Particle Swarm Optimization Method Based Controller Tuning for Adaptive Cruise Control Application
Major developments in relevant technology make the advanced driver assistance systems and autonomous driving functions more attainable. Thus, conventional practices being applied in vehicle production evolves towards highly automated, safer, and more comfortable vehicles. Although advanced driver as...
        Saved in:
      
    
          | Published in | GAZI UNIVERSITY JOURNAL OF SCIENCE Vol. 34; no. 2; pp. 517 - 527 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        01.01.2021
     | 
| Online Access | Get full text | 
| ISSN | 2147-1762 2147-1762  | 
| DOI | 10.35378/gujs.762103 | 
Cover
| Abstract | Major developments in relevant technology make the advanced driver assistance systems and autonomous driving functions more attainable. Thus, conventional practices being applied in vehicle production evolves towards highly automated, safer, and more comfortable vehicles. Although advanced driver assistance systems and autonomous driving functions have many advantages, such as enhanced driver convenience, increased comfort, and fuel economy; concerns related to safety still exist. For instance, failures related to sensors or algorithms being used can lead to critical problems. Therefore, controller algorithms should be more robust and well-optimized in order to eliminate these safety issues. This requires the implementation of automated optimization algorithms for the controller parameter tuning process. The main objective of this study is to optimize the designed controller for an adaptive cruise control system by using the particle swarm optimization method, which is a swarm intelligence optimization technique. Based on the results, it is observed that the use of automated optimization techniques for adaptive cruise control systems leads to better accuracy and safety for driving control. Furthermore, the time consumed for the controller parameter tuning process is also decreased significantly. In conclusion, the adaptive cruise control system requirements can be easily and accurately ensured by the use of particle swarm optimization algorithm. | 
    
|---|---|
| AbstractList | Major developments in relevant technology make the advanced driver assistance systems and autonomous driving functions more attainable. Thus, conventional practices being applied in vehicle production evolves towards highly automated, safer, and more comfortable vehicles. Although advanced driver assistance systems and autonomous driving functions have many advantages, such as enhanced driver convenience, increased comfort, and fuel economy; concerns related to safety still exist. For instance, failures related to sensors or algorithms being used can lead to critical problems. Therefore, controller algorithms should be more robust and well-optimized in order to eliminate these safety issues. This requires the implementation of automated optimization algorithms for the controller parameter tuning process. The main objective of this study is to optimize the designed controller for an adaptive cruise control system by using the particle swarm optimization method, which is a swarm intelligence optimization technique. Based on the results, it is observed that the use of automated optimization techniques for adaptive cruise control systems leads to better accuracy and safety for driving control. Furthermore, the time consumed for the controller parameter tuning process is also decreased significantly. In conclusion, the adaptive cruise control system requirements can be easily and accurately ensured by the use of particle swarm optimization algorithm. | 
    
| Author | ÖZKAYA, Erhan ARSLAN, Hikmet ŞEN, Osman Taha  | 
    
| Author_xml | – sequence: 1 givenname: Erhan orcidid: 0000-0001-6781-8614 surname: ÖZKAYA fullname: ÖZKAYA, Erhan – sequence: 2 givenname: Hikmet orcidid: 0000-0002-4132-8235 surname: ARSLAN fullname: ARSLAN, Hikmet – sequence: 3 givenname: Osman Taha orcidid: 0000-0002-8604-3962 surname: ŞEN fullname: ŞEN, Osman Taha  | 
    
| BookMark | eNp9kMtKAzEUhoNUsNbufIA8gFNzm9uyDt6gUsG6HjK51EiaDMmMpT69Y0fBlatzDnz_D-c7BxPnnQLgEqMFTWleXG_797jIM4IRPQFTglme4OGc_NnPwDxG0yBMaEoYwVPQPPPQGWEVfNnzsIPrtjM788k74x18Ut2bl_CGRyVh5V0XvLUqwE3vjNtC7QNcSj4kPhSsQm-i-qXgsm2tEceaC3CquY1q_jNn4PXudlM9JKv1_WO1XCWCUNQlVOW85EJRIkQudFOgIpUpK3TWNFqiUjKhGS0YK5HEJeKZ5FxnWYkUZnr4kM5AMvb2ruWHPbe2boPZ8XCoMaqPjupvR_XoaOCvRl4EH2NQ-n_8CyupbPw | 
    
| Cites_doi | 10.5772/intechopen.69826 10.1080/00423110903365910 10.1631/jzus.A0900374 10.1016/j.jii.2018.01.002 10.1109/IECON.2014.7048925 10.1109/ICEEOT.2016.7755502 10.1007/978-0-387-74244-1 10.1049/iet-its.2019.0322 10.25195/2017/4325 10.1109/ACCESS.2020.3015349  | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.35378/gujs.762103 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2147-1762 | 
    
| EndPage | 527 | 
    
| ExternalDocumentID | 10.35378/gujs.762103 10_35378_gujs_762103  | 
    
| GroupedDBID | AAYXX CITATION M~E ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c230t-3e7a9ace32cc7cfb8085d548f6bbfd09d4cf4384490d190a6daaf6690e14f2143 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2147-1762 | 
    
| IngestDate | Tue Aug 19 16:16:38 EDT 2025 Tue Jul 01 01:32:43 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c230t-3e7a9ace32cc7cfb8085d548f6bbfd09d4cf4384490d190a6daaf6690e14f2143 | 
    
