Prognostic of RUL based on Echo State Network Optimized by Artificial Bee Colony

Prognostic is an engineering technique used to predict the future health state or behavior of an equipment or system. In this work, a data-driven hybrid approach for prognostic is presented. The approach based on Echo State Network (ESN) and Artificial Bee Colony (ABC) algorithm is used to predict m...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of prognostics and health management Vol. 7; no. 1
Main Authors J. Amaya, Edgar, J. Alvares, Alberto
Format Journal Article
LanguageEnglish
Published The Prognostics and Health Management Society 11.11.2020
Subjects
Online AccessGet full text
ISSN2153-2648
2153-2648
DOI10.36001/ijphm.2016.v7i1.2359

Cover

Abstract Prognostic is an engineering technique used to predict the future health state or behavior of an equipment or system. In this work, a data-driven hybrid approach for prognostic is presented. The approach based on Echo State Network (ESN) and Artificial Bee Colony (ABC) algorithm is used to predict machine’s Remaining Useful Life (RUL). ESN is a new paradigm that establishes a large space dynamic reservoir to replace the hidden layer of Recurrent Neural Network (RNN). Through the application of ESN is possible to overcome the shortcomings of complicated computing and difficulties in determining the network topology of traditional RNN. This approach describes the ABC algorithm as a tool to set the ESN with optimal parameters. Historical data collected from sensors are used to train and test the proposed hybrid approach in order to estimate the RUL. To evaluate the proposed approach, a case study was carried out using turbofan engine signals show that the proposed method can achieve a good collected from physical sensors (temperature, pressure, speed, fuel flow, etc.). The experimental results using the engine data from NASA Ames Prognostics Data Repository RUL estimation precision. The performance of this model was compared using prognostic metrics with the approaches that use the same dataset. Therefore, the ESN-ABC approach is very promising in the field of prognostics of the RUL.
AbstractList Prognostic is an engineering technique used to predict the future health state or behavior of an equipment or system. In this work, a data-driven hybrid approach for prognostic is presented. The approach based on Echo State Network (ESN) and Artificial Bee Colony (ABC) algorithm is used to predict machine’s Remaining Useful Life (RUL). ESN is a new paradigm that establishes a large space dynamic reservoir to replace the hidden layer of Recurrent Neural Network (RNN). Through the application of ESN is possible to overcome the shortcomings of complicated computing and difficulties in determining the network topology of traditional RNN. This approach describes the ABC algorithm as a tool to set the ESN with optimal parameters. Historical data collected from sensors are used to train and test the proposed hybrid approach in order to estimate the RUL. To evaluate the proposed approach, a case study was carried out using turbofan engine signals show that the proposed method can achieve a good collected from physical sensors (temperature, pressure, speed, fuel flow, etc.). The experimental results using the engine data from NASA Ames Prognostics Data Repository RUL estimation precision. The performance of this model was compared using prognostic metrics with the approaches that use the same dataset. Therefore, the ESN-ABC approach is very promising in the field of prognostics of the RUL.
