Relationship between Image Quality and Reconstruction FOV in Deep Learning Reconstructed Images of CT

In this study, we compared the image quality of deep learning reconstruction (DLR) with that of conventional image reconstruction methods under the same conditions of reconstruction FOV and acquisition dose assuming abdomen computed tomography (CT) in children. Standard deviation (SD) of the CT valu...

Full description

Saved in:
Bibliographic Details
Published inJapanese Journal of Radiological Technology Vol. 78; no. 10; pp. 1158 - 1166
Main Authors Odagiri, Kanako, Onodera, Shu, Sakamoto, Hiroshi, Kayano, Shingo, Takano, Hirokazu
Format Journal Article
LanguageJapanese
Published Kyoto Japanese Society of Radiological Technology 01.01.2022
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0369-4305
1881-4883
DOI10.6009/jjrt.2022-1228

Cover

Abstract In this study, we compared the image quality of deep learning reconstruction (DLR) with that of conventional image reconstruction methods under the same conditions of reconstruction FOV and acquisition dose assuming abdomen computed tomography (CT) in children. Standard deviation (SD) of the CT value, noise power spectrum (NPS), and task-based modulation transfer function (TTF) were evaluated. DLR reduced image noise while maintaining sharpness, and the noise reduction effect showed a different characteristic depending on the size of reconstruction FOV from the conventional image reconstruction methods. The SD of CT value increased gradually in the range from 320 mm to 240 mm, but there was almost no change from 240 mm to 200 mm. The NPS showed completely different characteristics. The low-frequency component increased, and the high-frequency component decreased at 240 mm. However, the frequency component below 0.5 cycle/mm decreased at 200 mm and the peak frequency moved to the lower side at 320 mm. DLR showed the highest TTF value compared to the conventional reconstruction methods.
AbstractList In this study, we compared the image quality of deep learning reconstruction (DLR) with that of conventional image reconstruction methods under the same conditions of reconstruction FOV and acquisition dose assuming abdomen computed tomography (CT) in children. Standard deviation (SD) of the CT value, noise power spectrum (NPS), and task-based modulation transfer function (TTF) were evaluated. DLR reduced image noise while maintaining sharpness, and the noise reduction effect showed a different characteristic depending on the size of reconstruction FOV from the conventional image reconstruction methods. The SD of CT value increased gradually in the range from 320 mm to 240 mm, but there was almost no change from 240 mm to 200 mm. The NPS showed completely different characteristics. The low-frequency component increased, and the high-frequency component decreased at 240 mm. However, the frequency component below 0.5 cycle/mm decreased at 200 mm and the peak frequency moved to the lower side at 320 mm. DLR showed the highest TTF value compared to the conventional reconstruction methods.
ArticleNumber 2022-1228
Author Sakamoto, Hiroshi
Takano, Hirokazu
Kayano, Shingo
Onodera, Shu
Odagiri, Kanako
Author_xml – sequence: 1
  fullname: Odagiri, Kanako
  organization: Department of Radiology, Division of Medical Technology, Tohoku University Hospital
– sequence: 1
  fullname: Onodera, Shu
  organization: Department of Radiology, Division of Medical Technology, Tohoku University Hospital
– sequence: 1
  fullname: Sakamoto, Hiroshi
  organization: Department of Radiology, Division of Medical Technology, Tohoku University Hospital
– sequence: 1
  fullname: Kayano, Shingo
  organization: Department of Radiology, Division of Medical Technology, Tohoku University Hospital