| ORCID | 0000-0002-4132-8235 0000-0002-8604-3962 0000-0001-6781-8614  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://dergipark.org.tr/en/download/article-file/1182087 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | unpaywall_primary_10_35378_gujs_762103 crossref_primary_10_35378_gujs_762103  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-01-01 | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | GAZI UNIVERSITY JOURNAL OF SCIENCE | 
    
| PublicationYear | 2021 | 
    
| References | ref13 ref12 ref14 ref11 ref10 ref2 ref1 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref13 – ident: ref11 doi: 10.5772/intechopen.69826 – ident: ref1 – ident: ref2 doi: 10.1080/00423110903365910 – ident: ref9 doi: 10.1631/jzus.A0900374 – ident: ref8 doi: 10.1016/j.jii.2018.01.002 – ident: ref4 doi: 10.1109/IECON.2014.7048925 – ident: ref6 doi: 10.1109/ICEEOT.2016.7755502 – ident: ref10 doi: 10.1007/978-0-387-74244-1 – ident: ref3 doi: 10.1049/iet-its.2019.0322 – ident: ref7 doi: 10.25195/2017/4325 – ident: ref5 doi: 10.1109/ACCESS.2020.3015349 – ident: ref12 – ident: ref14  | 
    
| SSID | ssib012352421 ssib050731839  | 
    
| Score | 2.147051 | 
    
| Snippet | Major developments in relevant technology make the advanced driver assistance systems and autonomous driving functions more attainable. Thus, conventional... | 
    
| SourceID | unpaywall crossref  | 
    
| SourceType | Open Access Repository Index Database  | 
    
| StartPage | 517 | 
    
| Title | Particle Swarm Optimization Method Based Controller Tuning for Adaptive Cruise Control Application | 
    
| URI | https://dergipark.org.tr/en/download/article-file/1182087 | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 34 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2147-1762 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib050731839 issn: 2147-1762 databaseCode: M~E dateStart: 20030101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0IHPTiR9SIH2QP6q1Q2u2WHpFAiAlIIiToheynQaCQ0obowd_uLC1KPBjjtZ3DZqbZeW93-h5C1672uKCA3LQfBBbxlG0FIhCW9H3oONoGyG2IYqdL2wNyP_SGW1ZfUkUv4wWLJuYWvxxHFRVWpJGNnzNZyZJpGcmiikHGds3PoQL1AIbnUWHQ7dWfjJlclayFD5100N31XB9YXvK6LMOz6sYeK2tBu0m4YG8rNp1u9ZXWAXrerCgdJ5mUk5iXxfsPscZ_LfkQ7WdoE9fT10doR4XHiPeycPy4YtEMP8CuMct-x8SdtaM0voPmJnEjnWOfqgj3E3OAggHi4rpkC7NJ4kaUjJdqE4Xr33fhJ2jQavYbbSuzWrAEcJDYcpXPAiaU6wjhC81rgMQkkBlNOdfSDiQRmrg1QgJbAoRgVDKmKTBrVSUa8u2eonw4D9UZwkwQ6WuHCk41cZQDEN4WlIsqBWonpVdEN5vsjxaposYImMi6SiNTpVFapSK6_SrNr4Hnfw28QHuOmUhZH6BconwcJeoKIEXMSyjX-WiWsk_oE9VP0XA | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0oHPTiR9SIX9mDemsp7XZLj0gkxAQkERL0QvbTIFCa0obor3eWFiUejPHazmEz0-y8tzt9D6FrT_tcUEBuOghDi_jKsUIRCksGAXQc7QDkNkSx06XtAXkY-sMNqy-pktdxzJKJucW306Sqoqo0svFzJqtFMi0jWVQ1yNipB9uoTH2A4SVUHnR7jWdjJlcjK-FDNx9093wvAJaXvS1seFZb22MVLWgni2L2vmTT6UZfae2jl_WK8nGSiZ2l3BYfP8Qa_7XkA7RXoE3cyF8foi0VHSHeK8Lx05IlM_wIu8as-B0Td1aO0vgOmpvEzXyOfaoS3M_MAQoGiIsbksVmk8TNJBsv1DoKN77vwo_RoHXfb7atwmrBEsBBUstTAQuZUJ4rRCA0rwMSk0BmNOVcSyeURGji1QkJHQkQglHJmKbArFWNaMi3d4JK0TxSpwgzQWSgXSo41cRVLkB4R1AuahSonZR-Bd2ssz-Kc0WNETCRVZVGpkqjvEoVdPtVml8Dz_4aeI52XTORsjpAuUClNMnUJUCKlF8VH88n8TrQPw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+Swarm+Optimization+Method+Based+Controller+Tuning+for+Adaptive+Cruise+Control+Application&rft.jtitle=Gazi+University+Journal+of+Science&rft.au=%C3%96ZKAYA%2C+Erhan&rft.au=ARSLAN%2C+Hikmet&rft.au=%C5%9EEN%2C+Osman+Taha&rft.date=2021-01-01&rft.issn=2147-1762&rft.eissn=2147-1762&rft.volume=34&rft.issue=2&rft.spage=517&rft.epage=527&rft_id=info:doi/10.35378%2Fgujs.762103&rft.externalDBID=n%2Fa&rft.externalDocID=10_35378_gujs_762103 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2147-1762&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2147-1762&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2147-1762&client=summon |