: CR44 article-title: Resonant optical solitons with dual-power law nonlinearity and fractional temporal evolution publication-title: Optik – year: 2006 ident: CR21 publication-title: Theory and Applications of Fractional Differential Equations – volume: 19 start-page: L9 issue: 1 year: 1986 ident: CR35 article-title: Domain wall solutions of KdV like equations with higher order nonlinearity publication-title: J. Phys. A Math. Gen. – volume: 76 start-page: 15 issue: 1 year: 2019 end-page: 25 ident: CR65 article-title: On the analytical solutions of conformable time-fractional extended Zakharov–Kuznetsov equation through ( )-expansion method and the modified Kudryashov method publication-title: SeMA J. – volume: 166 start-page: 111 year: 2019 end-page: 137 ident: CR17 article-title: Numerical algorithm for the solutions of fractional order systems of dirichlet function types with comparative analysis publication-title: Fundam. Inform. – volume: 23 start-page: 1048 issue: 3 year: 2016 ident: CR42 article-title: Sub-equation method for the fractional regularized long-wave equations with conformable fractional derivatives publication-title: Sci. Iran. Trans. B Mech. Eng. – volume: 132 start-page: 203 year: 2017 end-page: 209 ident: CR56 article-title: New exact solutions of the conformable time-fractional Cahn–Allen and Cahn–Hilliard equations using the modified Kudryashov method publication-title: Optik – year: 2019 ident: CR57 article-title: A general bilinear form to generate different wave structures of solitons for a (3+ 1)-dimensional Boiti–Leon–Manna–Pempinelli equation publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5721 – volume: 56 start-page: 2805 issue: 6 year: 2018 end-page: 2816 ident: CR48 article-title: New exact solutions of nonlinear conformable time-fractional Phi-4 equation publication-title: Chin. J. Phys. – volume: 76 start-page: 3 issue: 2 year: 2014 end-page: 12 ident: CR28 article-title: Extended trial equation method and applications to some nonlinear problems publication-title: U.P.B Sci. Bull, Ser. A – volume: 32 start-page: 1850317 issue: 26 year: 2018 ident: CR64 article-title: Optical solitons with quadratic-cubic nonlinearity and fractional temporal evolution publication-title: Mod. Phys. Lett. B – volume: 48 start-page: 564 issue: 12 year: 2016 ident: CR31 article-title: New solitary and optical wave structures to the Korteweg–de Vries equation with dual-power law nonlinearity publication-title: Opt. Quant. Electron. – volume: 166 start-page: 87 year: 2019 end-page: 110 ident: CR16 article-title: Application of residual power series method for the solution of time-fractional Schrodinger equations in one-dimensional space publication-title: Fundam. Inform. – volume: 50 start-page: 22 issue: 1 year: 2018 ident: CR47 article-title: Two reliable techniques for the analytical study of conformable time-fractional Phi-4 equation publication-title: Opt. Quantum Electron. – volume: 172 start-page: 545 year: 2018 end-page: 553 ident: CR49 article-title: New optical solitons of nonlinear conformable fractional Schrödinger–Hirota equation publication-title: Optik – volume: 49 start-page: 343 issue: 11 year: 2017 ident: CR46 article-title: On a new technique for solving the nonlinear conformable time-fractional differential equations publication-title: Opt. Quantum Electron. – volume: 24 start-page: 10 issue: 1 year: 2019 ident: CR3 article-title: Chaos and relativistic energy-momentum of the nonlinear time fractional Duffing equation publication-title: Math. Comput. Appl. – year: 1993 ident: CR11 publication-title: An Introduction to the Fractional Calculus and Fractional