Author J. Amaya, Edgar
J. Alvares, Alberto
Author_xml – sequence: 1
  givenname: Edgar
  surname: J. Amaya
  fullname: J. Amaya, Edgar
– sequence: 2
  givenname: Alberto
  surname: J. Alvares
  fullname: J. Alvares, Alberto
BookMark eNqNkG9PwjAQxhuDiYh8BJN-gWH_rN36EgkqCRGi8rrpuhaKY126KZmf3g2M8aX35i539zx3-V2DQelLA8AtRhPKEcJ3bl_tDhOCMJ98Jg5PCGXiAgwJZjQiPE4Hf-orMK7rPeqCi5gkeAjW6-C3pa8bp6G38GWzhJmqTQ59Ced65-FroxoDn01z9OEdrqrGHdxXN89aOA2Ns047VcB7Y-DMF75sb8ClVUVtxj95BDYP87fZU7RcPS5m02WkCREiIlixzKYpxXlGDOaMmVxThizPaUq4zTCmOrFUUGKEYd2iTXSaKqy1UAnK6Agszr65V3tZBXdQoZVeOXlq-LCVqvtPF0YSbTBRmgqEWExJKhDhGbdxfwGjOO68-Nnro6xUe1RF8WuIkTxhlifMsscse8yyx9wJ2Vmog6_rYOw_dd9U3IO6
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.36001/ijphm.2016.v7i1.2359
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2153-2648
ExternalDocumentID oai_doaj_org_article_2ce12ac3900543289026b6f413c71044
10.36001/ijphm.2016.v7i1.2359
10_36001_ijphm_2016_v7i1_2359
GroupedDBID 5VS
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c2299-21a5bf8831db2e1655edc350f6d3826fb113c7f3932e9e5883f7c88a1cc9a70b3
IEDL.DBID DOA
ISSN 2153-2648
IngestDate Fri Oct 03 12:42:00 EDT 2025
Mon Sep 15 10:09:26 EDT 2025
Tue Jul 01 02:50:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2299-21a5bf8831db2e1655edc350f6d3826fb113c7f3932e9e5883f7c88a1cc9a70b3
OpenAccessLink https://doaj.org/article/2ce12ac3900543289026b6f413c71044
ParticipantIDs doaj_primary_oai_doaj_org_article_2ce12ac3900543289026b6f413c71044
unpaywall_primary_10_36001_ijphm_2016_v7i1_2359
crossref_primary_10_36001_ijphm_2016_v7i1_2359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-11
PublicationDateYYYYMMDD 2020-11-11
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-11
  day: 11
PublicationDecade 2020
PublicationTitle International journal of prognostics and health management
PublicationYear 2020
Publisher The Prognostics and Health Management Society
Publisher_xml – name: The Prognostics and Health Management Society
SSID ssj0000694271
Score 2.199995
Snippet Prognostic is an engineering technique used to predict the future health state or behavior of an equipment or system. In this work, a data-driven hybrid...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
SubjectTerms artificial bee colony
data-driven prognostics
echo state networks
failure prognostics
particle swarm optimization
rul estimation
turbofan engines
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaq7QF64I1YXvKBa5K1HXvtY1u1WiFYVoiVyinyK2JLm0RlF7T99cw46WrFCSROkeKJY88kM9_I48-EvCu1kd4zn6lJDFmpg81M7Xlmg_FRCyW9wL3DH-dqtizfX8iLAzK72wvT2Q5gT959u_7RVy2m1fzEHIh0EcXqEpqKQatFQEL51oaCC2kKSLfAGR8qCah8RA6X88XxVzxbDn7qVMjVb-ARGOL7frCyS-U_pytIFAWyle6FpsTgf0TubZrObn_Zq6u9sHP-kKx2A07VJt_zzdrl_vYPLsf_MaNH5MGATelxL_SYHMTmCTnaYyx8ShaLmxZL80CCtjX9vPxAMQ4G2jb0DDwpTeCVzvvicvoJHNL16hba3Tb12_NV0JMY6Sm43Wb7jCzPz76czrLhUIbMcwhdGWdWulprwYLjkSkpY_BCTmoVBKQqtWNM-GktABdGEyUI1lOvtWXeGzudOPGcjJq2iS8I1YY5q6MIyE8MeY9x2hrowQjBOFzGJL-zR9X13BsV5CzJgFVSW4UGrNCAFeprTE7QajthpM5ON0Dj1aDhivvIuPXCIFoVaZ1VOVWXOGzITcsxKXY2_7vXvvznJ16R-xzzdiwnZK_JaH2ziW8A3Kzd2-G7_Q2bdfqg
