Random Forest as a promising application to predict basic-dye biosorption process using orange waste
•Machine Learning Artificial Neural Networks and Random Forest were used to predict dye adsorption.•A total of 7 variables were tested, performing more than 200 independent experiments.•Random Forest showed good performance in adsorption process prediction.•The Machine Learning procedure was carried...
Saved in:
| Published in | Journal of environmental chemical engineering Vol. 8; no. 4; p. 103952 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.08.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2213-3437 2213-3437 |
| DOI | 10.1016/j.jece.2020.103952 |
Cover
| Abstract | •Machine Learning Artificial Neural Networks and Random Forest were used to predict dye adsorption.•A total of 7 variables were tested, performing more than 200 independent experiments.•Random Forest showed good performance in adsorption process prediction.•The Machine Learning procedure was carried out using Python as a programming language.
In the present study, adsorption of methylene blue dye in residual agricultural biomass (orange bagasse) was modelled using o machine learning algorithm Random Forest (RF) and compared with the traditional Artificial Neural Networks (ANN) approach. The Machine Learning was performed using Python, a free and open source programming language. The models were built and validated with a combination of 202 independent experiments aimed at separately predicting the final concentration of methylene blue (Cf), adsorption capacity (Q) and adsorbate percentage removal (R%), having as input variables: Temperature, pH, adsorbent dosage, contact time, salinity, initial methylene blue concentration and rotation. The validation process of the models was carried out using the Coefficient of Determination (R2) and the Mean Squared Error (MSE). According to the obtained results, both RF and ANN models exhibited similar performances, as shown by their respective R2 values of 0.9739 and 0.9734 for Cf; 0.9932 and 0.9919, for Q; 0.9318 and 0.9257 for R%, as well as their respective MSE values of 0.0012 and 0.0016 for Cf; 0.0005 and 0.0007 for Q; 0.0015 and 0.0019 for R%. However, RF stood out due to its capacity to better capture data variation. Finally, it was possible to point out that both methods resulted in models able to satisfactorily predict all three response variables, thereby allowing less experimental effort. |
|---|---|
| AbstractList | •Machine Learning Artificial Neural Networks and Random Forest were used to predict dye adsorption.•A total of 7 variables were tested, performing more than 200 independent experiments.•Random Forest showed good performance in adsorption process prediction.•The Machine Learning procedure was carried out using Python as a programming language.
In the present study, adsorption of methylene blue dye in residual agricultural biomass (orange bagasse) was modelled using o machine learning algorithm Random Forest (RF) and compared with the traditional Artificial Neural Networks (ANN) approach. The Machine Learning was performed using Python, a free and open source programming language. The models were built and validated with a combination of 202 independent experiments aimed at separately predicting the final concentration of methylene blue (Cf), adsorption capacity (Q) and adsorbate percentage removal (R%), having as input variables: Temperature, pH, adsorbent dosage, contact time, salinity, initial methylene blue concentration and rotation. The validation process of the models was carried out using the Coefficient of Determination (R2) and the Mean Squared Error (MSE). According to the obtained results, both RF and ANN models exhibited similar performances, as shown by their respective R2 values of 0.9739 and 0.9734 for Cf; 0.9932 and 0.9919, for Q; 0.9318 and 0.9257 for R%, as well as their respective MSE values of 0.0012 and 0.0016 for Cf; 0.0005 and 0.0007 for Q; 0.0015 and 0.0019 for R%. However, RF stood out due to its capacity to better capture data variation. Finally, it was possible to point out that both methods resulted in models able to satisfactorily predict all three response variables, thereby allowing less experimental effort. |
| ArticleNumber | 103952 |
| Author | de Miranda Ramos Soares, Arthur Pontes da Silva Gonçalves, Andreza Heloiza de Farias Silva, Carlos Eduardo de Oliveira Carvalho, Frede de Souza Abud, Ana Karla |
| Author_xml | – sequence: 1 givenname: Arthur Pontes surname: de Miranda Ramos Soares fullname: de Miranda Ramos Soares, Arthur Pontes organization: Technology Center, Federal University of Alagoas, Maceió, Brazil – sequence: 2 givenname: Frede surname: de Oliveira Carvalho fullname: de Oliveira Carvalho, Frede organization: Technology Center, Federal University of Alagoas, Maceió, Brazil – sequence: 3 givenname: Carlos Eduardo orcidid: 0000-0002-1462-1145 surname: de Farias Silva fullname: de Farias Silva, Carlos Eduardo email: eduardo.farias.ufal@gmail.com organization: Technology Center, Federal University of Alagoas, Maceió, Brazil – sequence: 4 givenname: Andreza Heloiza surname: da Silva Gonçalves fullname: da Silva Gonçalves, Andreza Heloiza organization: Institute of Chemistry and Biotechnology, University of Alagoas, Maceió, Brazil – sequence: 5 givenname: Ana Karla surname: de Souza Abud fullname: de Souza Abud, Ana Karla organization: Food Technology Department, Federal University of Sergipe, São Cristovão, Brazil |
