Hybrid MRK-Means + + RBM Model: An Efficient Heart Disease Predicting System Using ModifiedRoughK-Means + + Algorithm and Restricted Boltzmann Machine

The clinical diagnosis of heart disease in most situations is based on a difficult amalgamation of pathological and clinical information. Because of this complication, there is a significant level of curiosity among many diagnostic healthcare professionals and researchers who are keenly interested i...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of uncertainty, fuzziness, and knowledge-based systems Vol. 31; no. Supp01; pp. 65 - 99
Main Authors Prasanna, Kamepalli S. L., Challa, Nagendra Panini
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 01.05.2023
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0218-4885
1793-6411
DOI10.1142/S0218488523400056

Cover

Abstract The clinical diagnosis of heart disease in most situations is based on a difficult amalgamation of pathological and clinical information. Because of this complication, there is a significant level of curiosity among many diagnostic healthcare professionals and researchers who are keenly interested in the efficient, accurate, and early-stage forecasting of heart disease. Deep Learning Algorithms aid in the prediction of heart disease. The main focus of this paper is to develop a method for predicting heart disease through Modified Rough K means + + (MRK + + ) clustering along with the Restricted Boltzmann Machine (RBM). This paper is categorized into two modules: (1) Propose a clustering component based on Modified Rough K-means + + ; (2) disease prediction based on RBM. The input Cleveland dataset is clustered using the stochastic probabilistic rough k-means + + clustering technique in the module for clustering. The clustered data is acquired and used in the RBM, and this hybrid structure is then used in the heart disease forecasting module. Throughout the testing procedure, the most valid result is chosen from the clustered test data, and the RBM classifier that correlates to the nearest cluster in the test data is based on the smallest distance or similar parameters. Furthermore, the output value is used to predict heart disease. There are three different types of experiments that are performed: In the first experiment comprises modifying the rough K-means + + clustering algorithm, the second experiment evaluates the classification result, and the third experiment suggests hybrid model representation. When the Hybrid Modified Rough k-means + + - RBM model is compared with any single model, it provides the highest accuracy.
AbstractList The clinical diagnosis of heart disease in most situations is based on a difficult amalgamation of pathological and clinical information. Because of this complication, there is a significant level of curiosity among many diagnostic healthcare professionals and researchers who are keenly interested in the efficient, accurate, and early-stage forecasting of heart disease. Deep Learning Algorithms aid in the prediction of heart disease. The main focus of this paper is to develop a method for predicting heart disease through Modified Rough K means + + (MRK + +) clustering along with the Restricted Boltzmann Machine (RBM). This paper is categorized into two modules: (1) Propose a clustering component based on Modified Rough K-means + +; (2) disease prediction based on RBM. The input Cleveland dataset is clustered using the stochastic probabilistic rough k-means + + clustering technique in the module for clustering. The clustered data is acquired and used in the RBM, and this hybrid structure is then used in the heart disease forecasting module. Throughout the testing procedure, the most valid result is chosen from the clustered test data, and the RBM classifier that correlates to the nearest cluster in the test data is based on the smallest distance or similar parameters. Furthermore, the output value is used to predict heart disease. There are three different types of experiments that are performed: In the first experiment comprises modifying the rough K-means + + clustering algorithm, the second experiment evaluates the classification result, and the third experiment suggests hybrid model representation. When the Hybrid Modified Rough k-means + + - RBM model is compared with any single model, it provides the highest accuracy.
The clinical diagnosis of heart disease in most situations is based on a difficult amalgamation of pathological and clinical information. Because of this complication, there is a significant level of curiosity among many diagnostic healthcare professionals and researchers who are keenly interested in the efficient, accurate, and early-stage forecasting of heart disease. Deep Learning Algorithms aid in the prediction of heart disease. The main focus of this paper is to develop a method for predicting heart disease through Modified Rough K means + + (MRK + + ) clustering along with the Restricted Boltzmann Machine (RBM). This paper is categorized into two modules: (1) Propose a clustering component based on Modified Rough K-means + + ; (2) disease prediction based on RBM. The input Cleveland dataset is clustered using the stochastic probabilistic rough k-means + + clustering technique in the module for clustering. The clustered data is acquired and used in the RBM, and this hybrid structure is then used in the heart disease forecasting module. Throughout the testing procedure, the most valid result is chosen from the clustered test data, and the RBM classifier that correlates to the nearest cluster in the test data is based on the smallest distance or similar parameters. Furthermore, the output value is used to predict heart disease. There are three different types of experiments that are performed: In the first experiment comprises modifying the rough K-means + + clustering algorithm, the second experiment evaluates the classification result, and the third experiment suggests hybrid model representation. When the Hybrid Modified Rough k-means + + - RBM model is compared with any single model, it provides the highest accuracy.
