Random Forest as a promising application to predict basic-dye biosorption process using orange waste

•Machine Learning Artificial Neural Networks and Random Forest were used to predict dye adsorption.•A total of 7 variables were tested, performing more than 200 independent experiments.•Random Forest showed good performance in adsorption process prediction.•The Machine Learning procedure was carried...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental chemical engineering Vol. 8; no. 4; p. 103952
Main Authors de Miranda Ramos Soares, Arthur Pontes, de Oliveira Carvalho, Frede, de Farias Silva, Carlos Eduardo, da Silva Gonçalves, Andreza Heloiza, de Souza Abud, Ana Karla
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2020
Subjects
Online AccessGet full text
ISSN2213-3437
2213-3437
DOI10.1016/j.jece.2020.103952

Cover

Abstract •Machine Learning Artificial Neural Networks and Random Forest were used to predict dye adsorption.•A total of 7 variables were tested, performing more than 200 independent experiments.•Random Forest showed good performance in adsorption process prediction.•The Machine Learning procedure was carried out using Python as a programming language. In the present study, adsorption of methylene blue dye in residual agricultural biomass (orange bagasse) was modelled using o machine learning algorithm Random Forest (RF) and compared with the traditional Artificial Neural Networks (ANN) approach. The Machine Learning was performed using Python, a free and open source programming language. The models were built and validated with a combination of 202 independent experiments aimed at separately predicting the final concentration of methylene blue (Cf), adsorption capacity (Q) and adsorbate percentage removal (R%), having as input variables: Temperature, pH, adsorbent dosage, contact time, salinity, initial methylene blue concentration and rotation. The validation process of the models was carried out using the Coefficient of Determination (R2) and the Mean Squared Error (MSE). According to the obtained results, both RF and ANN models exhibited similar performances, as shown by their respective R2 values of 0.9739 and 0.9734 for Cf; 0.9932 and 0.9919, for Q; 0.9318 and 0.9257 for R%, as well as their respective MSE values of 0.0012 and 0.0016 for Cf; 0.0005 and 0.0007 for Q; 0.0015 and 0.0019 for R%. However, RF stood out due to its capacity to better capture data variation. Finally, it was possible to point out that both methods resulted in models able to satisfactorily predict all three response variables, thereby allowing less experimental effort.
AbstractList •Machine Learning Artificial Neural Networks and Random Forest were used to predict dye adsorption.•A total of 7 variables were tested, performing more than 200 independent experiments.•Random Forest showed good performance in adsorption process prediction.•The Machine Learning procedure was carried out using Python as a programming language. In the present study, adsorption of methylene blue dye in residual agricultural biomass (orange bagasse) was modelled using o machine learning algorithm Random Forest (RF) and compared with the traditional Artificial Neural Networks (ANN) approach. The Machine Learning was performed using Python, a free and open source programming language. The models were built and validated with a combination of 202 independent experiments aimed at separately predicting the final concentration of methylene blue (Cf), adsorption capacity (Q) and adsorbate percentage removal (R%), having as input variables: Temperature, pH, adsorbent dosage, contact time, salinity, initial methylene blue concentration and rotation. The validation process of the models was carried out using the Coefficient of Determination (R2) and the Mean Squared Error (MSE). According to the obtained results, both RF and ANN models exhibited similar performances, as shown by their respective R2 values of 0.9739 and 0.9734 for Cf; 0.9932 and 0.9919, for Q; 0.9318 and 0.9257 for R%, as well as their respective MSE values of 0.0012 and 0.0016 for Cf; 0.0005 and 0.0007 for Q; 0.0015 and 0.0019 for R%. However, RF stood out due to its capacity to better capture data variation. Finally, it was possible to point out that both methods resulted in models able to satisfactorily predict all three response variables, thereby allowing less experimental effort.
ArticleNumber 103952
Author de Miranda Ramos Soares, Arthur Pontes
da Silva Gonçalves, Andreza Heloiza
de Farias Silva, Carlos Eduardo
de Oliveira Carvalho, Frede
de Souza Abud, Ana Karla
Author_xml – sequence: 1