Differential Equations – volume: 77 start-page: 1023 issue: 6 year: 2011 end-page: 1029 ident: CR29 article-title: Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics publication-title: Pramana – volume: 164 start-page: 84 year: 2018 end-page: 92 ident: CR55 article-title: Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadratic-cubic nonlinearity publication-title: Optik – volume: 13 start-page: 311 issue: 2 year: 2002 end-page: 319 ident: CR27 article-title: Explicit exact solitary-wave solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order publication-title: Chaos Solitons Fractals – volume: 14 start-page: 26 issue: 1 year: 2016 end-page: 36 ident: CR61 article-title: Multi-soliton rational solutions for some nonlinear evolution equations publication-title: Open Phys. – volume: 134 start-page: 20 issue: 1 year: 2019 ident: CR53 article-title: New complex waves in nonlinear optics based on the complex Ginzburg–Landau equation with Kerr law nonlinearity publication-title: Eur. Phys. J. Plus – volume: 8 start-page: 224 issue: 1 year: 2019 end-page: 230 ident: CR66 article-title: Hyperbolic rational solutions to a variety of conformable fractional Boussinesq-Like equations publication-title: Nonlinear Eng. – volume: 4 start-page: 144 issue: 2 year: 2019 end-page: 148 ident: CR4 article-title: Numerical solutions of nonlinear fractional Wu–Zhang system for water surface versus three approximate schemes publication-title: J. Ocean Eng. Sci. – volume: 264 start-page: 65 year: 2014 end-page: 70 ident: CR37 article-title: A new definition of fractional derivative publication-title: J. Comput. Appl. Math. – volume: 82 start-page: 044004 issue: 4 year: 2013 ident: CR60 article-title: Exact solutions of space dependent Korteweg–de Vries equation by the extended unified method publication-title: J. Phys. Soc. Jpn. – year: 2006 ident: CR12 publication-title: The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order – ident: CR13 – volume: 134 start-page: 250 issue: 6 year: 2019 ident: CR10 article-title: Symmetry analysis, exact solutions and numerical approximations for the space-time Carleman equation in nonlinear dynamical systems publication-title: Eur. Phys. J. Plus – volume: 117 start-page: 117 year: 2018 end-page: 124 ident: CR14 article-title: Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator publication-title: Chaos Solitons Fractals – volume: 24 start-page: 1 issue: 1 year: 2019 ident: CR6 article-title: Modified auxiliary equation method versus three nonlinear fractional biological models in present explicit wave solutions publication-title: Math. Comput. Appl. – volume: 163 start-page: 1 year: 2018 end-page: 7 ident: CR62 article-title: Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion publication-title: Optik – volume: 53 start-page: 661 issue: 4 year: 2013 end-page: 680 ident: CR54 article-title: On the variational approach for analyzing the stability of solutions of evolution equations publication-title: Kyungpook Math. J. – volume: 21 start-page: 397 issue: 4 year: 2019 ident: CR5 article-title: Explicit lump solitary wave of certain interesting (3+ 1)-dimensional waves in physics via some recent traveling wave methods publication-title: Entropy – volume: 34 start-page: 1759 year: 2018 end-page: 1780 ident: CR15 article-title: Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space publication-title: Numer. Methods Partial Differ. Equ. – volume: 305 start-page: 377 issue: 6 year: 2002 end-page: 382 ident: CR30 article-title: Auto-Bäcklund transformation and exact solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order publication-title: Phys. Lett. A – volume: 