Prognostic of RUL based on Echo State Network Optimized by Artificial Bee Colony
Prognostic is an engineering technique used to predict the future health state or behavior of an equipment or system. In this work, a data-driven hybrid approach for prognostic is presented. The approach based on Echo State Network (ESN) and Artificial Bee Colony (ABC) algorithm is used to predict m...
Saved in:
| Published in | International journal of prognostics and health management Vol. 7; no. 1 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
The Prognostics and Health Management Society
11.11.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2153-2648 2153-2648 |
| DOI | 10.36001/ijphm.2016.v7i1.2359 |
Cover
| Abstract | Prognostic is an engineering technique used to predict the future health state or behavior of an equipment or system. In this work, a data-driven hybrid approach for prognostic is presented. The approach based on Echo State Network (ESN) and Artificial Bee Colony (ABC) algorithm is used to predict machine’s Remaining Useful Life (RUL). ESN is a new paradigm that establishes a large space dynamic reservoir to replace the hidden layer of Recurrent Neural Network (RNN). Through the application of ESN is possible to overcome the shortcomings of complicated computing and difficulties in determining the network topology of traditional RNN. This approach describes the ABC algorithm as a tool to set the ESN with optimal parameters. Historical data collected from sensors are used to train and test the proposed hybrid approach in order to estimate the RUL. To evaluate the proposed approach, a case study was carried out using turbofan engine signals show that the proposed method can achieve a good collected from physical sensors (temperature, pressure, speed, fuel flow, etc.). The experimental results using the engine data from NASA Ames Prognostics Data Repository RUL estimation precision. The performance of this model was compared using prognostic metrics with the approaches that use the same dataset. Therefore, the ESN-ABC approach is very promising in the field of prognostics of the RUL. |
|---|---|
| AbstractList | Prognostic is an engineering technique used to predict the future health state or behavior of an equipment or system. In this work, a data-driven hybrid approach for prognostic is presented. The approach based on Echo State Network (ESN) and Artificial Bee Colony (ABC) algorithm is used to predict machine’s Remaining Useful Life (RUL). ESN is a new paradigm that establishes a large space dynamic reservoir to replace the hidden layer of Recurrent Neural Network (RNN). Through the application of ESN is possible to overcome the shortcomings of complicated computing and difficulties in determining the network topology of traditional RNN. This approach describes the ABC algorithm as a tool to set the ESN with optimal parameters. Historical data collected from sensors are used to train and test the proposed hybrid approach in order to estimate the RUL. To evaluate the proposed approach, a case study was carried out using turbofan engine signals show that the proposed method can achieve a good collected from physical sensors (temperature, pressure, speed, fuel flow, etc.). The experimental results using the engine data from NASA Ames Prognostics Data Repository RUL estimation precision. The performance of this model was compared using prognostic metrics with the approaches that use the same dataset. Therefore, the ESN-ABC approach is very promising in the field of prognostics of the RUL. |
| Author | J. Amaya, Edgar J. Alvares, Alberto |
| Author_xml | – sequence: 1 givenname: Edgar surname: J. Amaya fullname: J. Amaya, Edgar – sequence: 2 givenname: Alberto surname: J. Alvares fullname: J. Alvares, Alberto |
| BookMark | eNqNkG9PwjAQxhuDiYh8BJN-gWH_rN36EgkqCRGi8rrpuhaKY126KZmf3g2M8aX35i539zx3-V2DQelLA8AtRhPKEcJ3bl_tDhOCMJ98Jg5PCGXiAgwJZjQiPE4Hf-orMK7rPeqCi5gkeAjW6-C3pa8bp6G38GWzhJmqTQ59Ced65-FroxoDn01z9OEdrqrGHdxXN89aOA2Ns047VcB7Y-DMF75sb8ClVUVtxj95BDYP87fZU7RcPS5m02WkCREiIlixzKYpxXlGDOaMmVxThizPaUq4zTCmOrFUUGKEYd2iTXSaKqy1UAnK6Agszr65V3tZBXdQoZVeOXlq-LCVqvtPF0YSbTBRmgqEWExJKhDhGbdxfwGjOO68-Nnro6xUe1RF8WuIkTxhlifMsscse8yyx9wJ2Vmog6_rYOw_dd9U3IO6 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.36001/ijphm.2016.v7i1.2359 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2153-2648 |
| ExternalDocumentID | oai_doaj_org_article_2ce12ac3900543289026b6f413c71044 10.36001/ijphm.2016.v7i1.2359 10_36001_ijphm_2016_v7i1_2359 |
| GroupedDBID | 5VS AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c2299-21a5bf8831db2e1655edc350f6d3826fb113c7f3932e9e5883f7c88a1cc9a70b3 |
| IEDL.DBID | DOA |
| ISSN | 2153-2648 |