– sequence: 1
  fullname: Takano, Hirokazu
  organization: Department of Radiology, Division of Medical Technology, Tohoku University Hospital
BookMark eNp9kM9LwzAYhoMoOOeungOeO_OrbXKUuelgMBzTa8iyL1tHl86kRfbf21IZnrwkkDzP-_G9d-jaVx4QeqBknBGing6HUI8ZYSyhjMkrNKBS0kRIya_RgPBMJYKT9BaNYiw2pDXaJyIGCFZQmrqofNwXJ7yB-hvA4_nR7AC_N6Ys6jM2fotXYFumDo3tYDxbfuLC4xeAE16ACb7wu78MbPuMiCuHJ-t7dONMGWH0ew_Rx2y6nrwli-XrfPK8SCzjRCZWSmWIYBxkqjKRu5QrZ12uuBIbIZgweZYCUGkIbXeShhJpHSVOOcfTLedD9NjnnkL11UCs9aFqgm9HapanIlVSCPk_xSnNSZZ3WeOesqGKMYDTp1AcTThrSnTXue46113nuuu8Faa9cIh1u_oFN6EubAk9nstOb8-Ld_m3exM0eP4DBmaNVw
Cites_doi 10.1038/nmeth.2089
10.1118/1.4725171
10.6009/jjrt.KJ00003324909
10.6009/jjrt.2012_JSRT_68.12.1637
10.1088/0031-9155/52/14/002
10.6009/jjrt.KJ00003109523
10.1007/s00330-019-06170-3
10.1016/j.acra.2019.09.008
10.1007/s12194-014-0273-2
10.1007/s00330-019-06183-y
10.1007/s00330-017-4825-9
ContentType Journal Article
Copyright 2022 Japanese Society of Radiological Technology
Copyright Japan Science and Technology Agency 2022
Copyright_xml – notice: 2022 Japanese Society of Radiological Technology
– notice: Copyright Japan Science and Technology Agency 2022
DBID AAYXX
CITATION
7QO
7SC
7U5
8FD
FR3
JQ2
L7M
L~C
L~D
P64
DOI 10.6009/jjrt.2022-1228
DatabaseName CrossRef
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
DatabaseTitleList Biotechnology Research Abstracts
Biotechnology Research Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1881-4883
EndPage 1166
ExternalDocumentID 10_6009_jjrt_2022_1228
article_jjrt_78_10_78_2022_1228_article_char_en
GroupedDBID .LE
2WC
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
KQ8
OK1
RJT
AAYXX
CITATION
7QO
7SC
7U5
8FD
FR3
JQ2
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c2308-c889a0423e859647f539fcf79394b4424a765ee18a010368a108cf10f9ff35d33
ISSN 0369-4305
IngestDate Sat Sep 20 13:41:29 EDT 2025
Sat Sep 20 14:10:59 EDT 2025
Tue Jul 01 00:56:42 EDT 2025
Wed Sep 03 06:30:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 10
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2308-c889a0423e859647f539fcf79394b4424a765ee18a010368a108cf10f9ff35d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/jjrt/78/10/78_2022-1228/_article/-char/en
PQID 2731170673
PQPubID 2048391
PageCount 9
ParticipantIDs proquest_journals_2754598448
proquest_journals_2731170673
crossref_primary_10_6009_jjrt_2022_1228
jstage_primary_article_jjrt_78_10_78_2022_1228_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 20220101
  day: 01
PublicationDecade 2020
PublicationPlace Kyoto
PublicationPlace_xml – name: Kyoto
PublicationTitle Japanese Journal of Radiological Technology
PublicationTitleAlternate Jpn. J. Radiol. Technol.
PublicationYear 2022
Publisher Japanese Society of Radiological Technology
Japan Science and Technology Agency
Publisher_xml – name: Japanese Society of Radiological Technology
– name: Japan Science and Technology Agency
References 1) Tatsugami F, Higaki T, Nakamura Y, et al. Deep learning-based image restoration algorithm for coronary CT angiography. Eur Radiol 2019; 29(10): 5322–5329.
6) 厚生労働省.平成27年国民健康・栄養調査報告 第2部 身体状況調査の結果.2016,118.
8) Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9(7): 671–675.
19) 辻岡勝美.ヘリカルCTシステムの技術的問題点:性能評価と実際の運用(螺旋CTスキャンの技術的諸問題).日放技学誌 1996; 52(3): 389–396.
2) Akagi M, Nakamura Y, Higaki T, et al. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol 2019; 29(11): 6163–6171.
13) Richard S, Husarik DB, Yadava G, et al. Towards task-based assessment of CT performance: system and object MTF across different reconstruction algorithms. Med Phys 2012; 39(7Part1): 4115–4122.
5) Higaki T, Nakamura Y, Zhou J, et al. Deep learning reconstruction at CT: phantom study of the image characteristics. Acad Radiol 2020; 27(1): 82–87.