The clinical diagnosis of heart disease in most situations is based on a difficult amalgamation of pathological and clinical information. Because of this complication, there is a significant level of curiosity among many diagnostic healthcare professionals and researchers who are keenly interested in the efficient, accurate, and early-stage forecasting of heart disease. Deep Learning Algorithms aid in the prediction of heart disease. The main focus of this paper is to develop a method for predicting heart disease through Modified Rough K means[Formula: see text] (MRK[Formula: see text]) clustering along with the Restricted Boltzmann Machine (RBM). This paper is categorized into two modules: (1) Propose a clustering component based on Modified Rough K-means[Formula: see text]; (2) disease prediction based on RBM. The input Cleveland dataset is clustered using the stochastic probabilistic rough k-means[Formula: see text] clustering technique in the module for clustering. The clustered data is acquired and used in the RBM, and this hybrid structure is then used in the heart disease forecasting module. Throughout the testing procedure, the most valid result is chosen from the clustered test data, and the RBM classifier that correlates to the nearest cluster in the test data is based on the smallest distance or similar parameters. Furthermore, the output value is used to predict heart disease. There are three different types of experiments that are performed: In the first experiment comprises modifying the rough K-means[Formula: see text] clustering algorithm, the second experiment evaluates the classification result, and the third experiment suggests hybrid model representation. When the Hybrid Modified Rough k-means[Formula: see text] - RBM model is compared with any single model, it provides the highest accuracy.
Author Prasanna, Kamepalli S. L.
Challa, Nagendra Panini
Author_xml – sequence: 1
  givenname: Kamepalli S. L.
  surname: Prasanna
  fullname: Prasanna, Kamepalli S. L.
– sequence: 2
  givenname: Nagendra Panini
  surname: Challa
  fullname: Challa, Nagendra Panini
BookMark eNp9kdtqGzEQhkVJoU7aB-idoJdhUx1WWql3zqkOydLiNNeLrJ21FdZSIskE50HyvJXrUkoDZS6GYf5vZvjnEB344AGhj5ScUFqzz7eEUVUrJRivCSFCvkET2mheyZrSAzTZtatd_x06TOm-SHij6wl6mW0X0fW4nV9XLRif8HGJ-WmL29DD-AVPPb4YBmcd-IxnYGLG5y6BSYC_R-idzc4v8e02ZVjju7QrCukGB_08bJarv8dOx2WILq_W2PgezyHlWHjo8WkY8_PaeI9bY1fOw3v0djBjgg-_8xG6u7z4cTarbr59vTqb3lSWMS0rkFrxQYlFYy3RTLN60NIuQA-iV4Jbo4FrpbkgUmuoNRWMMUmstMICk4YfoU_7uQ8xPG7KQd192ERfVnZM8VqJhklWVM1eZWNIKcLQWZdNdsHnaNzYUdLtntC9ekIh6T_kQ3RrE7f_ZcieeQpx7NMv54uf9g_6GvkJRzeYDg
CitedBy_id crossref_primary_10_1142_S0218488525500060
crossref_primary_10_1007_s00034_024_02851_7
Cites_doi 10.1007/s10916-019-1451-x
10.1016/j.mehy.2020.110072
10.1007/s11227-021-03677-9
10.1109/ACCESS.2020.2985646
10.1109/ACCESS.2019.2904800
10.1007/s00500-020-05253-4
10.1007/s13369-021-06058-9
10.1109/ACCESS.2019.2957367
10.1109/ACCESS.2020.3039439
10.1109/ACCESS.2020.3010511
10.1007/s10732-006-7284-z
10.1016/j.bspc.2021.103033
10.1142/S021812661750061X
10.1109/ACCESS.2021.3053759
10.1007/s12065-019-00336-0
10.1007/s13369-020-05105-1
10.1007/s42979-021-00518-7
10.1089/big.2018.0023
10.1371/journal.pone.0225991
10.1109/ACCESS.2019.2923707
10.1007/s42979-020-0097-6
10.1109/ACCESS.2020.3028714
10.1016/j.imu.2020.100402
10.1016/j.ijar.2014.05.004
10.1109/ACCESS.2020.3015757