| BookMark | eNp9kM9KAzEQh4NUsNa-gKe8wNb82d1uwIsUq0JBED2H7GS2ZGk3SxKVvr27rQfx0FwmzMw38PuuyaTzHRJyy9mCM17etYsWAReCibEhVSEuyFQILjOZy-Xkz_-KzGNs2fCU4kXJp8S-mc76PV37gDFRE6mhffB7F123pabvdw5Mcr6jyQ8DtA4SrU10kNkD0tr56EN_XBgwwBjp5xH1wXRbpN8mJrwhl43ZRZz_1hn5WD--r56zzevTy-phk4GQLGW2QQSlqpKJBqBhtZRCiWLIuGxsZVWe17ZUyBphITdY54WEWtZLZBVIMChnRJzuQvAxBmx0H9zehIPmTI-qdKtHVXpUpU-qBqj6B4FLx8gpGLc7j96fUBxCfTkMOoLDDgZLASFp6905_AcR7Yjd |
| CitedBy_id | crossref_primary_10_3390_agronomy14081789 crossref_primary_10_1080_03067319_2021_1969383 crossref_primary_10_1016_j_carbpol_2024_122866 crossref_primary_10_1016_j_fuel_2021_120243 crossref_primary_10_1021_acs_iecr_4c02147 crossref_primary_10_1016_j_eswa_2022_119453 crossref_primary_10_3390_su16010464 crossref_primary_10_1016_j_seppur_2024_127790 crossref_primary_10_1016_j_indcrop_2022_115999 crossref_primary_10_1016_j_resconrec_2022_106847 crossref_primary_10_1016_j_jiec_2024_06_042 crossref_primary_10_1016_j_chemosphere_2022_137044 crossref_primary_10_1016_j_jece_2022_107828 crossref_primary_10_1016_j_scitotenv_2024_173955 crossref_primary_10_1016_j_jece_2025_115634 crossref_primary_10_1016_j_biortech_2023_129587 crossref_primary_10_1021_acs_jcim_3c00183 crossref_primary_10_1016_j_scitotenv_2021_150554 crossref_primary_10_1016_j_jhazmat_2021_127432 crossref_primary_10_1177_00368504221148842 crossref_primary_10_1021_acsomega_3c07228 crossref_primary_10_1016_j_cis_2024_103281 crossref_primary_10_1007_s11356_022_23690_6 crossref_primary_10_1016_j_compchemeng_2025_109060 crossref_primary_10_1007_s11356_022_19906_4 crossref_primary_10_1021_acs_iecr_3c01798 crossref_primary_10_1021_acs_iecr_4c03363 crossref_primary_10_2166_wqrj_2024_011 crossref_primary_10_1007_s11144_021_02121_6 crossref_primary_10_1021_acsestwater_4c01047 crossref_primary_10_1002_clen_202400009 crossref_primary_10_1016_j_chemosphere_2021_132203 crossref_primary_10_1016_j_envres_2022_113953 crossref_primary_10_1007_s11356_023_30864_3 crossref_primary_10_1016_j_jclepro_2022_134588 crossref_primary_10_1016_j_jhazmat_2024_133825 |
| Cites_doi | 10.1016/j.ultsonch.2016.04.031 10.1038/s41598-017-18223-y 10.1016/j.jenvman.2018.06.027 10.1016/j.jenvman.2017.10.026 10.1016/j.molliq.2017.12.030 10.1016/j.jcis.2017.09.055 10.1016/j.applthermaleng.2018.05.029 10.1016/j.enbuild.2017.04.038 10.1016/j.oregeorev.2015.01.001 10.1515/aep-2017-0034 10.2166/wst.2016.298 10.1016/j.molliq.2018.07.108 10.1007/s13762-018-1798-4 10.1007/s11814-014-0334-6 10.3390/ma11050865 10.1016/j.jiec.2013.08.033 10.1023/A:1010933404324 10.1007/s12665-018-7618-9 10.1016/j.jcis.2017.05.098 10.1080/19443994.2014.987172 10.3390/app8010003 10.1016/j.jiec.2013.12.048 10.1016/j.seppur.2019.115696 10.1016/j.jenvman.2018.10.017 10.1007/s11270-017-3613-0 10.1080/19443994.2015.1027964 10.1007/s00521-017-3172-8 10.1016/j.jenvman.2017.05.045 10.1016/j.colsurfb.2011.10.019 10.1016/j.saa.2016.08.025 10.1016/j.cis.2017.04.015 10.1016/j.jiec.2013.10.028 10.1039/C5RA08399K 10.1039/C6RA01874B 10.1016/j.jhazmat.2019.06.004 10.1080/19443994.2015.1095124 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jece.2020.103952 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2213-3437 |
| ExternalDocumentID | 10_1016_j_jece_2020_103952 S2213343720303006 |
| GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 5VS 7-5 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD ENUVR FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ KCYFY KOM M41 MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c230t-dfeec998602fccf0b3329251017fd8d944bd69e0f2dc4aeb453cb3b7e08c3cae3 |
| IEDL.DBID | .~1 |
| ISSN | 2213-3437 |
| IngestDate | Thu Apr 24 23:10:39 EDT 2025 Wed Oct 01 03:45:50 EDT 2025 Fri Feb 23 02:46:37 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Artificial Neural Networks Machine learning Modelling Algorithm Wastewater treatment Methylene blue Python |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c230t-dfeec998602fccf0b3329251017fd8d944bd69e0f2dc4aeb453cb3b7e08c3cae3 |
| ORCID | 0000-0002-1462-1145 |