17) 平野高望,安田光慶,鈴木航,他.逐次近似応用再構成法と逐次近似再構成法における物理評価と視覚評価について:フィルター補正逆投影法との比較.日放技誌 2019; 66(3): 237–242.
3) Boedeker K. AiCE Deep Learning Reconstruction: bringing the power of Ultra-High Resolution CT to routine imaging. Canon Medical Systems Corporation, 2019.
21) Euler A, Stieltjes B, Szucs-Farkas Z, et al. Impact of model-based iterative reconstruction on low-contrast lesion detection and image quality in abdominal CT: a 12-reader-based comparative phantom study with filtered back projection at different tube voltages. Eur Radiol 2017; 27(12): 5252–5259.
9) Ichikawa K, Hara T, Ohashi K, et al. CTmeasure. Japanese Society of CT Technology, 2012–2014.https://jsct-tech.org/en/software/(accessed 2021.6.7).
10) Boedeker KL, Cooper VN, McNitt-Gray MF. Application of the noise power spectrum in modern diagnostic MDCT: part I. Measurement of noise power spectra and noise equivalent quanta. Phys Med Biol 2007; 52(14): 4027–4046.
11) 日本放射線技術学会 監修.1・2・3 ノイズ特性の測定.標準X線CT画像計測 改訂2版.オーム社,東京,2018,78–80.
20) 西丸英治,市川勝弘,原孝則,他.逐次近似法を応用したCT画像の新しいNoise Power Spectrum測定法の検討.日放技学誌 2012; 68(12): 1637–1643.
4) Higaki T, Nishimaru E, Nakamura Y, et al. Radiation dose reduction in CT using deep learning based reconstruction (DLR): a phantom study. European Society of Radiology 2018; C-1656.
16) Tatsugami F, Higaki T, Nakamura Y, et al. Deep learning-based image restoration algorithm for coronary CT angiography. Eur Radiol 2019; 29(10): 5322–5329.
15) Urikura A, Ichikawa K, Hara T, et al. Spatial resolution measurement for iterative reconstruction by use of image-averaging techniques in computed tomography. Radiol Phys Technol 2014; 7(2): 358–366.
18) 辻岡勝美,安野泰史,片田和廣,他.高速CT装置によるヘリカルスキャンの基礎的検討:第9報:ヘリカルスキャンにおけるスライス厚測定法・評価法について(高速連続CT-6スライス厚特性).日放技学誌 1993; 49(8): 1346.
14) 藤谷哲也,熊野正士,村上卓道.ダイナミックマルチスライスCTにおける多血性肝細胞癌検出に最適な造影剤量の検討.近畿大医誌 2012; 37(3,4): 155–162.
7) 日本放射線技術学会 編.小児腹部.X線CTにおける標準化~GALACTIC~(改訂2版),放射線医療技術学叢書(27)日本放射線技術学会出版委員会,京都,2015,90.
12) 市川勝弘,原孝則,丹羽伸次,他.CT画像におけるノイズパワースペクトル算出方法の比較評価.医用画像情報会誌 2008; 25(2): 29–34.
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – reference: 9) Ichikawa K, Hara T, Ohashi K, et al. CTmeasure. Japanese Society of CT Technology, 2012–2014.https://jsct-tech.org/en/software/(accessed 2021.6.7).
– reference: 2) Akagi M, Nakamura Y, Higaki T, et al. Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol 2019; 29(11): 6163–6171.
– reference: 17) 平野高望,安田光慶,鈴木航,他.逐次近似応用再構成法と逐次近似再構成法における物理評価と視覚評価について:フィルター補正逆投影法との比較.日放技誌 2019; 66(3): 237–242.
– reference: 18) 辻岡勝美,安野泰史,片田和廣,他.高速CT装置によるヘリカルスキャンの基礎的検討:第9報:ヘリカルスキャンにおけるスライス厚測定法・評価法について(高速連続CT-6スライス厚特性).日放技学誌 1993; 49(8): 1346.
– reference: 19) 辻岡勝美.ヘリカルCTシステムの技術的問題点:性能評価と実際の運用(螺旋CTスキャンの技術的諸問題).日放技学誌 1996; 52(3): 389–396.
