Particle Swarm Optimization Method Based Controller Tuning for Adaptive Cruise Control Application

Major developments in relevant technology make the advanced driver assistance systems and autonomous driving functions more attainable. Thus, conventional practices being applied in vehicle production evolves towards highly automated, safer, and more comfortable vehicles. Although advanced driver as...

Full description

Saved in:
Bibliographic Details
Published inGAZI UNIVERSITY JOURNAL OF SCIENCE Vol. 34; no. 2; pp. 517 - 527
Main Authors ÖZKAYA, Erhan, ARSLAN, Hikmet, ŞEN, Osman Taha
Format Journal Article
LanguageEnglish
Published 01.01.2021
Online AccessGet full text
ISSN2147-1762
2147-1762
DOI10.35378/gujs.762103

Cover

Abstract Major developments in relevant technology make the advanced driver assistance systems and autonomous driving functions more attainable. Thus, conventional practices being applied in vehicle production evolves towards highly automated, safer, and more comfortable vehicles. Although advanced driver assistance systems and autonomous driving functions have many advantages, such as enhanced driver convenience, increased comfort, and fuel economy; concerns related to safety still exist. For instance, failures related to sensors or algorithms being used can lead to critical problems. Therefore, controller algorithms should be more robust and well-optimized in order to eliminate these safety issues. This requires the implementation of automated optimization algorithms for the controller parameter tuning process. The main objective of this study is to optimize the designed controller for an adaptive cruise control system by using the particle swarm optimization method, which is a swarm intelligence optimization technique. Based on the results, it is observed that the use of automated optimization techniques for adaptive cruise control systems leads to better accuracy and safety for driving control. Furthermore, the time consumed for the controller parameter tuning process is also decreased significantly. In conclusion, the adaptive cruise control system requirements can be easily and accurately ensured by the use of particle swarm optimization algorithm.
AbstractList Major developments in relevant technology make the advanced driver assistance systems and autonomous driving functions more attainable. Thus, conventional practices being applied in vehicle production evolves towards highly automated, safer, and more comfortable vehicles. Although advanced driver assistance systems and autonomous driving functions have many advantages, such as enhanced driver convenience, increased comfort, and fuel economy; concerns related to safety still exist. For instance, failures related to sensors or algorithms being used can lead to critical problems. Therefore, controller algorithms should be more robust and well-optimized in order to eliminate these safety issues. This requires the implementation of automated optimization algorithms for the controller parameter tuning process. The main objective of this study is to optimize the designed controller for an adaptive cruise control system by using the particle swarm optimization method, which is a swarm intelligence optimization technique. Based on the results, it is observed that the use of automated optimization techniques for adaptive cruise control systems leads to better accuracy and safety for driving control. Furthermore, the time consumed for the controller parameter tuning process is also decreased significantly. In conclusion, the adaptive cruise control system requirements can be easily and accurately ensured by the use of particle swarm optimization algorithm.
Author ÖZKAYA, Erhan
ARSLAN, Hikmet
ŞEN, Osman Taha
Author_xml – sequence: 1
  givenname: Erhan
  orcidid: 0000-0001-6781-8614
  surname: ÖZKAYA
  fullname: ÖZKAYA, Erhan
– sequence: 2
  givenname: Hikmet
  orcidid: 0000-0002-4132-8235
  surname: ARSLAN
  fullname: ARSLAN, Hikmet
– sequence: 3
  givenname: Osman Taha
  orcidid: 0000-0002-8604-3962
  surname: ŞEN
  fullname: ŞEN, Osman Taha
BookMark eNp9kMtKAzEUhoNUsNbufIA8gFNzm9uyDt6gUsG6HjK51EiaDMmMpT69Y0fBlatzDnz_D-c7BxPnnQLgEqMFTWleXG_797jIM4IRPQFTglme4OGc_NnPwDxG0yBMaEoYwVPQPPPQGWEVfNnzsIPrtjM788k74x18Ut2bl_CGRyVh5V0XvLUqwE3vjNtC7QNcSj4kPhSsQm-i-qXgsm2tEceaC3CquY1q_jNn4PXudlM9JKv1_WO1XCWCUNQlVOW85EJRIkQudFOgIpUpK3TWNFqiUjKhGS0YK5HEJeKZ5FxnWYkUZnr4kM5AMvb2ruWHPbe2boPZ8XCoMaqPjupvR_XoaOCvRl4EH2NQ-n_8CyupbPw