  givenname: Arthur Pontes
  surname: de Miranda Ramos Soares
  fullname: de Miranda Ramos Soares, Arthur Pontes
  organization: Technology Center, Federal University of Alagoas, Maceió, Brazil
– sequence: 2
  givenname: Frede
  surname: de Oliveira Carvalho
  fullname: de Oliveira Carvalho, Frede
  organization: Technology Center, Federal University of Alagoas, Maceió, Brazil
– sequence: 3
  givenname: Carlos Eduardo
  orcidid: 0000-0002-1462-1145
  surname: de Farias Silva
  fullname: de Farias Silva, Carlos Eduardo
  email: eduardo.farias.ufal@gmail.com
  organization: Technology Center, Federal University of Alagoas, Maceió, Brazil
– sequence: 4
  givenname: Andreza Heloiza
  surname: da Silva Gonçalves
  fullname: da Silva Gonçalves, Andreza Heloiza
  organization: Institute of Chemistry and Biotechnology, University of Alagoas, Maceió, Brazil
– sequence: 5
  givenname: Ana Karla
  surname: de Souza Abud
  fullname: de Souza Abud, Ana Karla
  organization: Food Technology Department, Federal University of Sergipe, São Cristovão, Brazil
BookMark eNp9kM9KAzEQh4NUsNa-gKe8wNb82d1uwIsUq0JBED2H7GS2ZGk3SxKVvr27rQfx0FwmzMw38PuuyaTzHRJyy9mCM17etYsWAReCibEhVSEuyFQILjOZy-Xkz_-KzGNs2fCU4kXJp8S-mc76PV37gDFRE6mhffB7F123pabvdw5Mcr6jyQ8DtA4SrU10kNkD0tr56EN_XBgwwBjp5xH1wXRbpN8mJrwhl43ZRZz_1hn5WD--r56zzevTy-phk4GQLGW2QQSlqpKJBqBhtZRCiWLIuGxsZVWe17ZUyBphITdY54WEWtZLZBVIMChnRJzuQvAxBmx0H9zehIPmTI-qdKtHVXpUpU-qBqj6B4FLx8gpGLc7j96fUBxCfTkMOoLDDgZLASFp6905_AcR7Yjd
CitedBy_id crossref_primary_10_3390_agronomy14081789
crossref_primary_10_1080_03067319_2021_1969383
crossref_primary_10_1016_j_carbpol_2024_122866
crossref_primary_10_1016_j_fuel_2021_120243
crossref_primary_10_1021_acs_iecr_4c02147
crossref_primary_10_1016_j_eswa_2022_119453
crossref_primary_10_3390_su16010464
crossref_primary_10_1016_j_seppur_2024_127790
crossref_primary_10_1016_j_indcrop_2022_115999
crossref_primary_10_1016_j_resconrec_2022_106847
crossref_primary_10_1016_j_jiec_2024_06_042
crossref_primary_10_1016_j_chemosphere_2022_137044
crossref_primary_10_1016_j_jece_2022_107828
crossref_primary_10_1016_j_scitotenv_2024_173955
crossref_primary_10_1016_j_jece_2025_115634
crossref_primary_10_1016_j_biortech_2023_129587
crossref_primary_10_1021_acs_jcim_3c00183
crossref_primary_10_1016_j_scitotenv_2021_150554
crossref_primary_10_1016_j_jhazmat_2021_127432
crossref_primary_10_1177_00368504221148842
crossref_primary_10_1021_acsomega_3c07228
crossref_primary_10_1016_j_cis_2024_103281
crossref_primary_10_1007_s11356_022_23690_6
crossref_primary_10_1016_j_compchemeng_2025_109060
crossref_primary_10_1007_s11356_022_19906_4
crossref_primary_10_1021_acs_iecr_3c01798
crossref_primary_10_1021_acs_iecr_4c03363
crossref_primary_10_2166_wqrj_2024_011
crossref_primary_10_1007_s11144_021_02121_6
crossref_primary_10_1021_acsestwater_4c01047
crossref_primary_10_1002_clen_202400009
crossref_primary_10_1016_j_chemosphere_2021_132203
crossref_primary_10_1016_j_envres_2022_113953
crossref_primary_10_1007_s11356_023_30864_3
crossref_primary_10_1016_j_jclepro_2022_134588
crossref_primary_10_1016_j_jhazmat_2024_133825
Cites_doi 10.1016/j.ultsonch.2016.04.031
10.1038/s41598-017-18223-y
10.1016/j.jenvman.2018.06.027
10.1016/j.jenvman.2017.10.026
10.1016/j.molliq.2017.12.030
10.1016/j.jcis.2017.09.055
10.1016/j.applthermaleng.2018.05.029
10.1016/j.enbuild.2017.04.038
10.1016/j.oregeorev.2015.01.001
10.1515/aep-2017-0034
10.2166/wst.2016.298
10.1016/j.molliq.2018.07.108
10.1007/s13762-018-1798-4
10.1007/s11814-014-0334-6
10.3390/ma11050865
10.1016/j.jiec.2013.08.033
10.1023/A:1010933404324
10.1007/s12665-018-7618-9
10.1016/j.jcis.2017.05.098
10.1080/19443994.2014.987172
10.3390/app8010003
10.1016/j.jiec.2013.12.048
10.1016/j.seppur.2019.115696
10.1016/j.jenvman.2018.10.017
10.1007/s11270-017-3613-0
10.1080/19443994.2015.1027964
10.1007/s00521-017-3172-8
10.1016/j.jenvman.2017.05.045
10.1016/j.colsurfb.2011.10.019
10.1016/j.saa.2016.08.025
10.1016/j.cis.2017.04.015
10.1016/j.jiec.2013.10.028
10.1039/C5RA08399K
10.1039/C6RA01874B
10.1016/j.jhazmat.2019.06.004
10.1080/19443994.2015.1095124
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jece.2020.103952
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2213-3437
ExternalDocumentID 10_1016_j_jece_2020_103952
S2213343720303006
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VS
7-5
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
ENUVR
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
KCYFY
KOM
M41
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c230t-dfeec998602fccf0b3329251017fd8d944bd69e0f2dc4aeb453cb3b7e08c3cae3