– reference: 14) 藤谷哲也,熊野正士,村上卓道.ダイナミックマルチスライスCTにおける多血性肝細胞癌検出に最適な造影剤量の検討.近畿大医誌 2012; 37(3,4): 155–162.
– reference: 11) 日本放射線技術学会 監修.1・2・3 ノイズ特性の測定.標準X線CT画像計測 改訂2版.オーム社,東京,2018,78–80.
– reference: 3) Boedeker K. AiCE Deep Learning Reconstruction: bringing the power of Ultra-High Resolution CT to routine imaging. Canon Medical Systems Corporation, 2019.
– reference: 5) Higaki T, Nakamura Y, Zhou J, et al. Deep learning reconstruction at CT: phantom study of the image characteristics. Acad Radiol 2020; 27(1): 82–87.
– reference: 20) 西丸英治,市川勝弘,原孝則,他.逐次近似法を応用したCT画像の新しいNoise Power Spectrum測定法の検討.日放技学誌 2012; 68(12): 1637–1643.
– reference: 13) Richard S, Husarik DB, Yadava G, et al. Towards task-based assessment of CT performance: system and object MTF across different reconstruction algorithms. Med Phys 2012; 39(7Part1): 4115–4122.
– reference: 15) Urikura A, Ichikawa K, Hara T, et al. Spatial resolution measurement for iterative reconstruction by use of image-averaging techniques in computed tomography. Radiol Phys Technol 2014; 7(2): 358–366.
– reference: 16) Tatsugami F, Higaki T, Nakamura Y, et al. Deep learning-based image restoration algorithm for coronary CT angiography. Eur Radiol 2019; 29(10): 5322–5329.
– reference: 6) 厚生労働省.平成27年国民健康・栄養調査報告 第2部 身体状況調査の結果.2016,118.
– reference: 4) Higaki T, Nishimaru E, Nakamura Y, et al. Radiation dose reduction in CT using deep learning based reconstruction (DLR): a phantom study. European Society of Radiology 2018; C-1656.
– reference: 1) Tatsugami F, Higaki T, Nakamura Y, et al. Deep learning-based image restoration algorithm for coronary CT angiography. Eur Radiol 2019; 29(10): 5322–5329.
– reference: 8) Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9(7): 671–675.
– reference: 12) 市川勝弘,原孝則,丹羽伸次,他.CT画像におけるノイズパワースペクトル算出方法の比較評価.医用画像情報会誌 2008; 25(2): 29–34.
– reference: 10) Boedeker KL, Cooper VN, McNitt-Gray MF. Application of the noise power spectrum in modern diagnostic MDCT: part I. Measurement of noise power spectra and noise equivalent quanta. Phys Med Biol 2007; 52(14): 4027–4046.
– reference: 7) 日本放射線技術学会 編.小児腹部.X線CTにおける標準化~GALACTIC~(改訂2版),放射線医療技術学叢書(27)日本放射線技術学会出版委員会,京都,2015,90.
– reference: 21) Euler A, Stieltjes B, Szucs-Farkas Z, et al. Impact of model-based iterative reconstruction on low-contrast lesion detection and image quality in abdominal CT: a 12-reader-based comparative phantom study with filtered back projection at different tube voltages. Eur Radiol 2017; 27(12): 5252–5259.