8 start-page: 559 issue: 1 year: 2019 end-page: 567 ident: CR51 article-title: Traveling wave solutions for (3+1)-dimensional conformable fractional Zakharov–Kuznetsov equation with power law nonlinearity publication-title: Nonlinear Eng. – volume: 24 start-page: 1 issue: 1 year: 2019 ident: 710_CR6 publication-title: Math. Comput. Appl. – volume: 8 start-page: 147 issue: 4 year: 2017 ident: 710_CR26 publication-title: J. Math. Anal. – volume: 32 start-page: 1850317 issue: 26 year: 2018 ident: 710_CR64 publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984918503177 – volume-title: The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order year: 2006 ident: 710_CR12 – volume: 38 start-page: 681 issue: 3 year: 1975 ident: 710_CR34 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.38.681 – ident: 710_CR19 doi: 10.1142/8180 – volume: 23 start-page: 1048 issue: 3 year: 2016 ident: 710_CR42 publication-title: Sci. Iran. Trans. B Mech. Eng. – volume: 50 start-page: 20 issue: 1 year: 2018 ident: 710_CR43 publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-017-1287-x – volume: 50 start-page: 150 issue: 3 year: 2018 ident: 710_CR45 publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-018-1416-1 – volume: 53 start-page: 661 issue: 4 year: 2013 ident: 710_CR54 publication-title: Kyungpook Math. J. doi: 10.5666/KMJ.2013.53.4.680 – volume: 166 start-page: 87 year: 2019 ident: 710_CR16 publication-title: Fundam. Inform. doi: 10.3233/FI-2019-1795 – volume: 15 start-page: 647 issue: 4 year: 2003 ident: 710_CR32 publication-title: Chaos Solitons Fractals doi: 10.1016/S0960-0779(02)00152-2 – volume-title: An Introduction to the Fractional Calculus and Fractional Differential Equations year: 1993 ident: 710_CR11 – volume: 49 start-page: 391 issue: 12 year: 2017 ident: 710_CR40 publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-017-1224-z – volume: 9 start-page: 025003 issue: 2 year: 2019 ident: 710_CR1 publication-title: AIP Adv. doi: 10.1063/1.5087647 – volume: 165 start-page: 233 year: 2018 ident: 710_CR44 publication-title: Optik doi: 10.1016/j.ijleo.2018.03.123 – volume: 134 start-page: 250 issue: 6 year: 2019 ident: 710_CR10 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2019-12586-1 – volume: 4 start-page: 144 issue: 2 year: 2019 ident: 710_CR4 publication-title: J. Ocean Eng. Sci. doi: 10.1016/j.joes.2019.03.002 – volume-title: Fractional Differential Equations year: 1999 ident: 710_CR18 – volume: 132 start-page: 203 year: 2017 ident: 710_CR56 publication-title: Optik doi: 10.1016/j.ijleo.2016.12.032 – volume: 71 start-page: 362 issue: 4 year: 2019 ident: 710_CR59 publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/71/4/362 – volume: 164 start-page: 84 year: 2018 ident: 710_CR55 publication-title: Optik doi: 10.1016/j.ijleo.2018.03.006 – volume: 56 start-page: 2500 issue: 5 year: 2018 ident: 710_CR63 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2018.06.009 – volume: 19 start-page: L9 issue: 1 year: 1986 ident: 710_CR35 publication-title: J. Phys. A Math. Gen. doi: 10.1088/0305-4470/19/1/003 – volume: 2 start-page: 3 year: 2015 ident: 710_CR23 publication-title: Adv. Math. Stat. Sci. – volume: 163 start-page: 1 year: 2018 ident: 710_CR62 publication-title: Optik doi: 10.1016/j.ijleo.2018.02.086 – volume: 33 start-page: 1950199 issue: 18 year: 2019 ident: 710_CR2 publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984919501999 – volume: 93 start-page: 26 issue: 2 year: 2019 ident: 710_CR50 publication-title: Pramana doi: 10.1007/s12043-019-1785-4 – year: 2019 ident: 710_CR57 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5721 – volume: 50 start-page: 1580 