IEDL.DBID .~1
ISSN 2213-3437
IngestDate Thu Apr 24 23:10:39 EDT 2025
Wed Oct 01 03:45:50 EDT 2025
Fri Feb 23 02:46:37 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Artificial Neural Networks
Machine learning
Modelling
Algorithm
Wastewater treatment
Methylene blue
Python
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c230t-dfeec998602fccf0b3329251017fd8d944bd69e0f2dc4aeb453cb3b7e08c3cae3
ORCID 0000-0002-1462-1145
ParticipantIDs crossref_primary_10_1016_j_jece_2020_103952
crossref_citationtrail_10_1016_j_jece_2020_103952
elsevier_sciencedirect_doi_10_1016_j_jece_2020_103952
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle Journal of environmental chemical engineering
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kiraz, Canpolat, Erkan, Özer (bib0010) 2018; 16
Ghaedi, Vafaei (bib0045) 2017; 245
Zeinali, Ghaedi, Shafie (bib0220) 2014; 20
Ahmad, Mourshed, Rezgui (bib0055) 2017; 147
Mahmoodi, Taghizadeh, Taghizadeh (bib0145) 2018; 269
Mendoza-Castillo, Reynel-Ávila, Sánchez-Ruiz, Trejo-Valencia, Jaime-Leal, Bonilla-Petriciolet (bib0195) 2018; 251
Turp (bib0090) 2017; 43
Mazaheri, Ghaedi, Azqhandi, Asfaram (bib0080) 2017; 19
Liu, Li, Du, Sun, Jiao, Yanga, Wanga, Xia, Zhang, Wang, Zhu, Wu (bib0185) 2012; 90
Fan, Hu, Cao, Xiong, Wei (bib0095) 2017; 7
Li, Wei, Liu, Liu, Yan, Wei, Du, Xu (bib0035) 2019; 227
Asfaram, Ghaedi, Azqhandi, Goudarzi, Dastkhoon (bib0020) 2016; 6
Zhu, Wang, Ok (bib0160) 2019; 378
Pedregosa, Varoquoux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duches (bib0175) 2011; 12
Rodriguez-Galiano, Sanchez-castillo, Chica-olmo, Chica-rivas (bib0210) 2015; 71
Kooh, Dahri, Lim (bib0040) 2018; 77
Karri, Tanzi, Tavakkoli, Sahu (bib0205) 2018; 223
Bogdanchikov, Zhaparov, Suliyev (bib0180) 2013; 423
Tanzifi, Yaroki, Kiadehi, Hosseini, Olazar, Bharti, Agawal, Gupta, Kazemi (bib0135) 2018; 510
Qi (bib0050) 2012
Gadekar, Ahammed (bib0125) 2019; 231
Silva, Gonçalves, Abud (bib0005) 2016; 74
Bagheri, Ghaedi, Hajati, Ghaedi, Goudarzi, Asfaram (bib0170) 2015; 5
Dil, Ghaedi, Asfaram, Mehrabi, Bazrafshan, Ghaedi (bib0140) 2016; 33
Babaei, Khataee, Ahmadpour, Sheydaei, Kakavandi, Alaee (bib0100) 2016; 33
Silva, Gama, Gonçalves, Medeiros, Abud (bib0015) 2019
Anupam, Dutta, Bhattacharjee, Datta (bib0065) 2016; 57
Nayak, Pal (bib0110) 2017; 200
Aghajani, Tayebi (bib0030) 2017; 171
Ghaedi, Ghaedi, Negintaji, Ansari, Vafaei, Rajabi (bib0150) 2014; 20
Karri, Sahu (bib0075) 2018; 206
Pazouki, Zabihi, Shayegan, Fatehi (bib0085) 2018; 35
Ruan, Shi, Hu, Hou, Fan, Cao, Wei (bib0120) 2018; 8
Haykin (bib0190) 2019
Ashan, Behnajady, Ziaeifar, Khalilnezhad (bib0070) 2017; 29
Khan, Mustafa, Isa, Manan, Lim, Ho, Yusof (bib0025) 2017; 228
Ruan, Hu, J, Hou, Cao, We (bib0130) 2018; 11
Dehghanian, Ghaedi, Ansari, Ghaedi, Vafaei, Asif, Agarwal, Tyagi, Gupta (bib0165) 2016; 57
Heydari, Ghaedi, Ansari, Ghaedi (bib0155) 2015; 57
Ahmadi-Azqhandi, Ghaedi, Yousefi, Jamshidi (bib0115) 2017; 505
Karimi, Ghaedi (bib0105) 2014; 20
Liu, Liang, Liu (bib0060) 2018; 140
Breiman (bib0215) 2001; 45
Géron (bib0200) 2019
Pazouki (10.1016/j.jece.2020.103952_bib0085) 2018; 35
Qi (10.1016/j.jece.2020.103952_bib0050) 2012
Heydari (10.1016/j.jece.2020.103952_bib0155) 2015; 57
Zeinali (10.1016/j.jece.2020.103952_bib0220) 2014; 20
Ruan (10.1016/j.jece.2020.103952_bib0130) 2018; 11
Asfaram (10.1016/j.jece.2020.103952_bib0020) 2016; 6
Ruan (10.1016/j.jece.2020.103952_bib0120) 2018; 8
Bogdanchikov (10.1016/j.jece.2020.103952_bib0180) 2013; 423
Silva (10.1016/j.jece.2020.103952_bib0005) 2016; 74
Khan (10.1016/j.jece.2020.103952_bib0025) 2017; 228
Mazaheri (10.1016/j.jece.2020.103952_bib0080) 2017; 19
Dil (10.1016/j.jece.2020.103952_bib0140) 2016; 33
Ahmadi-Azqhandi (10.1016/j.jece.2020.103952_bib0115) 2017; 505
Tanzifi (10.1016/j.jece.2020.103952_bib0135) 2018; 510
Turp (10.1016/j.jece.2020.103952_bib0090) 2017; 43
Mahmoodi (10.1016/j.jece.2020.103952_bib0145) 2018; 269
Ashan (10.1016/j.jece.2020.103952_bib0070) 2017; 29
Karimi (10.1016/j.jece.2020.103952_bib0105) 2014; 20
Gadekar (10.1016/j.jece.2020.103952_bib0125) 2019; 231
Bagheri (10.1016/j.jece.2020.103952_bib0170) 2015; 5
Mendoza-Castillo (10.1016/j.jece.2020.103952_bib0195) 2018; 251
Karri (10.1016/j.jece.2020.103952_bib0205) 2018; 223
Kooh (10.1016/j.jece.2020.103952_bib0040) 2018; 77
Ahmad (10.1016/j.jece.2020.103952_bib0055) 2017; 147
Aghajani (10.1016/j.jece.2020.103952_bib0030) 2017; 171
Ghaedi (10.1016/j.jece.2020.103952_bib0150) 2014; 20
Zhu (10.1016/j.jece.2020.103952_bib0160) 2019; 378
Fan (10.1016/j.jece.2020.103952_bib0095) 2017; 7
Li (10.1016/j.jece.2020.103952_bib0035) 2019; 227