– ident: 8
  doi: 10.1038/nmeth.2089
– ident: 13
  doi: 10.1118/1.4725171
– ident: 17
– ident: 3
– ident: 18
  doi: 10.6009/jjrt.KJ00003324909
– ident: 4
– ident: 12
– ident: 11
– ident: 20
  doi: 10.6009/jjrt.2012_JSRT_68.12.1637
– ident: 10
  doi: 10.1088/0031-9155/52/14/002
– ident: 14
– ident: 19
  doi: 10.6009/jjrt.KJ00003109523
– ident: 2
  doi: 10.1007/s00330-019-06170-3
– ident: 5
  doi: 10.1016/j.acra.2019.09.008
– ident: 15
  doi: 10.1007/s12194-014-0273-2
– ident: 1
  doi: 10.1007/s00330-019-06183-y
– ident: 16
  doi: 10.1007/s00330-019-06183-y
– ident: 6
– ident: 9
– ident: 7
– ident: 21
  doi: 10.1007/s00330-017-4825-9
SSID ssib000936904
ssib002223925
ssj0055458
ssib005879721
ssib031740840
ssib000959831
ssib000753122
ssib008799587
ssib002484555
ssib023160873
Score 2.1993496
Snippet In this study, we compared the image quality of deep learning reconstruction (DLR) with that of conventional image reconstruction methods under the same...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 1158
SubjectTerms Computed tomography
Deep learning
deep learning reconstruction
Image acquisition
Image processing
Image quality
Image reconstruction
Medical imaging
Modulation transfer function
noise power spectrum
Noise reduction
Peak frequency
Standard deviation
task-based modulation transfer function
Tomography
Title Relationship between Image Quality and Reconstruction FOV in Deep Learning Reconstructed Images of CT
URI https://www.jstage.jst.go.jp/article/jjrt/78/10/78_2022-1228/_article/-char/en
https://www.proquest.com/docview/2731170673
https://www.proquest.com/docview/2754598448
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Japanese Journal of Radiological Technology, 2022, Vol.78(10), pp.1158-1166
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1881-4883
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055458
  issn: 0369-4305
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaWghAXxFPdUpAPSByqQB5OMr4goYVqoSoVsEW9RV4n3mYrkqqPQ_m1_BRm4iTrtCAoXKJV4mSjefmzM_MNY8-LPApELn0vFTl4Ym60BzqVno4U2ocJfdWQVe9-TKb74sNBfDAa_XCyls7P5i_191_WlfyLVvEc6pWqZK-h2f6heAJ_o37xiBrG41_puM9kczOu3n-jNBzLjXHR1h_qekUUu7W995V2Od4WxXFHr7pwxyAEbZ7RJHlMZgP4ilMrtazccnDsZ5WXfQS9ulO_l6tFacvZd1Sljur-QkVt2Brs-uXwvN_pUUcKrafZwJ2WOIUflv2coC5U0ygcx-Mr1-6GRRhe2rDo37RLS_3Dm3bFXdIjdjI7bdlYDYDLX7B9cLpgnoJrtL4TmhH6gjPNB4Ht9nJ5CkEASAysy-UJZdqG1PmlrV4f0nK3Ss9oYJZChospPNIdGd2RddepeA5t9Qa7GaZJQj02dj6BC9iiwCVQpP6KLluOjCU432kJzclwQEgnYreyGFLpEt4B8f2tADiC-QTP9REZwaPwG7Yfi11i-oxqv-5bcVuaU5LJq6FEBjDu1hJXMourcKbBaLN77G5rlPyNFcp9NlqqB-z2bps-8pAVrsPw1mF4Y-y8dRiODsOHDsPRYXhZcXIY3jkMHziMfcYprw2fzB6x_e13s8nUa_uMeBoX4OBpAKkoP6yAmAqzTRxJow3OXFLMhQiFSpO4KAJQ1BQlARX4oE3gG2lMFOdR9JitVXVVrDOeC8gRRBuMd7GItD9PjMhxUZKn2viBicbsRSe27NjSyZDlkICtJfUGNGavrVT7cde0uDHb7LSRtTHrNMPFCrWaStLoN5fRACQIARv_-_dP2J2V82-yNdRH8RTx-9n8WeMCPwGY-efY
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relationship+between+Image+Quality+and+Reconstruction+FOV+in+Deep+Learning+Reconstructed+Images+of+CT&rft.jtitle=Japanese+Journal+of+Radiological+Technology&rft.au=Odagiri%2C+Kanako&rft.au=Onodera%2C+Shu&rft.au=Sakamoto%2C+Hiroshi&rft.au=Kayano%2C+Shingo&rft.date=2022-01-01&rft.pub=Japanese+Society+of+Radiological+Technology&rft.issn=0369-4305&rft.eissn=1881-4883&rft.volume=78&rft.issue=10&rft.spage=1158&rft.epage=1166&rft_id=info:doi/10.6009%2Fjjrt.2022-1228&rft.externalDocID=article_jjrt_78_10_78_2022_1228_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0369-4305&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0369-4305&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0369-4305&client=summon