| IngestDate | Fri Oct 03 12:42:00 EDT 2025 Mon Sep 15 10:09:26 EDT 2025 Tue Jul 01 02:50:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2299-21a5bf8831db2e1655edc350f6d3826fb113c7f3932e9e5883f7c88a1cc9a70b3 |
| OpenAccessLink | https://doaj.org/article/2ce12ac3900543289026b6f413c71044 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2ce12ac3900543289026b6f413c71044 unpaywall_primary_10_36001_ijphm_2016_v7i1_2359 crossref_primary_10_36001_ijphm_2016_v7i1_2359 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-11 |
| PublicationDateYYYYMMDD | 2020-11-11 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-11 day: 11 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of prognostics and health management |
| PublicationYear | 2020 |
| Publisher | The Prognostics and Health Management Society |
| Publisher_xml | – name: The Prognostics and Health Management Society |
| SSID | ssj0000694271 |
| Score | 2.199995 |
| Snippet | Prognostic is an engineering technique used to predict the future health state or behavior of an equipment or system. In this work, a data-driven hybrid... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Index Database |
| SubjectTerms | artificial bee colony data-driven prognostics echo state networks failure prognostics particle swarm optimization rul estimation turbofan engines |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaq7QF64I1YXvKBa5K1HXvtY1u1WiFYVoiVyinyK2JLm0RlF7T99cw46WrFCSROkeKJY88kM9_I48-EvCu1kd4zn6lJDFmpg81M7Xlmg_FRCyW9wL3DH-dqtizfX8iLAzK72wvT2Q5gT959u_7RVy2m1fzEHIh0EcXqEpqKQatFQEL51oaCC2kKSLfAGR8qCah8RA6X88XxVzxbDn7qVMjVb-ARGOL7frCyS-U_pytIFAWyle6FpsTgf0TubZrObn_Zq6u9sHP-kKx2A07VJt_zzdrl_vYPLsf_MaNH5MGATelxL_SYHMTmCTnaYyx8ShaLmxZL80CCtjX9vPxAMQ4G2jb0DDwpTeCVzvvicvoJHNL16hba3Tb12_NV0JMY6Sm43Wb7jCzPz76czrLhUIbMcwhdGWdWulprwYLjkSkpY_BCTmoVBKQqtWNM-GktABdGEyUI1lOvtWXeGzudOPGcjJq2iS8I1YY5q6MIyE8MeY9x2hrowQjBOFzGJL-zR9X13BsV5CzJgFVSW4UGrNCAFeprTE7QajthpM5ON0Dj1aDhivvIuPXCIFoVaZ1VOVWXOGzITcsxKXY2_7vXvvznJ16R-xzzdiwnZK_JaH2ziW8A3Kzd2-G7_Q2bdfqg priority: 102 providerName: Unpaywall |
| Title | Prognostic of RUL based on Echo State Network Optimized by Artificial Bee Colony |
| URI | https://papers.phmsociety.org/index.php/ijphm/article/download/2359/1332 https://doaj.org/article/2ce12ac3900543289026b6f413c71044 |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2153-2648 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000694271 issn: 2153-2648 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2153-2648 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000694271 issn: 2153-2648 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2153-2648 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000694271 issn: 2153-2648 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yD-pB_Inzx8jBa7cmabvkuI2NITqHWJinkqQpTmY7xqbMv96XdI7e9OCp0IakfK-873305QtCtwEXodZEe5FvUi_gqfREpqknU6ENZ1Gomd07_DCKhnFwNwknlaO-bE9YaQ9cAtei2hAqNUhzKC6Y-y0WqSiD3KuBHAPnBOpzURFTZQ4WAXVqCyiNuTaucvsOswTfmr7NX-02dBI1P9pTkInMepVWiMn59x-gvVU-l-tPOZtVSGdwhA431SLulG95jHZMfoIOKh6Cp2g8XhS2WQ5G4CLDT_E9tsyU4iLHfcht2JWTeFS2e-NHSBHv0y94rtZu3tJBAneNwT1IhPn6DMWD_nNv6G2OSfA0BTLxKJGhyjhnJFXUkCgMTapZ6GdRykA8ZIpYrDIGlZoRJoSBWVtzLonWQrZ9xc5RLS9yc4EwF0RJblhqHYNBiQjFpYAZBGOEwqWOmj8YJfPSDSMBFeFATRyoiQU1saAmFtQ66lokt4OtmbW7ASFONiFOfgtxHbW2cfjbspf_sewV2qdWXNueP3KNasvFytxABbJUDfexNdBuPBp3Xr4BKOTURw |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaq7QF64I1YXvKBa5K1HXvtY1u1WiFYVoiVyinyK2JLm0RlF7T99cw46WrFCSROkeKJY88kM9_I48-EvCu1kd4zn6lJDFmpg81M7Xlmg_FRCyW9wL3DH-dqtizfX8iLAzK72wvT2Q5gT959u_7RVy2m1fzEHIh0EcXqEpqKQatFQEL51oaCC2kKSLfAGR8qCah8RA6X88XxVzxbDn7qVMjVb-ARGOL7frCyS-U_pytIFAWyle6FpsTgf0TubZrObn_Zq6u9sHP-kKx2A07VJt_zzdrl_vYPLsf_MaNH5MGATelxL_SYHMTmCTnaYyx8ShaLmxZL80CCtjX9vPxAMQ4G2jb0DDwpTeCVzvvicvoJHNL16hba3Tb12_NV0JMY6Sm43Wb7jCzPz76czrLhUIbMcwhdGWdWulprwYLjkSkpY_BCTmoVBKQqtWNM-GktABdGEyUI1lOvtWXeGzudOPGcjJq2iS8I1YY5q6MIyE8MeY9x2hrowQjBOFzGJL-zR9X13BsV5CzJgFVSW4UGrNCAFeprTE7QajthpM5ON0Dj1aDhivvIuPXCIFoVaZ1VOVWXOGzITcsxKXY2_7vXvvznJ16R-xzzdiwnZK_JaH2ziW8A3Kzd2-G7_Q2bdfqg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prognostic+of+RUL+based+on+Echo+State+Network+Optimized+by+Artificial+Bee+Colony&rft.jtitle=International+journal+of+prognostics+and+health+management&rft.au=Edgar+J.+Amaya&rft.au=Alberto+J.+Alvares&rft.date=2020-11-11&rft.pub=The+Prognostics+and+Health+Management+Society&rft.issn=2153-2648&rft.eissn=2153-2648&rft.volume=7&rft.issue=1&rft_id=info:doi/10.36001%2Fijphm.2016.v7i1.2359&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2ce12ac3900543289026b6f413c71044 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-2648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-2648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-2648&client=summon |