issue: 6 year: 1990 ident: 710_CR36 publication-title: SIAM J. Appl. Math. doi: 10.1137/0150093 – volume: 117 start-page: 117 year: 2018 ident: 710_CR14 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.10.007 – volume: 172 start-page: 545 year: 2018 ident: 710_CR49 publication-title: Optik doi: 10.1016/j.ijleo.2018.06.111 – volume: 8 start-page: 224 issue: 1 year: 2019 ident: 710_CR66 publication-title: Nonlinear Eng. doi: 10.1515/nleng-2018-0033 – volume: 88 start-page: 67 issue: 4 year: 2017 ident: 710_CR67 publication-title: Pramana doi: 10.1007/s12043-017-1374-3 – volume: 38 start-page: 673 issue: 3 year: 1975 ident: 710_CR33 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.38.673 – volume: 53 start-page: 475 issue: 3 year: 2016 ident: 710_CR39 publication-title: Calcolo doi: 10.1007/s10092-015-0158-8 – volume: 50 start-page: 22 issue: 1 year: 2018 ident: 710_CR47 publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-017-1288-9 – volume: 49 start-page: 384 issue: 11 year: 2017 ident: 710_CR41 publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-017-1225-y – volume: 4 start-page: 315 issue: 4 year: 2014 ident: 710_CR22 publication-title: Int. J. Model. Optim. doi: 10.7763/IJMO.2014.V4.392 – ident: 710_CR13 – volume: 264 start-page: 65 year: 2014 ident: 710_CR37 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2014.01.002 – volume: 13 start-page: 102157 year: 2019 ident: 710_CR52 publication-title: Results Phys. doi: 10.1016/j.rinp.2019.102157 – volume: 134 start-page: 20 issue: 1 year: 2019 ident: 710_CR53 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2019-12442-4 – volume: 32 start-page: 1850353 issue: 29 year: 2018 ident: 710_CR8 publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984918503530 – volume-title: An Introduction to the Fractional Calculus and Fractional Differential Equations year: 1993 ident: 710_CR20 – volume: 77 start-page: 1023 issue: 6 year: 2011 ident: 710_CR29 publication-title: Pramana doi: 10.1007/s12043-011-0201-5 – volume: 48 start-page: 564 issue: 12 year: 2016 ident: 710_CR31 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-016-0831-4 – volume: 96 start-page: 1491 issue: 2 year: 2019 ident: 710_CR58 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-04866-1 – volume: 2019 start-page: 49 year: 2019 ident: 710_CR9 publication-title: Adv. Differ. Equ. doi: 10.1186/s13662-019-1964-0 – volume: 166 start-page: 111 year: 2019 ident: 710_CR17 publication-title: Fundam. Inform. doi: 10.3233/FI-2019-1796 – volume: 9 start-page: 5463 year: 2016 ident: 710_CR25 publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.009.09.14 – volume-title: Theory and Applications of Fractional Differential Equations year: 2006 ident: 710_CR21 – volume: 8 start-page: 559 issue: 1 year: 2019 ident: 710_CR51 publication-title: Nonlinear Eng. doi: 10.1515/nleng-2018-0163 – volume: 2014 start-page: 1 issue: 66 year: 2014 ident: 710_CR24 publication-title: Electron. J. Differ. Equ. – volume: 56 start-page: 2805 issue: 6 year: 2018 ident: 710_CR48 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2018.08.001 – volume: 34 start-page: 1759 year: 2018 ident: 710_CR15 publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.22236 – volume: 14 start-page: 26 issue: 1 year: 2016 ident: 710_CR61 publication-title: Open Phys. doi: 10.1515/phys-2015-0056 – volume: 21 start-page: 397 issue: 4 year: 2019 ident: 710_CR5 publication-title: Entropy doi: 10.3390/e21040397 – volume: 49 start-page: 343 issue: 11 year: 2017 ident: 710_CR46 publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-017-1178-1 – volume: 76 start-page: 3 issue: 2 year: 2014 ident: 710_CR28 