| ParticipantIDs | crossref_primary_10_1016_j_jece_2020_103952 crossref_citationtrail_10_1016_j_jece_2020_103952 elsevier_sciencedirect_doi_10_1016_j_jece_2020_103952 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | August 2020 2020-08-00 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of environmental chemical engineering |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Kiraz, Canpolat, Erkan, Özer (bib0010) 2018; 16 Ghaedi, Vafaei (bib0045) 2017; 245 Zeinali, Ghaedi, Shafie (bib0220) 2014; 20 Ahmad, Mourshed, Rezgui (bib0055) 2017; 147 Mahmoodi, Taghizadeh, Taghizadeh (bib0145) 2018; 269 Mendoza-Castillo, Reynel-Ávila, Sánchez-Ruiz, Trejo-Valencia, Jaime-Leal, Bonilla-Petriciolet (bib0195) 2018; 251 Turp (bib0090) 2017; 43 Mazaheri, Ghaedi, Azqhandi, Asfaram (bib0080) 2017; 19 Liu, Li, Du, Sun, Jiao, Yanga, Wanga, Xia, Zhang, Wang, Zhu, Wu (bib0185) 2012; 90 Fan, Hu, Cao, Xiong, Wei (bib0095) 2017; 7 Li, Wei, Liu, Liu, Yan, Wei, Du, Xu (bib0035) 2019; 227 Asfaram, Ghaedi, Azqhandi, Goudarzi, Dastkhoon (bib0020) 2016; 6 Zhu, Wang, Ok (bib0160) 2019; 378 Pedregosa, Varoquoux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duches (bib0175) 2011; 12 Rodriguez-Galiano, Sanchez-castillo, Chica-olmo, Chica-rivas (bib0210) 2015; 71 Kooh, Dahri, Lim (bib0040) 2018; 77 Karri, Tanzi, Tavakkoli, Sahu (bib0205) 2018; 223 Bogdanchikov, Zhaparov, Suliyev (bib0180) 2013; 423 Tanzifi, Yaroki, Kiadehi, Hosseini, Olazar, Bharti, Agawal, Gupta, Kazemi (bib0135) 2018; 510 Qi (bib0050) 2012 Gadekar, Ahammed (bib0125) 2019; 231 Silva, Gonçalves, Abud (bib0005) 2016; 74 Bagheri, Ghaedi, Hajati, Ghaedi, Goudarzi, Asfaram (bib0170) 2015; 5 Dil, Ghaedi, Asfaram, Mehrabi, Bazrafshan, Ghaedi (bib0140) 2016; 33 Babaei, Khataee, Ahmadpour, Sheydaei, Kakavandi, Alaee (bib0100) 2016; 33 Silva, Gama, Gonçalves, Medeiros, Abud (bib0015) 2019 Anupam, Dutta, Bhattacharjee, Datta (bib0065) 2016; 57 Nayak, Pal (bib0110) 2017; 200 Aghajani, Tayebi (bib0030) 2017; 171 Ghaedi, Ghaedi, Negintaji, Ansari, Vafaei, Rajabi (bib0150) 2014; 20 Karri, Sahu (bib0075) 2018; 206 Pazouki, Zabihi, Shayegan, Fatehi (bib0085) 2018; 35 Ruan, Shi, Hu, Hou, Fan, Cao, Wei (bib0120) 2018; 8 Haykin (bib0190) 2019 Ashan, Behnajady, Ziaeifar, Khalilnezhad (bib0070) 2017; 29 Khan, Mustafa, Isa, Manan, Lim, Ho, Yusof (bib0025) 2017; 228 Ruan, Hu, J, Hou, Cao, We (bib0130) 2018; 11 Dehghanian, Ghaedi, Ansari, Ghaedi, Vafaei, Asif, Agarwal, Tyagi, Gupta (bib0165) 2016; 57 Heydari, Ghaedi, Ansari, Ghaedi (bib0155) 2015; 57 Ahmadi-Azqhandi, Ghaedi, Yousefi, Jamshidi (bib0115) 2017; 505 Karimi, Ghaedi (bib0105) 2014; 20 Liu, Liang, Liu (bib0060) 2018; 140 Breiman (bib0215) 2001; 45 Géron (bib0200) 2019 Pazouki (10.1016/j.jece.2020.103952_bib0085) 2018; 35 Qi (10.1016/j.jece.2020.103952_bib0050) 2012 Heydari (10.1016/j.jece.2020.103952_bib0155) 2015; 57 Zeinali (10.1016/j.jece.2020.103952_bib0220) 2014; 20 Ruan (10.1016/j.jece.2020.103952_bib0130) 2018; 11 Asfaram (10.1016/j.jece.2020.103952_bib0020) 2016; 6 Ruan (10.1016/j.jece.2020.103952_bib0120) 2018; 8 Bogdanchikov (10.1016/j.jece.2020.103952_bib0180) 2013; 423 Silva (10.1016/j.jece.2020.103952_bib0005) 2016; 74 Khan (10.1016/j.jece.2020.103952_bib0025) 2017; 228 Mazaheri (10.1016/j.jece.2020.103952_bib0080) 2017; 19 Dil (10.1016/j.jece.2020.103952_bib0140) 2016; 33 Ahmadi-Azqhandi (10.1016/j.jece.2020.103952_bib0115) 2017; 505 Tanzifi (10.1016/j.jece.2020.103952_bib0135) 2018; 510 Turp (10.1016/j.jece.2020.103952_bib0090) 2017; 43 Mahmoodi (10.1016/j.jece.2020.103952_bib0145) 2018; 269 Ashan (10.1016/j.jece.2020.103952_bib0070) 2017; 29 Karimi (10.1016/j.jece.2020.103952_bib0105) 2014; 20 Gadekar (10.1016/j.jece.2020.103952_bib0125) 2019; 231 Bagheri (10.1016/j.jece.2020.103952_bib0170) 2015; 5 Mendoza-Castillo (10.1016/j.jece.2020.103952_bib0195) 2018; 251 Karri (10.1016/j.jece.2020.103952_bib0205) 2018; 223 Kooh (10.1016/j.jece.2020.103952_bib0040) 2018; 77 Ahmad (10.1016/j.jece.2020.103952_bib0055) 2017; 147 Aghajani (10.1016/j.jece.2020.103952_bib0030) 2017; 171 Ghaedi (10.1016/j.jece.2020.103952_bib0150) 2014; 20 Zhu (10.1016/j.jece.2020.103952_bib0160) 2019; 378 Fan (10.1016/j.jece.2020.103952_bib0095) 2017; 7 Li (10.1016/j.jece.2020.103952_bib0035) 2019; 227 Dehghanian (10.1016/j.jece.2020.103952_bib0165) 2016; 57 Liu (10.1016/j.jece.2020.103952_bib0060) 2018; 140 Haykin (10.1016/j.jece.2020.103952_bib0190) 2019 Rodriguez-Galiano (10.1016/j.jece.2020.103952_bib0210) 2015; 71 Silva (10.1016/j.jece.2020.103952_bib0015) 2019 Géron (10.1016/j.jece.2020.103952_bib0200) 2019 Kiraz (10.1016/j.jece.2020.103952_bib0010) 2018; 16 Breiman (10.1016/j.jece.2020.103952_bib0215) 2001; 45 Anupam (10.1016/j.jece.2020.103952_bib0065) 2016; 57 Liu (10.1016/j.jece.2020.103952_bib0185) 2012; 90 Ghaedi (10.1016/j.jece.2020.103952_bib0045) 2017; 245 Karri (10.1016/j.jece.2020.103952_bib0075) 2018; 206 Pedregosa (10.1016/j.jece.2020.103952_bib0175) 2011; 12 Babaei (10.1016/j.jece.2020.103952_bib0100) 2016; 33 Nayak (10.1016/j.jece.2020.103952_bib0110) 2017; 200 |