10.5120/2237-2860
10.1007/s12065-019-00327-1
10.1016/j.compbiomed.2021.104672
10.4018/IJBDAH.2018010101
10.1007/s11042-022-12425-x
10.1109/ACCESS.2021.3064084
10.1155/2021/8387680
10.1016/j.imu.2020.100330
10.1155/2020/8843115
10.1016/j.imu.2019.100257
ContentType Journal Article
Copyright 2023, World Scientific Publishing Company
2023. World Scientific Publishing Company
Copyright_xml – notice: 2023, World Scientific Publishing Company
– notice: 2023. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0218488523400056
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1793-6411
EndPage 99
ExternalDocumentID 10_1142_S0218488523400056
S0218488523400056
GroupedDBID .DC
0R~
4.4
5GY
8VB
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CAG
COF
CS3
DU5
EBS
EJD
ESX
HZ~
K1G
O9-
P71
QWB
RWJ
VOH
WSC
ZL0
AAYXX
AMVHM
CITATION
ID FETCH-LOGICAL-c2296-e6983f85b7cc092924f96cbe9f5d853ca9e3989350699e491522260c6c5ce26a3
ISSN 0218-4885
IngestDate Sun Jun 29 16:13:38 EDT 2025
Thu Apr 24 22:54:05 EDT 2025
Tue Jul 01 03:07:21 EDT 2025
Fri Aug 23 08:19:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue Supp01
Keywords K-means
Restricted Boltzmann machine
Hybrid modified RoughK-means
Heart disease
Classification
Clustering
Rough set
algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2296-e6983f85b7cc092924f96cbe9f5d853ca9e3989350699e491522260c6c5ce26a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2834857262
PQPubID 2049874
PageCount 35
ParticipantIDs crossref_citationtrail_10_1142_S0218488523400056
crossref_primary_10_1142_S0218488523400056
proquest_journals_2834857262
worldscientific_primary_S0218488523400056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230500
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 20230500
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of uncertainty, fuzziness, and knowledge-based systems
PublicationYear 2023
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References Amarbayasgalan T. (S0218488523400056BIB004) 2019; 14
Jeyaranjani J. (S0218488523400056BIB006) 2021
Mienye I. D. (S0218488523400056BIB009) 2020; 20
Hameed A. Z. (S0218488523400056BIB027) 2021; 77
Pathan M. S. (S0218488523400056BIB018) 2020; 8
Fitriyani N. L. (S0218488523400056BIB026) 2020; 8
Shankar V. (S0218488523400056BIB010) 2020; 1
Arthur D. (S0218488523400056BIB028) 2006
Lu P. (S0218488523400056BIB033) 2018; 2018
Liu X. (S0218488523400056BIB038) 2017; 2017
Ripan R. C. (S0218488523400056BIB012) 2021; 2
Dileep P. (S0218488523400056BIB047) 2022
Ghosh P. (S0218488523400056BIB048) 2021; 9
Imamverdiyev Y. (S0218488523400056BIB032) 2018; 6
Ishaq A. (S0218488523400056BIB020) 2021; 9
Kora P. (S0218488523400056BIB007) 2019; 17
Vincent Paul S. M. (S0218488523400056BIB025) 2022; 47
Ali M. M. (S0218488523400056BIB001) 2021; 136
Joo G. (S0218488523400056BIB017) 2020; 8
Ren S. (S0218488523400056BIB035) 2020; 17
Mohan S. (S0218488523400056BIB014) 2019; 7
Acharjya D. P. (S0218488523400056BIB021) 2020; 44
Ali L. (S0218488523400056BIB024) 2019; 7
Sheng W. (S0218488523400056BIB036) 2006; 12
Reddy G. T. (S0218488523400056BIB040) 2017; 26
Safa M. (S0218488523400056BIB042) 2021
Magesh G. (S0218488523400056BIB039) 2021; 14
El-Shafiey M. G. (S0218488523400056BIB046) 2022; 81
Acharjya D. P. (S0218488523400056BIB043) 2020; 44
Irene D. S. (S0218488523400056BIB034) 2020; 143
Kumar P. (S0218488523400056BIB031); 1
Bharti R. (S0218488523400056BIB011) 2021; 2021