Dehghanian (10.1016/j.jece.2020.103952_bib0165) 2016; 57
Liu (10.1016/j.jece.2020.103952_bib0060) 2018; 140
Haykin (10.1016/j.jece.2020.103952_bib0190) 2019
Rodriguez-Galiano (10.1016/j.jece.2020.103952_bib0210) 2015; 71
Silva (10.1016/j.jece.2020.103952_bib0015) 2019
Géron (10.1016/j.jece.2020.103952_bib0200) 2019
Kiraz (10.1016/j.jece.2020.103952_bib0010) 2018; 16
Breiman (10.1016/j.jece.2020.103952_bib0215) 2001; 45
Anupam (10.1016/j.jece.2020.103952_bib0065) 2016; 57
Liu (10.1016/j.jece.2020.103952_bib0185) 2012; 90
Ghaedi (10.1016/j.jece.2020.103952_bib0045) 2017; 245
Karri (10.1016/j.jece.2020.103952_bib0075) 2018; 206
Pedregosa (10.1016/j.jece.2020.103952_bib0175) 2011; 12
Babaei (10.1016/j.jece.2020.103952_bib0100) 2016; 33
Nayak (10.1016/j.jece.2020.103952_bib0110) 2017; 200
References_xml – volume: 16
  start-page: 5079
  year: 2018
  end-page: 5086
  ident: bib0010
  article-title: Artificial neural networks modeling for the prediction of Pb (II) adsorption
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 510
  start-page: 246
  year: 2018
  end-page: 261
  ident: bib0135
  article-title: Adsorption of Amido Black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: experimental investigation and artificial neural network modelling
  publication-title: J. Colloid Interface Sci.
– volume: 33
  start-page: 129
  year: 2016
  end-page: 140
  ident: bib0140
  article-title: Trace determination of safranin O dye using ultrasound assisted dispersive solid-phase micro extraction: artificial neural network-genetic algorithm and response surface methodology
  publication-title: Ultrason. Sonochem.
– volume: 6
  start-page: 40502
  year: 2016
  end-page: 40516
  ident: bib0020
  article-title: Statistical experimental design, least squares-support vector machine (LS-SVM) and artificial neural network (ANN) methods for modeling the facilitated adsorption of methylene blue dye
  publication-title: RSC Adv.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0215
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 20
  start-page: 3550
  year: 2014
  end-page: 3558
  ident: bib0220
  article-title: Competitive adsorption of methylene blue and brilliant green onto graphite oxide nano particle following: Derivative spectrophotometric and principal component-artificial neural network model methods for their simultaneous determination
  publication-title: J. Ind. Eng. Chem.
– volume: 245
  start-page: 20
  year: 2017
  end-page: 39
  ident: bib0045
  article-title: Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: a review
  publication-title: Adv. Colloid Interface Sci.
– volume: 5
  start-page: 59335
  year: 2015
  end-page: 59343
  ident: bib0170
  article-title: Random forest model for the ultrasonic-assisted removal of chrysoidine G by copper sulfide nanoparticles loaded on activated carbon; response surface methodology approach
  publication-title: RSC Adv.
– volume: 140
  start-page: 95
  year: 2018
  end-page: 101
  ident: bib0060
  article-title: Artificial neural network modeling of biosorption process using agricultural wastes in a rotating packed bed
  publication-title: Appl. Therm. Eng.
– volume: 57
  start-page: 9272
  year: 2016
  end-page: 9285
  ident: bib0165
  article-title: A random forest approach for predicting the removal of Congo red from aqueous solutions by adsorption onto tin sulfide nanoparticles loaded on activated carbon
  publication-title: Desalin. Water Treat.
– year: 2019
  ident: bib0015
  article-title: Basic-dye adsorption in albedo residue: effect of pH, contact time, temperature, dye concentration, biomass dosage, rotation and ionic strength
  publication-title: J. King Saud Univ. - Eng. Sci.
– volume: 35
  start-page: 671
  year: 2018
  end-page: 683
  ident: bib0085
  publication-title: Mercury Ion Adsorption on AC@ Fe3O4-NH2-COOH from Saline Solutions: Experimental Studies and Artificial Neural Network Modeling
– volume: 20
  start-page: 2471
  year: 2014
  end-page: 2476
  ident: bib0105
  article-title: Application of artificial neural network and genetic algorithm to modeling and optimization of removal of methylene blue using activated carbon
  publication-title: J. Ind. Eng. Chem.
– volume: 90
  start-page: 197
  year: 2012
  end-page: 203
  ident: bib0185
  article-title: Adsorption of methylene blue from aqueous solution by graphene
  publication-title: Colloids Surf. B: Biointerface
– volume: 378
  year: 2019
  ident: bib0160
  article-title: The application of machine learning methods for prediction of metal sorption onto biochars
  publication-title: J. Hazard. Mater.