| References_xml | – volume: 16 start-page: 5079 year: 2018 end-page: 5086 ident: bib0010 article-title: Artificial neural networks modeling for the prediction of Pb (II) adsorption publication-title: Int. J. Environ. Sci. Technol. – volume: 510 start-page: 246 year: 2018 end-page: 261 ident: bib0135 article-title: Adsorption of Amido Black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: experimental investigation and artificial neural network modelling publication-title: J. Colloid Interface Sci. – volume: 33 start-page: 129 year: 2016 end-page: 140 ident: bib0140 article-title: Trace determination of safranin O dye using ultrasound assisted dispersive solid-phase micro extraction: artificial neural network-genetic algorithm and response surface methodology publication-title: Ultrason. Sonochem. – volume: 6 start-page: 40502 year: 2016 end-page: 40516 ident: bib0020 article-title: Statistical experimental design, least squares-support vector machine (LS-SVM) and artificial neural network (ANN) methods for modeling the facilitated adsorption of methylene blue dye publication-title: RSC Adv. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0215 article-title: Random forests publication-title: Mach. Learn. – volume: 20 start-page: 3550 year: 2014 end-page: 3558 ident: bib0220 article-title: Competitive adsorption of methylene blue and brilliant green onto graphite oxide nano particle following: Derivative spectrophotometric and principal component-artificial neural network model methods for their simultaneous determination publication-title: J. Ind. Eng. Chem. – volume: 245 start-page: 20 year: 2017 end-page: 39 ident: bib0045 article-title: Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: a review publication-title: Adv. Colloid Interface Sci. – volume: 5 start-page: 59335 year: 2015 end-page: 59343 ident: bib0170 article-title: Random forest model for the ultrasonic-assisted removal of chrysoidine G by copper sulfide nanoparticles loaded on activated carbon; response surface methodology approach publication-title: RSC Adv. – volume: 140 start-page: 95 year: 2018 end-page: 101 ident: bib0060 article-title: Artificial neural network modeling of biosorption process using agricultural wastes in a rotating packed bed publication-title: Appl. Therm. Eng. – volume: 57 start-page: 9272 year: 2016 end-page: 9285 ident: bib0165 article-title: A random forest approach for predicting the removal of Congo red from aqueous solutions by adsorption onto tin sulfide nanoparticles loaded on activated carbon publication-title: Desalin. Water Treat. – year: 2019 ident: bib0015 article-title: Basic-dye adsorption in albedo residue: effect of pH, contact time, temperature, dye concentration, biomass dosage, rotation and ionic strength publication-title: J. King Saud Univ. - Eng. Sci. – volume: 35 start-page: 671 year: 2018 end-page: 683 ident: bib0085 publication-title: Mercury Ion Adsorption on AC@ Fe3O4-NH2-COOH from Saline Solutions: Experimental Studies and Artificial Neural Network Modeling – volume: 20 start-page: 2471 year: 2014 end-page: 2476 ident: bib0105 article-title: Application of artificial neural network and genetic algorithm to modeling and optimization of removal of methylene blue using activated carbon publication-title: J. Ind. Eng. Chem. – volume: 90 start-page: 197 year: 2012 end-page: 203 ident: bib0185 article-title: Adsorption of methylene blue from aqueous solution by graphene publication-title: Colloids Surf. B: Biointerface – volume: 378 year: 2019 ident: bib0160 article-title: The application of machine learning methods for prediction of metal sorption onto biochars publication-title: J. Hazard. Mater. – volume: 57 start-page: 19273 year: 2015 end-page: 19291 ident: bib0155 article-title: Random forest model for removal of methylene blue and lead (II) ion using activated carbon obtained from Tamarisk publication-title: Desalin. Water Treat. – volume: 251 start-page: 15 year: 2018 end-page: 27 ident: bib0195 article-title: Insights and pitfalls of artificial neural network modeling of competitive multi-metallic adsorption data publication-title: J. Mol. Liq. – volume: 8 start-page: 3 year: 2018 ident: bib0120 article-title: Modeling of malachite green removal from aqueous solutions by nanoscale zerovalent zinc using artificial neural network publication-title: Appl. Sci. – volume: 228 start-page: 426 year: 2017 ident: bib0025 article-title: Artificial Neural Network (ANN) for modelling adsorption of lead (Pb (II)) from aqueous solution publication-title: Water Air Soil Pollut. – volume: 77 start-page: 432 year: 2018 ident: bib0040 article-title: Jackfruit seed as low-cost adsorbent for removal of malachite green: artificial neural network and random forest approaches publication-title: Environ. Earth Sci. – volume: 269 start-page: 217 year: 2018 end-page: 228 ident: bib0145 article-title: Mesoporous activated carbons of low-cost agricultural bio-wastes with high adsorption capacity: preparation and artificial neural network modeling of dye removal from single and multicomponent (binary and ternary) systems publication-title: J. Mol. Liq. – volume: 423 year: 2013 ident: bib0180 article-title: Python to learn programming publication-title: J. Phys. Conf. Ser. – year: 2019 ident: bib0190 article-title: Neural Networks and Learning Machines – year: 2019 ident: bib0200 article-title: Hands-on Machine Learning With Scikit-learn, Keras & TensorFlow: Concepts, Tools