Mehmood A. (S0218488523400056BIB023) 2021; 46
Yekkala I. (S0218488523400056BIB029) 2018; 3
Javeed A. (S0218488523400056BIB022) 2020; 2020
Gárate-Escamila A. K. (S0218488523400056BIB008) 2020; 19
Elumalai A. (S0218488523400056BIB037) 2021
Al-Yarimi F. A. M. (S0218488523400056BIB045) 2021; 25
Ali S. A. (S0218488523400056BIB016) 2020; 8
Pasha S. J. (S0218488523400056BIB019) 2020; 8
Subhadra K. (S0218488523400056BIB003) 2019; 8
Zhang T. (S0218488523400056BIB030) 2014; 55
Soni J. (S0218488523400056BIB002) 2011; 17
Valarmathi R. (S0218488523400056BIB005) 2021; 70
Chang W. (S0218488523400056BIB015) 2019; 7
Reddy G. T. (S0218488523400056BIB044) 2020; 13
References_xml – volume: 44
  start-page: 1
  issue: 1
  year: 2020
  ident: S0218488523400056BIB021
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-019-1451-x
– volume: 2018
  year: 2018
  ident: S0218488523400056BIB033
  publication-title: Journal of Healthcare Engineering
– volume: 143
  start-page: 110072
  year: 2020
  ident: S0218488523400056BIB034
  publication-title: Medical Hypotheses
  doi: 10.1016/j.mehy.2020.110072
– volume: 77
  start-page: 10117
  issue: 9
  year: 2021
  ident: S0218488523400056BIB027
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-021-03677-9
– volume: 8
  start-page: 65947
  year: 2020
  ident: S0218488523400056BIB016
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2985646
– volume: 7
  start-page: 34938
  year: 2019
  ident: S0218488523400056BIB024
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904800
– volume: 17
  start-page: 847
  issue: 6
  year: 2020
  ident: S0218488523400056BIB035
  publication-title: Int. Arab J. Inf. Technol.
– volume: 25
  start-page: 1821
  issue: 3
  year: 2021
  ident: S0218488523400056BIB045
  publication-title: Soft Computing
  doi: 10.1007/s00500-020-05253-4
– volume: 47
  start-page: 2159
  issue: 2
  year: 2022
  ident: S0218488523400056BIB025
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-021-06058-9
– volume: 7
  start-page: 175248
  year: 2019
  ident: S0218488523400056BIB015
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2957367
– volume: 8
  start-page: 210318
  year: 2020
  ident: S0218488523400056BIB018
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3039439
– volume: 8
  start-page: 133034
  year: 2020
  ident: S0218488523400056BIB026
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010511
– volume: 12
  start-page: 447
  issue: 6
  year: 2006
  ident: S0218488523400056BIB036
  publication-title: Journal of Heuristics
  doi: 10.1007/s10732-006-7284-z
– volume: 70
  start-page: 103033
  year: 2021
  ident: S0218488523400056BIB005
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.103033
– volume-title: k-Means: The Advantages of Careful Seeding
  year: 2006
  ident: S0218488523400056BIB028
– volume: 26
  issue: 4
  year: 2017
  ident: S0218488523400056BIB040
  publication-title: Journal of Circuits, Systems and Computers
  doi: 10.1142/S021812661750061X
– volume: 9
  start-page: 19304
  year: 2021
  ident: S0218488523400056BIB048
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3053759
– volume: 14
  start-page: 583
  issue: 2
  year: 2021
  ident: S0218488523400056BIB039
  publication-title: Evolutionary Intelligence
  doi: 10.1007/s12065-019-00336-0
– volume: 46
  start-page: 3409
  issue: 4
  year: 2021
  ident: S0218488523400056BIB023