– volume: 57
  start-page: 19273
  year: 2015
  end-page: 19291
  ident: bib0155
  article-title: Random forest model for removal of methylene blue and lead (II) ion using activated carbon obtained from Tamarisk
  publication-title: Desalin. Water Treat.
– volume: 251
  start-page: 15
  year: 2018
  end-page: 27
  ident: bib0195
  article-title: Insights and pitfalls of artificial neural network modeling of competitive multi-metallic adsorption data
  publication-title: J. Mol. Liq.
– volume: 8
  start-page: 3
  year: 2018
  ident: bib0120
  article-title: Modeling of malachite green removal from aqueous solutions by nanoscale zerovalent zinc using artificial neural network
  publication-title: Appl. Sci.
– volume: 228
  start-page: 426
  year: 2017
  ident: bib0025
  article-title: Artificial Neural Network (ANN) for modelling adsorption of lead (Pb (II)) from aqueous solution
  publication-title: Water Air Soil Pollut.
– volume: 77
  start-page: 432
  year: 2018
  ident: bib0040
  article-title: Jackfruit seed as low-cost adsorbent for removal of malachite green: artificial neural network and random forest approaches
  publication-title: Environ. Earth Sci.
– volume: 269
  start-page: 217
  year: 2018
  end-page: 228
  ident: bib0145
  article-title: Mesoporous activated carbons of low-cost agricultural bio-wastes with high adsorption capacity: preparation and artificial neural network modeling of dye removal from single and multicomponent (binary and ternary) systems
  publication-title: J. Mol. Liq.
– volume: 423
  year: 2013
  ident: bib0180
  article-title: Python to learn programming
  publication-title: J. Phys. Conf. Ser.
– year: 2019
  ident: bib0190
  article-title: Neural Networks and Learning Machines
– year: 2019
  ident: bib0200
  article-title: Hands-on Machine Learning With Scikit-learn, Keras & TensorFlow: Concepts, Tools and Techniques to Build Intelligent Systems
– volume: 171
  start-page: 439
  year: 2017
  end-page: 448
  ident: bib0030
  article-title: Adaptive Neuro-Fuzzy Inference system analysis on adsorption studies of Reactive Red 198 from aqueous solution by SBA-15 / CTAB composite
  publication-title: Spectrochim. Acta A. Mol. Biomol. Spectrosc.
– volume: 11
  start-page: 865
  year: 2018
  ident: bib0130
  article-title: Removal of crystal violet by using reduced-graphene-oxide-supported bimetallic Fe/Ni nanoparticles (rGO/Fe/Ni): application of artificial intelligence modeling for the optimization process
  publication-title: Materials
– volume: 20
  start-page: 1793
  year: 2014
  end-page: 1803
  ident: bib0150
  article-title: Random forest model for removal of bromophenol blue using activated carbon obtained from Astragalus bisulcatus tree
  publication-title: J. Ind. Eng. Chem.
– volume: 33
  start-page: 1352
  year: 2016
  end-page: 1361
  ident: bib0100
  article-title: Optimization of cationic dye adsorption on activated spent tea: equilibrium, kinetics, thermodynamic and artificial neural network modelling
  publication-title: Korean J. Chem. Eng.
– volume: 223
  start-page: 517
  year: 2018
  end-page: 529
  ident: bib0205
  article-title: Optimization and modeling of methyl orange adsorption onto polyaniline nano-adsorbent through response surface methodology and differential evolution embedded neural network
  publication-title: J. Environ. Manage.
– volume: 505
  start-page: 278
  year: 2017
  end-page: 292
  ident: bib0115
  article-title: Application of random forest, radial basis function neural networks and central composite design for modeling and / or optimization of the ultrasonic assisted adsorption of brilliant green on ZnS-NP-AC
  publication-title: J. Colloid Interface Sci.
– volume: 71
  start-page: 804
  year: 2015
  end-page: 818
  ident: bib0210
  article-title: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines
  publication-title: Ore Geol. Rev.
– volume: 147
  start-page: 77
  year: 2017
  end-page: 89
  ident: bib0055
  article-title: Trees vs neurons: comparison between random forest and ANN for high-resolution prediction of building energy consumption
  publication-title: Energy Build.
– volume: 43
  start-page: 26
  year: 2017
  end-page: 32
  ident: bib0090
  article-title: Prediction of adsorption ef fi ciencies of Ni (II) in aqueous solutions with perlite via artificial neural networks
  publication-title: Arch. Environ. Prot.
– volume: 29
  start-page: 969
  year: 2017
  end-page: 979
  ident: bib0070
  article-title: Artificial neural network modelling of Cr(VI) surface adsorption with NiO nanoparticles using the results obtained from optimization of response surface methodology
  publication-title: Neural Comput. Appl.
– volume: 19
  start-page: 11299
  year: 2017
  end-page: 11317
  ident: bib0080
  article-title: Application of machine/statistical learning, artificial intelligence and statistical experimental design for the modeling and optimization of methylene blue and Cd (ii) removal from a binary aqueous solution by natural walnut carbon
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 200
  start-page: 145
  year: 2017
  end-page: 159
  ident: bib0110
  article-title: Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: Process optimization and multi-variate modelling
  publication-title: J. Environ. Manage.
– volume: 231
  start-page: 241
  year: 2019
  end-page: 248
  ident: bib0125
  article-title: Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach
  publication-title: J. Environ. Manage.
– start-page: 307
  year: 2012
  end-page: 323
  ident: bib0050
  article-title: Random forest for bioinformatics
  publication-title: Ensemble Machine Learning
– volume: 227
  year: 2019
  ident: bib0035
  article-title: EDTA functionalized magnetic biochar for Pb (II) removal: adsorption performance, mechanism and SVM model prediction
  publication-title: Sep. Purif. Technol.