and Techniques to Build Intelligent Systems – volume: 171 start-page: 439 year: 2017 end-page: 448 ident: bib0030 article-title: Adaptive Neuro-Fuzzy Inference system analysis on adsorption studies of Reactive Red 198 from aqueous solution by SBA-15 / CTAB composite publication-title: Spectrochim. Acta A. Mol. Biomol. Spectrosc. – volume: 11 start-page: 865 year: 2018 ident: bib0130 article-title: Removal of crystal violet by using reduced-graphene-oxide-supported bimetallic Fe/Ni nanoparticles (rGO/Fe/Ni): application of artificial intelligence modeling for the optimization process publication-title: Materials – volume: 20 start-page: 1793 year: 2014 end-page: 1803 ident: bib0150 article-title: Random forest model for removal of bromophenol blue using activated carbon obtained from Astragalus bisulcatus tree publication-title: J. Ind. Eng. Chem. – volume: 33 start-page: 1352 year: 2016 end-page: 1361 ident: bib0100 article-title: Optimization of cationic dye adsorption on activated spent tea: equilibrium, kinetics, thermodynamic and artificial neural network modelling publication-title: Korean J. Chem. Eng. – volume: 223 start-page: 517 year: 2018 end-page: 529 ident: bib0205 article-title: Optimization and modeling of methyl orange adsorption onto polyaniline nano-adsorbent through response surface methodology and differential evolution embedded neural network publication-title: J. Environ. Manage. – volume: 505 start-page: 278 year: 2017 end-page: 292 ident: bib0115 article-title: Application of random forest, radial basis function neural networks and central composite design for modeling and / or optimization of the ultrasonic assisted adsorption of brilliant green on ZnS-NP-AC publication-title: J. Colloid Interface Sci. – volume: 71 start-page: 804 year: 2015 end-page: 818 ident: bib0210 article-title: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines publication-title: Ore Geol. Rev. – volume: 147 start-page: 77 year: 2017 end-page: 89 ident: bib0055 article-title: Trees vs neurons: comparison between random forest and ANN for high-resolution prediction of building energy consumption publication-title: Energy Build. – volume: 43 start-page: 26 year: 2017 end-page: 32 ident: bib0090 article-title: Prediction of adsorption ef fi ciencies of Ni (II) in aqueous solutions with perlite via artificial neural networks publication-title: Arch. Environ. Prot. – volume: 29 start-page: 969 year: 2017 end-page: 979 ident: bib0070 article-title: Artificial neural network modelling of Cr(VI) surface adsorption with NiO nanoparticles using the results obtained from optimization of response surface methodology publication-title: Neural Comput. Appl. – volume: 19 start-page: 11299 year: 2017 end-page: 11317 ident: bib0080 article-title: Application of machine/statistical learning, artificial intelligence and statistical experimental design for the modeling and optimization of methylene blue and Cd (ii) removal from a binary aqueous solution by natural walnut carbon publication-title: J. Chem. Soc. Faraday Trans. – volume: 200 start-page: 145 year: 2017 end-page: 159 ident: bib0110 article-title: Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: Process optimization and multi-variate modelling publication-title: J. Environ. Manage. – volume: 231 start-page: 241 year: 2019 end-page: 248 ident: bib0125 article-title: Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach publication-title: J. Environ. Manage. – start-page: 307 year: 2012 end-page: 323 ident: bib0050 article-title: Random forest for bioinformatics publication-title: Ensemble Machine Learning – volume: 227 year: 2019 ident: bib0035 article-title: EDTA functionalized magnetic biochar for Pb (II) removal: adsorption performance, mechanism and SVM model prediction publication-title: Sep. Purif. Technol. – volume: 57 start-page: 3632 year: 2016 end-page: 3641 ident: bib0065 article-title: Artificial neural network modelling for removal of chromium (VI) from wastewater using physisorption onto powdered activated carbon publication-title: Desalin. Water Treat. – volume: 206 start-page: 178 year: 2018 end-page: 191 ident: bib0075 article-title: Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (II) by palm kernel shell based activated carbon from aqueous environment publication-title: J. Environ. Manage. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib0175 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 7 start-page: 18040 year: 2017 ident: bib0095 article-title: Modeling and prediction of copper removal from aqueous solutions by nZVI/rGO magnetic nanocomposites using ANN-GA and ANN-PSO publication-title: Sci. Rep. – volume: 74 start-page: 994 year: 2016 end-page: 1004 ident: bib0005 article-title: Treatment of textile industry effluents using orange waste: a proposal to reduce color and chemical oxygen demand publication-title: Water Sci. Technol. – volume: 33 start-page: 129 year: 2016 ident: 10.1016/j.jece.2020.103952_bib0140 article-title: Trace determination of safranin O dye using ultrasound assisted dispersive solid-phase micro extraction: artificial neural network-genetic algorithm and response surface methodology publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.04.031 – volume: 7 start-page: 18040 year: 2017 ident: 10.1016/j.jece.2020.103952_bib0095 article-title: Modeling and prediction of copper removal from aqueous solutions by nZVI/rGO magnetic nanocomposites using ANN-GA and ANN-PSO publication-title: Sci. Rep. doi: 10.1038/s41598-017-18223-y – year: 2019 ident: 10.1016/j.jece.2020.103952_bib0190 – volume: 223 start-page: 517 year: 2018 ident: 10.1016/j.jece.2020.103952_bib0205 article-title: Optimization and modeling of methyl orange adsorption onto polyaniline nano-adsorbent through response surface methodology and differential evolution embedded neural network publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2018.06.027 – volume: 206 start-page: 178 year: 2018 ident: 10.1016/j.jece.2020.103952_bib0075 article-title: Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (II) by palm kernel shell based activated carbon from aqueous environment publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2017.10.026 – volume: 251 start-page: 15 year: 2018 ident: 10.1016/j.jece.2020.103952_bib0195 article-title: Insights and pitfalls of artificial neural network modeling of competitive multi-metallic adsorption data publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.12.030 – year: 2019 ident: 10.1016/j.jece.2020.103952_bib0200 – volume: 510 start-page: 246 year: 2018 ident: 10.1016/j.jece.2020.103952_bib0135 article-title: Adsorption of Amido Black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: experimental investigation and artificial neural network modelling publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.09.055 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.jece.2020.103952_bib0175 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 140 start-page: 95 year: 2018 ident: 10.1016/j.jece.2020.103952_bib0060 article-title: Artificial neural network modeling of biosorption process using agricultural wastes in a rotating packed bed publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.05.029 – volume: 147 start-page: 77 year: 2017 ident: 10.1016/j.jece.2020.103952_bib0055 article-title: Trees vs neurons: comparison between random forest and ANN for high-resolution prediction of building energy consumption publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.04.038 – volume: 71 start-page: 804 year: 2015 ident: 10.1016/j.jece.2020.103952_bib0210 article-title: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2015.01.001 – volume: 43 start-page: 26 issue: 4 year: 2017 ident: 10.1016/j.jece.2020.103952_bib0090 article-title: Prediction of adsorption ef fi ciencies of Ni (II) in aqueous solutions with perlite via artificial neural networks publication-title: Arch. Environ. Prot. doi: 10.1515/aep-2017-0034 – volume: 74 start-page: 994 issue: 4 year: 2016 ident: 10.1016/j.jece.2020.103952_bib0005 article-title: Treatment of textile industry effluents using orange waste: a proposal to reduce color and chemical oxygen demand publication-title: Water Sci. Technol. doi: 10.2166/wst.2016.298 – start-page: 307 year: 2012 ident: 10.1016/j.jece.2020.103952_bib0050 article-title: Random forest for bioinformatics – volume: 269 start-page: 217 year: 2018 ident: 10.1016/j.jece.2020.103952_bib0145 article-title: Mesoporous activated carbons of low-cost agricultural bio-wastes with high adsorption capacity: preparation and artificial neural network modeling of dye removal from single and multicomponent (binary and ternary) systems publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.07.108 – volume: 16 start-page: 5079 year: 2018 ident: 10.1016/j.jece.2020.103952_bib0010 article-title: Artificial neural networks modeling for the prediction of Pb (II) adsorption publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-018-1798-4 – year: 2019 ident: 10.1016/j.jece.2020.103952_bib0015 article-title: Basic-dye adsorption in albedo residue: effect of pH, contact time, temperature, dye concentration, biomass dosage, rotation and ionic strength publication-title: J. King Saud Univ. - Eng. Sci. – volume: 33 start-page: 1352 issue: 4 year: 2016 ident: 10.1016/j.jece.2020.103952_bib0100 article-title: Optimization of cationic dye adsorption on activated spent tea: equilibrium, kinetics, thermodynamic and artificial neural network modelling publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-014-0334-6 – volume: 11 start-page: 865 issue: 5 year: 2018 ident: 10.1016/j.jece.2020.103952_bib0130 article-title: Removal of crystal violet by using reduced-graphene-oxide-supported bimetallic Fe/Ni nanoparticles (rGO/Fe/Ni): application of artificial intelligence modeling for the optimization process publication-title: Materials doi: 10.3390/ma11050865 – volume: 20 start-page: 1793 issue: 4 year: 2014 ident: 