publication-title: U.P.B Sci. Bull, Ser. A – volume: 76 start-page: 15 issue: 1 year: 2019 ident: 710_CR65 publication-title: SeMA J. doi: 10.1007/s40324-018-0152-6 – volume: 305 start-page: 377 issue: 6 year: 2002 ident: 710_CR30 publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(02)01515-3 – volume: 13 start-page: 311 issue: 2 year: 2002 ident: 710_CR27 publication-title: Chaos Solitons Fractals doi: 10.1016/S0960-0779(00)00272-1 – volume: 24 start-page: 10 issue: 1 year: 2019 ident: 710_CR3 publication-title: Math. Comput. Appl. – volume: 42 start-page: 2455 issue: 7 year: 2019 ident: 710_CR7 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5521 – volume: 82 start-page: 044004 issue: 4 year: 2013 ident: 710_CR60 publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.82.044004 – volume: 279 start-page: 57 year: 2015 ident: 710_CR38 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2014.10.016 |
| SSID | ssj0002147028 |
| Score | 2.423793 |
| Snippet | In this work, the KdV equation with conformable derivative and dual-power law nonlinearity is considered. It is exceedingly used as a model to depict the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Applications of Mathematics Applied mathematics Computational mathematics Computational Science and Engineering Elliptic functions Korteweg-Devries equation Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nonlinearity Nuclear Energy Operations Research/Decision Theory Original Paper Power law Solitary waves Theoretical Traveling waves |
| Title | Jacobi Elliptic Function Expansion Method for Solving KdV Equation with Conformable Derivative and Dual-Power Law Nonlinearity |
| URI | https://link.springer.com/article/10.1007/s40819-019-0710-3 https://www.proquest.com/docview/2272266431 |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2199-5796 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002147028 issn: 2349-5103 databaseCode: AFBBN dateStart: 20150301 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLdKd4EDjwGiYyAfEAeqTImTNvFxg1ZjrAWJduotchJbq1TajrYT6oG_lT-F77MdJx0wAYdGleu6j--X7_0g5FWWd-KCidjLWZB5EVehlzClPL8I41wpLosEa4cHw-7pODqbdCaNxo9a1tJmnR3l29_WlfwPVWEN6IpVsv9AWXcoLMBzoC9cgcJw_SsanwE7y6ZtzLtYYuPVPggpTc_eN7jJ0Q_WHugJ0TqZ8PNipr0HH4qLdu_KtPg2flgs-0PdFauo3sEXvzbdwHWW8kbMvE84Sk2HEoams4bAkXd1vXbXsVhrRyGslmvL55abdbnpi2sY69T6iyPgXfP15XTW1qnfLhokt2IrCqldQMArp84OQEDrfITBAtRc5WTMe9g-LRXzxWJ1WfduBNzlye16NzF1GwMqrvoGGSQLI-5hR0Ajy8xawGEtNlNySw7fqQG5U-PWQU3sm-TaXwSKySFZRag5eb4p-ALBVUnPMmNg-DHtj8_P01FvMnq9vPJwrhnG_-2Qlztkj4Hc8Ztk77h_cjJ0fkCcE-XrEcDu55TBd6zwvPnBu-pTZRPdCONr7Wj0kNy3Zg09Nhh9RBpyvk8eWBOHWgGy2if3BhXVH5PvBsC0BDAtAUwdgKkBMAV8UgtgCgCmJYApApjWAEwrAFMAHa0ATAHAtA7gJ2Tc743ennp2IAhwkjAIvVhmYVYwFQQKNC-WhbkfRSrheVHkLFHcF5znKgqyTEjQ25UKhRCxZFyILtj9KnxKmvPFXD4jNPcBk0IqAewpilmHy8QvkjxQkRIq64oW8cv_Oc1tt3wc2jJLXZ9vTZrUxweQJg1b5I17y9K0irlt82FJvNTelKuUsRisIbARghZplwStXv7jYQe3H_ac3K1urUPSXH_dyBegSq-zlxaNPwEwftDo |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jacobi+Elliptic+Function+Expansion+Method+for+Solving+KdV+Equation+with+Conformable+Derivative+and+Dual-Power+Law+Nonlinearity&rft.jtitle=International+journal+of+applied+and+computational+mathematics&rft.au=V.+Senthil+Kumar&rft.au=Rezazadeh%2C+Hadi&rft.au=Eslami%2C+Mostafa&rft.au=Izadi%2C+Franoosh&rft.date=2019-10-01&rft.pub=Springer+Nature+B.V&rft.issn=2349-5103&rft.eissn=2199-5796&rft.volume=5&rft.issue=5&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1007%2Fs40819-019-0710-3&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-5103&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-5103&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-5103&client=summon |