– volume: 57
  start-page: 3632
  year: 2016
  end-page: 3641
  ident: bib0065
  article-title: Artificial neural network modelling for removal of chromium (VI) from wastewater using physisorption onto powdered activated carbon
  publication-title: Desalin. Water Treat.
– volume: 206
  start-page: 178
  year: 2018
  end-page: 191
  ident: bib0075
  article-title: Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (II) by palm kernel shell based activated carbon from aqueous environment
  publication-title: J. Environ. Manage.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0175
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 18040
  year: 2017
  ident: bib0095
  article-title: Modeling and prediction of copper removal from aqueous solutions by nZVI/rGO magnetic nanocomposites using ANN-GA and ANN-PSO
  publication-title: Sci. Rep.
– volume: 74
  start-page: 994
  year: 2016
  end-page: 1004
  ident: bib0005
  article-title: Treatment of textile industry effluents using orange waste: a proposal to reduce color and chemical oxygen demand
  publication-title: Water Sci. Technol.
– volume: 33
  start-page: 129
  year: 2016
  ident: 10.1016/j.jece.2020.103952_bib0140
  article-title: Trace determination of safranin O dye using ultrasound assisted dispersive solid-phase micro extraction: artificial neural network-genetic algorithm and response surface methodology
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.04.031
– volume: 7
  start-page: 18040
  year: 2017
  ident: 10.1016/j.jece.2020.103952_bib0095
  article-title: Modeling and prediction of copper removal from aqueous solutions by nZVI/rGO magnetic nanocomposites using ANN-GA and ANN-PSO
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-18223-y
– year: 2019
  ident: 10.1016/j.jece.2020.103952_bib0190
– volume: 223
  start-page: 517
  year: 2018
  ident: 10.1016/j.jece.2020.103952_bib0205
  article-title: Optimization and modeling of methyl orange adsorption onto polyaniline nano-adsorbent through response surface methodology and differential evolution embedded neural network
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2018.06.027
– volume: 206
  start-page: 178
  year: 2018
  ident: 10.1016/j.jece.2020.103952_bib0075
  article-title: Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (II) by palm kernel shell based activated carbon from aqueous environment
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2017.10.026
– volume: 251
  start-page: 15
  year: 2018
  ident: 10.1016/j.jece.2020.103952_bib0195
  article-title: Insights and pitfalls of artificial neural network modeling of competitive multi-metallic adsorption data
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.12.030
– year: 2019
  ident: 10.1016/j.jece.2020.103952_bib0200
– volume: 510
  start-page: 246
  year: 2018
  ident: 10.1016/j.jece.2020.103952_bib0135
  article-title: Adsorption of Amido Black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: experimental investigation and artificial neural network modelling
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.09.055
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.jece.2020.103952_bib0175
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 140
  start-page: 95
  year: 2018
  ident: 10.1016/j.jece.2020.103952_bib0060
  article-title: Artificial neural network modeling of biosorption process using agricultural wastes in a rotating packed bed
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.05.029
– volume: 147
  start-page: 77
  year: 2017
  ident: 10.1016/j.jece.2020.103952_bib0055
  article-title: Trees vs neurons: comparison between random forest and ANN for high-resolution prediction of building energy consumption
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.04.038
– volume: 71
  start-page: 804
  year: 2015
  ident: 10.1016/j.jece.2020.103952_bib0210
  article-title: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2015.01.001
– volume: 43
  start-page: 26
  issue: 4
  year: 2017
  ident: 10.1016/j.jece.2020.103952_bib0090
  article-title: Prediction of adsorption ef fi ciencies of Ni (II) in aqueous solutions with perlite via artificial neural networks
  publication-title: Arch. Environ. Prot.
  doi: 10.1515/aep-2017-0034
– volume: 74
  start-page: 994
  issue: 4
  year: 2016
  ident: 10.1016/j.jece.2020.103952_bib0005
  article-title: Treatment of textile industry effluents using orange waste: a proposal to reduce color and chemical oxygen demand
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2016.298
– start-page: 307
  year: 2012
  ident: 10.1016/j.jece.2020.103952_bib0050
  article-title: Random forest for bioinformatics
– volume: 269
  start-page: 217
  year: 2018
  ident: 10.1016/j.jece.2020.103952_bib0145
  article-title: Mesoporous activated carbons of low-cost agricultural bio-wastes with high adsorption capacity: preparation and artificial neural network modeling of dye removal from single and multicomponent (binary and ternary) systems
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.07.108
– volume: 16
  start-page: 5079
  year: 2018
  ident: 10.1016/j.jece.2020.103952_bib0010
  article-title: Artificial neural networks modeling for the prediction of Pb (II) adsorption
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-018-1798-4
– year: 2019
  ident: 10.1016/j.jece.2020.103952_bib0015
  article-title: Basic-dye adsorption in albedo residue: effect of pH, contact time, temperature, dye concentration, biomass dosage, rotation and ionic strength
  publication-title: J. King Saud Univ. - Eng. Sci.