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-020-05105-1
– volume: 2
  start-page: 1
  issue: 2
  year: 2021
  ident: S0218488523400056BIB012
  publication-title: SN Computer Science
  doi: 10.1007/s42979-021-00518-7
– volume: 6
  start-page: 159
  issue: 2
  year: 2018
  ident: S0218488523400056BIB032
  publication-title: Big Data
  doi: 10.1089/big.2018.0023
– start-page: 1
  year: 2021
  ident: S0218488523400056BIB037
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– volume: 14
  start-page: e0225991
  issue: 12
  year: 2019
  ident: S0218488523400056BIB004
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0225991
– start-page: 1
  year: 2021
  ident: S0218488523400056BIB042
  publication-title: Wireless Personal Communications
– year: 2021
  ident: S0218488523400056BIB006
  publication-title: Materials Today: Proceedings
– volume: 7
  start-page: 81542
  year: 2019
  ident: S0218488523400056BIB014
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923707
– volume: 1
  start-page: 1
  issue: 3
  year: 2020
  ident: S0218488523400056BIB010
  publication-title: SN Computer Science
  doi: 10.1007/s42979-020-0097-6
– volume: 8
  start-page: 184087
  year: 2020
  ident: S0218488523400056BIB019
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3028714
– volume: 20
  start-page: 100402
  year: 2020
  ident: S0218488523400056BIB009
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2020.100402
– volume: 2017
  year: 2017
  ident: S0218488523400056BIB038
  publication-title: Computational and Mathematical Methods in Medicine
– volume: 8
  start-page: 484
  issue: 5
  year: 2019
  ident: S0218488523400056BIB003
  publication-title: International Journal of Innovative Technology and Exploring Engineering
– volume: 55
  start-page: 1805
  issue: 8
  year: 2014
  ident: S0218488523400056BIB030
  publication-title: International Journal of Approximate Reasoning
  doi: 10.1016/j.ijar.2014.05.004
– volume: 8
  start-page: 157643
  year: 2020
  ident: S0218488523400056BIB017
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3015757
– volume: 17
  start-page: 43
  issue: 8
  year: 2011
  ident: S0218488523400056BIB002
  publication-title: International Journal of Computer Applications
  doi: 10.5120/2237-2860
– volume: 1
  start-page: 136
  volume-title: Proceedings of CSIT: 2009 International Symposium on Computing, Communication, and Control (ISCCC 2009)
  ident: S0218488523400056BIB031
– volume: 13
  start-page: 185
  issue: 2
  year: 2020
  ident: S0218488523400056BIB044
  publication-title: Evolutionary Intelligence
  doi: 10.1007/s12065-019-00327-1
– volume: 136
  start-page: 104672
  year: 2021
  ident: S0218488523400056BIB001
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.104672
– volume: 3
  start-page: 1
  issue: 1
  year: 2018
  ident: S0218488523400056BIB029
  publication-title: International Journal of Big Data and Analytics in Healthcare (IJBDAH)
  doi: 10.4018/IJBDAH.2018010101
– volume: 81
  start-page: 18155
  issue: 13
  year: 2022
  ident: S0218488523400056BIB046
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-022-12425-x
– volume: 9
  start-page: 39707
  year: 2021
  ident: S0218488523400056BIB020
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3064084
– start-page: 1
  year: 2022
  ident: S0218488523400056BIB047
  publication-title: Neural Computing and Applications
– volume: 2021