10.1016/j.jece.2020.103952_bib0150 article-title: Random forest model for removal of bromophenol blue using activated carbon obtained from Astragalus bisulcatus tree publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2013.08.033 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.jece.2020.103952_bib0215 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 423 issue: 1 year: 2013 ident: 10.1016/j.jece.2020.103952_bib0180 article-title: Python to learn programming publication-title: J. Phys. Conf. Ser. – volume: 77 start-page: 432 year: 2018 ident: 10.1016/j.jece.2020.103952_bib0040 article-title: Jackfruit seed as low-cost adsorbent for removal of malachite green: artificial neural network and random forest approaches publication-title: Environ. Earth Sci. doi: 10.1007/s12665-018-7618-9 – volume: 505 start-page: 278 year: 2017 ident: 10.1016/j.jece.2020.103952_bib0115 article-title: Application of random forest, radial basis function neural networks and central composite design for modeling and / or optimization of the ultrasonic assisted adsorption of brilliant green on ZnS-NP-AC publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.05.098 – volume: 57 start-page: 3632 issue: 8 year: 2016 ident: 10.1016/j.jece.2020.103952_bib0065 article-title: Artificial neural network modelling for removal of chromium (VI) from wastewater using physisorption onto powdered activated carbon publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2014.987172 – volume: 8 start-page: 3 issue: 1 year: 2018 ident: 10.1016/j.jece.2020.103952_bib0120 article-title: Modeling of malachite green removal from aqueous solutions by nanoscale zerovalent zinc using artificial neural network publication-title: Appl. Sci. doi: 10.3390/app8010003 – volume: 20 start-page: 3550 year: 2014 ident: 10.1016/j.jece.2020.103952_bib0220 article-title: Competitive adsorption of methylene blue and brilliant green onto graphite oxide nano particle following: Derivative spectrophotometric and principal component-artificial neural network model methods for their simultaneous determination publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2013.12.048 – volume: 227 year: 2019 ident: 10.1016/j.jece.2020.103952_bib0035 article-title: EDTA functionalized magnetic biochar for Pb (II) removal: adsorption performance, mechanism and SVM model prediction publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115696 – volume: 231 start-page: 241 year: 2019 ident: 10.1016/j.jece.2020.103952_bib0125 article-title: Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2018.10.017 – volume: 228 start-page: 426 year: 2017 ident: 10.1016/j.jece.2020.103952_bib0025 article-title: Artificial Neural Network (ANN) for modelling adsorption of lead (Pb (II)) from aqueous solution publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-017-3613-0 – volume: 57 start-page: 9272 issue: 20 year: 2016 ident: 10.1016/j.jece.2020.103952_bib0165 article-title: A random forest approach for predicting the removal of Congo red from aqueous solutions by adsorption onto tin sulfide nanoparticles loaded on activated carbon publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2015.1027964 – volume: 29 start-page: 969 issue: 10 year: 2017 ident: 10.1016/j.jece.2020.103952_bib0070 article-title: Artificial neural network modelling of Cr(VI) surface adsorption with NiO nanoparticles using the results obtained from optimization of response surface methodology publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3172-8 – volume: 200 start-page: 145 year: 2017 ident: 10.1016/j.jece.2020.103952_bib0110 article-title: Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: Process optimization and multi-variate modelling publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2017.05.045 – volume: 90 start-page: 197 year: 2012 ident: 10.1016/j.jece.2020.103952_bib0185 article-title: Adsorption of methylene blue from aqueous solution by graphene publication-title: Colloids Surf. B: Biointerface doi: 10.1016/j.colsurfb.2011.10.019 – volume: 19 start-page: 11299 issue: 18 year: 2017 ident: 10.1016/j.jece.2020.103952_bib0080 article-title: Application of machine/statistical learning, artificial intelligence and statistical experimental design for the modeling and optimization of methylene blue and Cd (ii) removal from a binary aqueous solution by natural walnut carbon publication-title: J. Chem. Soc. Faraday Trans. – volume: 171 start-page: 439 year: 2017 ident: 10.1016/j.jece.2020.103952_bib0030 article-title: Adaptive Neuro-Fuzzy Inference system analysis on adsorption studies of Reactive Red 198 from aqueous solution by SBA-15 / CTAB composite publication-title: Spectrochim. Acta A. Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2016.08.025 – volume: 245 start-page: 20 year: 2017 ident: 10.1016/j.jece.2020.103952_bib0045 article-title: Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: a review publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2017.04.015 – volume: 20 start-page: 2471 issue: 4 year: 2014 ident: 10.1016/j.jece.2020.103952_bib0105 article-title: Application of artificial neural network and genetic algorithm to modeling and optimization of removal of methylene blue using activated carbon publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2013.10.028 – volume: 5 start-page: 59335 issue: 73 year: 2015 ident: 10.1016/j.jece.2020.103952_bib0170 article-title: Random forest model for the ultrasonic-assisted removal of chrysoidine G by copper sulfide nanoparticles loaded on activated carbon; response surface methodology approach publication-title: RSC Adv. doi: 10.1039/C5RA08399K – volume: 6 start-page: 40502 issue: 46 year: 2016 ident: 10.1016/j.jece.2020.103952_bib0020 article-title: Statistical experimental design, least squares-support vector machine (LS-SVM) and artificial neural network (ANN) methods for modeling the facilitated adsorption of methylene blue dye publication-title: RSC Adv. doi: 10.1039/C6RA01874B – volume: 35 start-page: 671 year: 2018 ident: 10.1016/j.jece.2020.103952_bib0085 – volume: 378 year: 2019 ident: 10.1016/j.jece.2020.103952_bib0160 article-title: The application of machine learning methods for prediction of metal sorption onto biochars publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.06.004 – volume: 57 start-page: 19273 issue: 41 year: 2015 ident: 10.1016/j.jece.2020.103952_bib0155 article-title: Random forest model for removal of methylene blue and lead (II) ion using activated carbon obtained from Tamarisk publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2015.1095124 |
| SSID | ssj0000991561 |
| Score | 2.4271998 |
| Snippet | •Machine Learning Artificial Neural Networks and Random Forest were used to predict dye adsorption.•A total of 7 variables were tested, performing more than... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103952 |
| SubjectTerms | Algorithm Artificial Neural Networks Machine learning Methylene blue Modelling Python Wastewater treatment |
| Title | Random Forest as a promising application to predict basic-dye biosorption process using orange waste |
| URI | https://dx.doi.org/10.1016/j.jece.2020.103952 |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 2213-3437 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000991561 issn: 2213-3437 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 2213-3437 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000991561 issn: 2213-3437 databaseCode: ACRLP dateStart: 20130601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 2213-3437 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000991561 issn: 2213-3437 databaseCode: AIKHN dateStart: 20130601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 2213-3437 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000991561 issn: 2213-3437 databaseCode: .~1 dateStart: 20130601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2213-3437 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000991561 issn: 2213-3437 databaseCode: AKRWK dateStart: 20130601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k9hks5t2j6VYqmIPaqG3kJ3dSIompU0RL_52Z_MoFaQHj8nuQJidnZkv8yLkmoPwwHjS0aCFw4EpR0kliiEChntSKrDVyE_jYDThD1MxbZBBXQtj0yor3V_q9EJbV286FTc78yTpvDCG-MqGnVBO_bLtNuddO8Xg9ttb_2dBDwghisVddr9jCaramTLNa2bAdstkRfm5FOxv-7Rhc4YHZL9yFmm__J5D0jDpEdnbaCF4TPRzlOrsg9oRm8ucRksaUVSKeHq4TDfC0zTPcMGGZXKKpisBR38ZqpJsmS0KtUHnZc0AXRWkKBrpm6GfEYrBCZkM714HI6eanOAAQorc0bExgEAqcFkMELvK95lkxfWLdU9LzpUOpHFjpoFHRnHhg_JV17g98CEy_ilppllqzgjt2o71sWZBD5EHIF5WII10I6VMIISIW8Sr-RVC1VbcTrd4D-v8sVloeRxaHoclj1vkZk0zL5tqbN0t6mMIf4lGiFp_C935P-kuyK59KrP8LkkzX6zMFXoeuWoXotUmO_37x9H4B24l2QM |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QPKgH4zPicw_eTKXd7hb2aIgEFTgoJNya7uzWQLQlUGK8-NudbQvBxHDw2ukkzezszHydFyE3HIQHxpOOBi0cDkw5SiqRLxEw3JNSge1G7vWDzpA_jcSoQlrLXhhbVlna_sKm59a6fFIvpVmfjsf1V8YQX9m0E-qpn4_d3uKCNSwCu_v2Vj9aMARCjGKBl2VwLEfZPFPUeU0M2HGZLO8_l4L97aDWnE57n-yV0SK9Lz7ogFRMckh212YIHhH9EiU6_aB2x-Y8o9GcRhStIh4fkulafppmKRJsXiaj6LvG4OgvQ9U4naez3G7QadE0QBc5K-pG8mboZ4R6cEyG7YdBq-OUqxMcQEyROTo2BhBJBS6LAWJX-T6TLL9_sW5qybnSgTRuzDTwyCgufFC-ahi3CT5Exj8h1SRNzCmhDTuyPtYsaCL0AATMCqSRbqSUCYQQcY14S3mFUM4Vt-st3sNlAdkktDIOrYzDQsY1crvimRZTNTa-LZbHEP7SjRDN_ga-s3_yXZPtzqDXDbuP_edzsmMpRcnfBalms4W5xDAkU1e5mv0AlqvamA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+Forest+as+a+promising+application+to+predict+basic-dye+biosorption+process+using+orange+waste&rft.jtitle=Journal+of+environmental+chemical+engineering&rft.au=de+Miranda+Ramos+Soares%2C+Arthur+Pontes&rft.au=de+Oliveira+Carvalho%2C+Frede&rft.au=de+Farias+Silva%2C+Carlos+Eduardo&rft.au=da+Silva+Gon%C3%A7alves%2C+Andreza+Heloiza&rft.date=2020-08-01&rft.pub=Elsevier+Ltd&rft.issn=2213-3437&rft.eissn=2213-3437&rft.volume=8&rft.issue=4&rft_id=info:doi/10.1016%2Fj.jece.2020.103952&rft.externalDocID=S2213343720303006 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-3437&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-3437&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-3437&client=summon |