  priority: 102
  providerName: Unpaywall
Title Prognostic of RUL based on Echo State Network Optimized by Artificial Bee Colony
URI https://papers.phmsociety.org/index.php/ijphm/article/download/2359/1332
https://doaj.org/article/2ce12ac3900543289026b6f413c71044
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2153-2648
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000694271
  issn: 2153-2648
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2153-2648
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000694271
  issn: 2153-2648
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2153-2648
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000694271
  issn: 2153-2648
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yD-pB_Inzx8jBa7cmabvkuI2NITqHWJinkqQpTmY7xqbMv96XdI7e9OCp0IakfK-873305QtCtwEXodZEe5FvUi_gqfREpqknU6ENZ1Gomd07_DCKhnFwNwknlaO-bE9YaQ9cAtei2hAqNUhzKC6Y-y0WqSiD3KuBHAPnBOpzURFTZQ4WAXVqCyiNuTaucvsOswTfmr7NX-02dBI1P9pTkInMepVWiMn59x-gvVU-l-tPOZtVSGdwhA431SLulG95jHZMfoIOKh6Cp2g8XhS2WQ5G4CLDT_E9tsyU4iLHfcht2JWTeFS2e-NHSBHv0y94rtZu3tJBAneNwT1IhPn6DMWD_nNv6G2OSfA0BTLxKJGhyjhnJFXUkCgMTapZ6GdRykA8ZIpYrDIGlZoRJoSBWVtzLonWQrZ9xc5RLS9yc4EwF0RJblhqHYNBiQjFpYAZBGOEwqWOmj8YJfPSDSMBFeFATRyoiQU1saAmFtQ66lokt4OtmbW7ASFONiFOfgtxHbW2cfjbspf_sewV2qdWXNueP3KNasvFytxABbJUDfexNdBuPBp3Xr4BKOTURw
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaq7QF64I1YXvKBa5K1HXvtY1u1WiFYVoiVyinyK2JLm0RlF7T99cw46WrFCSROkeKJY88kM9_I48-EvCu1kd4zn6lJDFmpg81M7Xlmg_FRCyW9wL3DH-dqtizfX8iLAzK72wvT2Q5gT959u_7RVy2m1fzEHIh0EcXqEpqKQatFQEL51oaCC2kKSLfAGR8qCah8RA6X88XxVzxbDn7qVMjVb-ARGOL7frCyS-U_pytIFAWyle6FpsTgf0TubZrObn_Zq6u9sHP-kKx2A07VJt_zzdrl_vYPLsf_MaNH5MGATelxL_SYHMTmCTnaYyx8ShaLmxZL80CCtjX9vPxAMQ4G2jb0DDwpTeCVzvvicvoJHNL16hba3Tb12_NV0JMY6Sm43Wb7jCzPz76czrLhUIbMcwhdGWdWulprwYLjkSkpY_BCTmoVBKQqtWNM-GktABdGEyUI1lOvtWXeGzudOPGcjJq2iS8I1YY5q6MIyE8MeY9x2hrowQjBOFzGJL-zR9X13BsV5CzJgFVSW4UGrNCAFeprTE7QajthpM5ON0Dj1aDhivvIuPXCIFoVaZ1VOVWXOGzITcsxKXY2_7vXvvznJ16R-xzzdiwnZK_JaH2ziW8A3Kzd2-G7_Q2bdfqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prognostic+of+RUL+based+on+Echo+State+Network+Optimized+by+Artificial+Bee+Colony&rft.jtitle=International+journal+of+prognostics+and+health+management&rft.au=Edgar+J.+Amaya&rft.au=Alberto+J.+Alvares&rft.date=2020-11-11&rft.pub=The+Prognostics+and+Health+Management+Society&rft.issn=2153-2648&rft.eissn=2153-2648&rft.volume=7&rft.issue=1&rft_id=info:doi/10.36001%2Fijphm.2016.v7i1.2359&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2ce12ac3900543289026b6f413c71044
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2153-2648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2153-2648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2153-2648&client=summon