– volume: 33
  start-page: 1352
  issue: 4
  year: 2016
  ident: 10.1016/j.jece.2020.103952_bib0100
  article-title: Optimization of cationic dye adsorption on activated spent tea: equilibrium, kinetics, thermodynamic and artificial neural network modelling
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-014-0334-6
– volume: 11
  start-page: 865
  issue: 5
  year: 2018
  ident: 10.1016/j.jece.2020.103952_bib0130
  article-title: Removal of crystal violet by using reduced-graphene-oxide-supported bimetallic Fe/Ni nanoparticles (rGO/Fe/Ni): application of artificial intelligence modeling for the optimization process
  publication-title: Materials
  doi: 10.3390/ma11050865
– volume: 20
  start-page: 1793
  issue: 4
  year: 2014
  ident: 10.1016/j.jece.2020.103952_bib0150
  article-title: Random forest model for removal of bromophenol blue using activated carbon obtained from Astragalus bisulcatus tree
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2013.08.033
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.jece.2020.103952_bib0215
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 423
  issue: 1
  year: 2013
  ident: 10.1016/j.jece.2020.103952_bib0180
  article-title: Python to learn programming
  publication-title: J. Phys. Conf. Ser.
– volume: 77
  start-page: 432
  year: 2018
  ident: 10.1016/j.jece.2020.103952_bib0040
  article-title: Jackfruit seed as low-cost adsorbent for removal of malachite green: artificial neural network and random forest approaches
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-018-7618-9
– volume: 505
  start-page: 278
  year: 2017
  ident: 10.1016/j.jece.2020.103952_bib0115
  article-title: Application of random forest, radial basis function neural networks and central composite design for modeling and / or optimization of the ultrasonic assisted adsorption of brilliant green on ZnS-NP-AC
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.05.098
– volume: 57
  start-page: 3632
  issue: 8
  year: 2016
  ident: 10.1016/j.jece.2020.103952_bib0065
  article-title: Artificial neural network modelling for removal of chromium (VI) from wastewater using physisorption onto powdered activated carbon
  publication-title: Desalin. Water Treat.
  doi: 10.1080/19443994.2014.987172
– volume: 8
  start-page: 3
  issue: 1
  year: 2018
  ident: 10.1016/j.jece.2020.103952_bib0120
  article-title: Modeling of malachite green removal from aqueous solutions by nanoscale zerovalent zinc using artificial neural network
  publication-title: Appl. Sci.
  doi: 10.3390/app8010003
– volume: 20
  start-page: 3550
  year: 2014
  ident: 10.1016/j.jece.2020.103952_bib0220
  article-title: Competitive adsorption of methylene blue and brilliant green onto graphite oxide nano particle following: Derivative spectrophotometric and principal component-artificial neural network model methods for their simultaneous determination
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2013.12.048
– volume: 227
  year: 2019
  ident: 10.1016/j.jece.2020.103952_bib0035
  article-title: EDTA functionalized magnetic biochar for Pb (II) removal: adsorption performance, mechanism and SVM model prediction
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.115696
– volume: 231
  start-page: 241
  year: 2019
  ident: 10.1016/j.jece.2020.103952_bib0125
  article-title: Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2018.10.017
– volume: 228
  start-page: 426
  year: 2017
  ident: 10.1016/j.jece.2020.103952_bib0025
  article-title: Artificial Neural Network (ANN) for modelling adsorption of lead (Pb (II)) from aqueous solution
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-017-3613-0
– volume: 57
  start-page: 9272
  issue: 20
  year: 2016
  ident: 10.1016/j.jece.2020.103952_bib0165
  article-title: A random forest approach for predicting the removal of Congo red from aqueous solutions by adsorption onto tin sulfide nanoparticles loaded on activated carbon
  publication-title: Desalin. Water Treat.
  doi: 10.1080/19443994.2015.1027964
– volume: 29
  start-page: 969
  issue: 10
  year: 2017
  ident: 10.1016/j.jece.2020.103952_bib0070
  article-title: Artificial neural network modelling of Cr(VI) surface adsorption with NiO nanoparticles using the results obtained from optimization of response surface methodology
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3172-8
– volume: 200
  start-page: 145
  year: 2017
  ident: 10.1016/j.jece.2020.103952_bib0110
  article-title: Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: Process optimization and multi-variate modelling
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2017.05.045
– volume: 90
  start-page: 197
  year: 2012
  ident: 10.1016/j.jece.2020.103952_bib0185
  article-title: Adsorption of methylene blue from aqueous solution by graphene
  publication-title: Colloids Surf. B: Biointerface
  doi: 10.1016/j.colsurfb.2011.10.019
– volume: 19
  start-page: 11299
  issue: 18
  year: 2017
  ident: 10.1016/j.jece.2020.103952_bib0080
  article-title: Application of machine/statistical learning, artificial intelligence and statistical experimental design for the modeling and optimization of methylene blue and Cd (ii) removal from a binary aqueous solution by natural walnut carbon
  publication-title: J. Chem. Soc. Faraday Trans.
– volume: 171
  start-page: 439
  year: 2017
  ident: 10.1016/j.jece.2020.103952_bib0030
  article-title: Adaptive Neuro-Fuzzy Inference system analysis on adsorption studies of Reactive Red 198 from aqueous solution by SBA-15 / CTAB composite
  publication-title: Spectrochim. Acta A. Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2016.08.025
– volume: 245
  start-page: 20
  year: 2017
  ident: 10.1016/j.jece.2020.103952_bib0045
  article-title: Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: a review
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2017.04.015
– volume: 20
  start-page: 2471
  issue: 4
  year: 2014
  ident: 10.1016/j.jece.2020.103952_bib0105
  article-title: Application of artificial neural network and genetic algorithm to modeling and optimization of removal of methylene blue using activated carbon
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2013.10.028
– volume: 5
  start-page: 59335
  issue: 73
  year: 2015
  ident: 10.1016/j.jece.2020.103952_bib0170
  article-title: Random forest model for the ultrasonic-assisted removal of chrysoidine G by copper sulfide nanoparticles loaded on activated carbon; response surface methodology approach
  publication-title: RSC Adv.