Cites_doi 10.5772/intechopen.69826
10.1080/00423110903365910
10.1631/jzus.A0900374
10.1016/j.jii.2018.01.002
10.1109/IECON.2014.7048925
10.1109/ICEEOT.2016.7755502
10.1007/978-0-387-74244-1
10.1049/iet-its.2019.0322
10.25195/2017/4325
10.1109/ACCESS.2020.3015349
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.35378/gujs.762103
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2147-1762
EndPage 527
ExternalDocumentID 10.35378/gujs.762103
10_35378_gujs_762103
GroupedDBID AAYXX
CITATION
M~E
ADTOC
UNPAY
ID FETCH-LOGICAL-c230t-3e7a9ace32cc7cfb8085d548f6bbfd09d4cf4384490d190a6daaf6690e14f2143
IEDL.DBID UNPAY
ISSN 2147-1762
IngestDate Tue Aug 19 16:16:38 EDT 2025
Tue Jul 01 01:32:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c230t-3e7a9ace32cc7cfb8085d548f6bbfd09d4cf4384490d190a6daaf6690e14f2143
ORCID 0000-0002-4132-8235
0000-0002-8604-3962
0000-0001-6781-8614
OpenAccessLink https://proxy.k.utb.cz/login?url=https://dergipark.org.tr/en/download/article-file/1182087
PageCount 11
ParticipantIDs unpaywall_primary_10_35378_gujs_762103
crossref_primary_10_35378_gujs_762103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle GAZI UNIVERSITY JOURNAL OF SCIENCE
PublicationYear 2021
References ref13
ref12
ref14
ref11
ref10
ref2
ref1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
– ident: ref11
  doi: 10.5772/intechopen.69826
– ident: ref1
– ident: ref2
  doi: 10.1080/00423110903365910
– ident: ref9
  doi: 10.1631/jzus.A0900374
– ident: ref8
  doi: 10.1016/j.jii.2018.01.002
– ident: ref4
  doi: 10.1109/IECON.2014.7048925
– ident: ref6
  doi: 10.1109/ICEEOT.2016.7755502
– ident: ref10
  doi: 10.1007/978-0-387-74244-1
– ident: ref3
  doi: 10.1049/iet-its.2019.0322
– ident: ref7
  doi: 10.25195/2017/4325
– ident: ref5
  doi: 10.1109/ACCESS.2020.3015349
– ident: ref12
– ident: ref14
SSID ssib012352421
ssib050731839
Score 2.147051
Snippet Major developments in relevant technology make the advanced driver assistance systems and autonomous driving functions more attainable. Thus, conventional...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 517
Title Particle Swarm Optimization Method Based Controller Tuning for Adaptive Cruise Control Application
URI https://dergipark.org.tr/en/download/article-file/1182087
UnpaywallVersion publishedVersion
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2147-1762
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib050731839
  issn: 2147-1762
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0IHPTiR9SIH2QP6q1Q2u2WHpFAiAlIIiToheynQaCQ0obowd_uLC1KPBjjtZ3DZqbZeW93-h5C1672uKCA3LQfBBbxlG0FIhCW9H3oONoGyG2IYqdL2wNyP_SGW1ZfUkUv4wWLJuYWvxxHFRVWpJGNnzNZyZJpGcmiikHGds3PoQL1AIbnUWHQ7dWfjJlclayFD5100N31XB9YXvK6LMOz6sYeK2tBu0m4YG8rNp1u9ZXWAXrerCgdJ5mUk5iXxfsPscZ_LfkQ7WdoE9fT10doR4XHiPeycPy4YtEMP8CuMct-x8SdtaM0voPmJnEjnWOfqgj3E3OAggHi4rpkC7NJ4kaUjJdqE4Xr33fhJ2jQavYbbSuzWrAEcJDYcpXPAiaU6wjhC81rgMQkkBlNOdfSDiQRmrg1QgJbAoRgVDKmKTBrVSUa8u2eonw4D9UZwkwQ6WuHCk41cZQDEN4WlIsqBWonpVdEN5vsjxaposYImMi6SiNTpVFapSK6_SrNr4Hnfw28QHuOmUhZH6BconwcJeoKIEXMSyjX-WiWsk_oE9VP0XA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0oHPTiR9SIX9mDemsp7XZLj0gkxAQkERL0QvbTIFCa0obor3eWFiUejPHazmEz0-y8tzt9D6FrT_tcUEBuOghDi_jKsUIRCksGAXQc7QDkNkSx06XtAXkY-sMNqy-pktdxzJKJucW306Sqoqo0svFzJqtFMi0jWVQ1yNipB9uoTH2A4SVUHnR7jWdjJlcjK-FDNx9093wvAJaXvS1seFZb22MVLWgni2L2vmTT6UZfae2jl_WK8nGSiZ2l3BYfP8Qa_7XkA7RXoE3cyF8foi0VHSHeK8Lx05IlM_wIu8as-B0Td1aO0vgOmpvEzXyOfaoS3M_MAQoGiIsbksVmk8TNJBsv1DoKN77vwo_RoHXfb7atwmrBEsBBUstTAQuZUJ4rRCA0rwMSk0BmNOVcSyeURGji1QkJHQkQglHJmKbArFWNaMi3d4JK0TxSpwgzQWSgXSo41cRVLkB4R1AuahSonZR-Bd2ssz-Kc0WNETCRVZVGpkqjvEoVdPtVml8Dz_4aeI52XTORsjpAuUClNMnUJUCKlF8VH88n8TrQPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+Swarm+Optimization+Method+Based+Controller+Tuning+for+Adaptive+Cruise+Control+Application&rft.jtitle=Gazi+University+Journal+of+Science&rft.au=%C3%96ZKAYA%2C+Erhan&rft.au=ARSLAN%2C+Hikmet&rft.au=%C5%9EEN%2C+Osman+Taha&rft.date=2021-01-01&rft.issn=2147-1762&rft.eissn=2147-1762&rft.volume=34&rft.issue=2&rft.spage=517&rft.epage=527&rft_id=info:doi/10.35378%2Fgujs.762103&rft.externalDBID=n%2Fa&rft.externalDocID=10_35378_gujs_762103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2147-1762&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2147-1762&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2147-1762&client=summon