  year: 2021
  ident: S0218488523400056BIB011
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2021/8387680
– volume: 19
  start-page: 100330
  year: 2020
  ident: S0218488523400056BIB008
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2020.100330
– volume: 2020
  year: 2020
  ident: S0218488523400056BIB022
  publication-title: Mobile Information Systems
  doi: 10.1155/2020/8843115
– volume: 44
  start-page: 1
  issue: 1
  year: 2020
  ident: S0218488523400056BIB043
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-019-1451-x
– volume: 17
  start-page: 100257
  year: 2019
  ident: S0218488523400056BIB007
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2019.100257
SSID ssj0003794
ssib019635265
Score 2.3290074
Snippet The clinical diagnosis of heart disease in most situations is based on a difficult amalgamation of pathological and clinical information. Because of this...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 65
SubjectTerms Algorithms
Cardiovascular disease
Clustering
Data acquisition
Forecasting
Heart
Heart diseases
Hybrid structures
Machine learning
Mathematical models
Modules
Test procedures
Title Hybrid MRK-Means + + RBM Model: An Efficient Heart Disease Predicting System Using ModifiedRoughK-Means + + Algorithm and Restricted Boltzmann Machine
URI http://www.worldscientific.com/doi/abs/10.1142/S0218488523400056
https://www.proquest.com/docview/2834857262
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1793-6411
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0003794
  issn: 0218-4885
  databaseCode: AMVHM
  dateStart: 19930901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLZKd4HDgAGibCAfuEDlEjmJE3Nr0VAFBKGyod2qxHG2ojRFbXpYfwh_F15_1A3NhBiqGlVpYqt5n77fHwi9DNNcioj6pCh4SAKaRSTNU4_EKpRb8Iz7oSoUTj6z8Xnw4SK86HR-NbKW1nU2EJsb60r-h6pwDuiqqmRvQVm3KJyAz0BfOAKF4fhPNB5fq3qrfjL5SBIJMgfoONLvySjRU85K6_c71Y0iVNh_DMiuVc9NFZZRCRi5qglRXbl1S-e-SSGAe2cFKKcTNcNnf_FheblYzuqruS1uVJM_hFJcR4uy3szTqlLjjK62Afvvu1z5neux0bACBKtJSzDjCYr1ZqNT8bd5pc7rR5TEzW3vaWcKfFmmK9jSVrbNQbqW5az_ddD_NGikLgDYjSyBZ5kvU1Ccq1k1a7o8aCPB0DBWnWakeZ_Op2p67NpcFHQYAlzKhM6l4fLAlAgLLJe3YsAKIwN3NVLV7mgYOwsbKoIZ6dQWPgHV4W9lNcOG1A-URrzX6FurDq1r7qADCmLJ66KDYfJt7BxOij-aAQZWufAjPdvT_SobqIet37QW_VPV2tlPh7oZ78o9v4ZCdfYAHVpLCA8NrB-ijqyO0P3tlBFshc4Rupe4zsKrR-inwTx2mMd9eAHescb7WzyssEM71mjHFu14h3Zs0I412vFNaNfLOqRjACLeIR07pGOL9Mfo_P3p2bsxsbNFiKCUMyIZj_0iDrNICA9MBBoUnIlM8iLMQYMVKZc-B10-9BjnMuCg5oKh4gkmQiEpS_0nqFstKvkUYRZR-DIG26GQgQQDIGdxDlZFXlAucu71kLclw1TYxvtq_ks5NU0B6LRFuR567W75YbrO_O3iky1tp_bfu5qC1RDEYUQZ7aFXe_R2S7aWenaLa4_RXap8Tzqx9QR16-VaPgcFvc5eWBD_BqsU4GI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+MRK-Means+%2B+%2B+RBM+Model%3A+An+Efficient+Heart+Disease+Predicting+System+Using+ModifiedRoughK-Means+%2B+%2B+Algorithm+and+Restricted+Boltzmann+Machine&rft.jtitle=International+journal+of+uncertainty%2C+fuzziness%2C+and+knowledge-based+systems&rft.au=Prasanna%2C+Kamepalli+S.+L.&rft.au=Challa%2C+Nagendra+Panini&rft.date=2023-05-01&rft.pub=World+Scientific+Publishing+Company&rft.issn=0218-4885&rft.eissn=1793-6411&rft.volume=31&rft.issue=Supp01&rft.spage=65&rft.epage=99&rft_id=info:doi/10.1142%2FS0218488523400056&rft.externalDocID=S0218488523400056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-4885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-4885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-4885&client=summon