  doi: 10.1039/C5RA08399K
– volume: 6
  start-page: 40502
  issue: 46
  year: 2016
  ident: 10.1016/j.jece.2020.103952_bib0020
  article-title: Statistical experimental design, least squares-support vector machine (LS-SVM) and artificial neural network (ANN) methods for modeling the facilitated adsorption of methylene blue dye
  publication-title: RSC Adv.
  doi: 10.1039/C6RA01874B
– volume: 35
  start-page: 671
  year: 2018
  ident: 10.1016/j.jece.2020.103952_bib0085
– volume: 378
  year: 2019
  ident: 10.1016/j.jece.2020.103952_bib0160
  article-title: The application of machine learning methods for prediction of metal sorption onto biochars
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.06.004
– volume: 57
  start-page: 19273
  issue: 41
  year: 2015
  ident: 10.1016/j.jece.2020.103952_bib0155
  article-title: Random forest model for removal of methylene blue and lead (II) ion using activated carbon obtained from Tamarisk
  publication-title: Desalin. Water Treat.
  doi: 10.1080/19443994.2015.1095124
SSID ssj0000991561
Score 2.4271998
Snippet •Machine Learning Artificial Neural Networks and Random Forest were used to predict dye adsorption.•A total of 7 variables were tested, performing more than...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103952
SubjectTerms Algorithm
Artificial Neural Networks
Machine learning
Methylene blue
Modelling
Python
Wastewater treatment
Title Random Forest as a promising application to predict basic-dye biosorption process using orange waste
URI https://dx.doi.org/10.1016/j.jece.2020.103952
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2213-3437
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000991561
  issn: 2213-3437
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2213-3437
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000991561
  issn: 2213-3437
  databaseCode: ACRLP
  dateStart: 20130601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 2213-3437
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000991561
  issn: 2213-3437
  databaseCode: AIKHN
  dateStart: 20130601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 2213-3437
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000991561
  issn: 2213-3437
  databaseCode: .~1
  dateStart: 20130601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2213-3437
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000991561
  issn: 2213-3437
  databaseCode: AKRWK
  dateStart: 20130601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14k9hks5t2j6VYqmIPaqG3kJ3dSIompU0RL_52Z_MoFaQHj8nuQJidnZkv8yLkmoPwwHjS0aCFw4EpR0kliiEChntSKrDVyE_jYDThD1MxbZBBXQtj0yor3V_q9EJbV286FTc78yTpvDCG-MqGnVBO_bLtNuddO8Xg9ttb_2dBDwghisVddr9jCaramTLNa2bAdstkRfm5FOxv-7Rhc4YHZL9yFmm__J5D0jDpEdnbaCF4TPRzlOrsg9oRm8ucRksaUVSKeHq4TDfC0zTPcMGGZXKKpisBR38ZqpJsmS0KtUHnZc0AXRWkKBrpm6GfEYrBCZkM714HI6eanOAAQorc0bExgEAqcFkMELvK95lkxfWLdU9LzpUOpHFjpoFHRnHhg_JV17g98CEy_ilppllqzgjt2o71sWZBD5EHIF5WII10I6VMIISIW8Sr-RVC1VbcTrd4D-v8sVloeRxaHoclj1vkZk0zL5tqbN0t6mMIf4lGiFp_C935P-kuyK59KrP8LkkzX6zMFXoeuWoXotUmO_37x9H4B24l2QM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QPKgH4zPicw_eTKXd7hb2aIgEFTgoJNya7uzWQLQlUGK8-NudbQvBxHDw2ukkzezszHydFyE3HIQHxpOOBi0cDkw5SiqRLxEw3JNSge1G7vWDzpA_jcSoQlrLXhhbVlna_sKm59a6fFIvpVmfjsf1V8YQX9m0E-qpn4_d3uKCNSwCu_v2Vj9aMARCjGKBl2VwLEfZPFPUeU0M2HGZLO8_l4L97aDWnE57n-yV0SK9Lz7ogFRMckh212YIHhH9EiU6_aB2x-Y8o9GcRhStIh4fkulafppmKRJsXiaj6LvG4OgvQ9U4naez3G7QadE0QBc5K-pG8mboZ4R6cEyG7YdBq-OUqxMcQEyROTo2BhBJBS6LAWJX-T6TLL9_sW5qybnSgTRuzDTwyCgufFC-ahi3CT5Exj8h1SRNzCmhDTuyPtYsaCL0AATMCqSRbqSUCYQQcY14S3mFUM4Vt-st3sNlAdkktDIOrYzDQsY1crvimRZTNTa-LZbHEP7SjRDN_ga-s3_yXZPtzqDXDbuP_edzsmMpRcnfBalms4W5xDAkU1e5mv0AlqvamA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+Forest+as+a+promising+application+to+predict+basic-dye+biosorption+process+using+orange+waste&rft.jtitle=Journal+of+environmental+chemical+engineering&rft.au=de+Miranda+Ramos+Soares%2C+Arthur+Pontes&rft.au=de+Oliveira+Carvalho%2C+Frede&rft.au=de+Farias+Silva%2C+Carlos+Eduardo&rft.au=da+Silva+Gon%C3%A7alves%2C+Andreza+Heloiza&rft.date=2020-08-01&rft.pub=Elsevier+Ltd&rft.issn=2213-3437&rft.eissn=2213-3437&rft.volume=8&rft.issue=4&rft_id=info:doi/10.1016%2Fj.jece.2020.103952&rft.externalDocID=S2213343720303006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-3437&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-3437&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-3437&client=summon