Hybrid MRK-Means + + RBM Model: An Efficient Heart Disease Predicting System Using ModifiedRoughK-Means + + Algorithm and Restricted Boltzmann Machine
The clinical diagnosis of heart disease in most situations is based on a difficult amalgamation of pathological and clinical information. Because of this complication, there is a significant level of curiosity among many diagnostic healthcare professionals and researchers who are keenly interested i...
Saved in:
| Published in | International journal of uncertainty, fuzziness, and knowledge-based systems Vol. 31; no. Supp01; pp. 65 - 99 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
World Scientific Publishing Company
01.05.2023
World Scientific Publishing Co. Pte., Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0218-4885 1793-6411 |
| DOI | 10.1142/S0218488523400056 |
Cover
| Abstract | The clinical diagnosis of heart disease in most situations is based on a difficult amalgamation of pathological and clinical information. Because of this complication, there is a significant level of curiosity among many diagnostic healthcare professionals and researchers who are keenly interested in the efficient, accurate, and early-stage forecasting of heart disease. Deep Learning Algorithms aid in the prediction of heart disease. The main focus of this paper is to develop a method for predicting heart disease through Modified Rough K means
+
+
(MRK
+
+
) clustering along with the Restricted Boltzmann Machine (RBM). This paper is categorized into two modules: (1) Propose a clustering component based on Modified Rough K-means
+
+
; (2) disease prediction based on RBM. The input Cleveland dataset is clustered using the stochastic probabilistic rough k-means
+
+
clustering technique in the module for clustering. The clustered data is acquired and used in the RBM, and this hybrid structure is then used in the heart disease forecasting module. Throughout the testing procedure, the most valid result is chosen from the clustered test data, and the RBM classifier that correlates to the nearest cluster in the test data is based on the smallest distance or similar parameters. Furthermore, the output value is used to predict heart disease. There are three different types of experiments that are performed: In the first experiment comprises modifying the rough K-means
+
+
clustering algorithm, the second experiment evaluates the classification result, and the third experiment suggests hybrid model representation. When the Hybrid Modified Rough k-means
+
+
- RBM model is compared with any single model, it provides the highest accuracy. |
|---|---|
| AbstractList | The clinical diagnosis of heart disease in most situations is based on a difficult amalgamation of pathological and clinical information. Because of this complication, there is a significant level of curiosity among many diagnostic healthcare professionals and researchers who are keenly interested in the efficient, accurate, and early-stage forecasting of heart disease. Deep Learning Algorithms aid in the prediction of heart disease. The main focus of this paper is to develop a method for predicting heart disease through Modified Rough K means + + (MRK + +) clustering along with the Restricted Boltzmann Machine (RBM). This paper is categorized into two modules: (1) Propose a clustering component based on Modified Rough K-means + +; (2) disease prediction based on RBM. The input Cleveland dataset is clustered using the stochastic probabilistic rough k-means + + clustering technique in the module for clustering. The clustered data is acquired and used in the RBM, and this hybrid structure is then used in the heart disease forecasting module. Throughout the testing procedure, the most valid result is chosen from the clustered test data, and the RBM classifier that correlates to the nearest cluster in the test data is based on the smallest distance or similar parameters. Furthermore, the output value is used to predict heart disease. There are three different types of experiments that are performed: In the first experiment comprises modifying the rough K-means + + clustering algorithm, the second experiment evaluates the classification result, and the third experiment suggests hybrid model representation. When the Hybrid Modified Rough k-means + + - RBM model is compared with any single model, it provides the highest accuracy. The clinical diagnosis of heart disease in most situations is based on a difficult amalgamation of pathological and clinical information. Because of this complication, there is a significant level of curiosity among many diagnostic healthcare professionals and researchers who are keenly interested in the efficient, accurate, and early-stage forecasting of heart disease. Deep Learning Algorithms aid in the prediction of heart disease. The main focus of this paper is to develop a method for predicting heart disease through Modified Rough K means + + (MRK + + ) clustering along with the Restricted Boltzmann Machine (RBM). This paper is categorized into two modules: (1) Propose a clustering component based on Modified Rough K-means + + ; (2) disease prediction based on RBM. The input Cleveland dataset is clustered using the stochastic probabilistic rough k-means + + clustering technique in the module for clustering. The clustered data is acquired and used in the RBM, and this hybrid structure is then used in the heart disease forecasting module. Throughout the testing procedure, the most valid result is chosen from the clustered test data, and the RBM classifier that correlates to the nearest cluster in the test data is based on the smallest distance or similar parameters. Furthermore, the output value is used to predict heart disease. There are three different types of experiments that are performed: In the first experiment comprises modifying the rough K-means + + clustering algorithm, the second experiment evaluates the classification result, and the third experiment suggests hybrid model representation. When the Hybrid Modified Rough k-means + + - RBM model is compared with any single model, it provides the highest accuracy. The clinical diagnosis of heart disease in most situations is based on a difficult amalgamation of pathological and clinical information. Because of this complication, there is a significant level of curiosity among many diagnostic healthcare professionals and researchers who are keenly interested in the efficient, accurate, and early-stage forecasting of heart disease. Deep Learning Algorithms aid in the prediction of heart disease. The main focus of this paper is to develop a method for predicting heart disease through Modified Rough K means[Formula: see text] (MRK[Formula: see text]) clustering along with the Restricted Boltzmann Machine (RBM). This paper is categorized into two modules: (1) Propose a clustering component based on Modified Rough K-means[Formula: see text]; (2) disease prediction based on RBM. The input Cleveland dataset is clustered using the stochastic probabilistic rough k-means[Formula: see text] clustering technique in the module for clustering. The clustered data is acquired and used in the RBM, and this hybrid structure is then used in the heart disease forecasting module. Throughout the testing procedure, the most valid result is chosen from the clustered test data, and the RBM classifier that correlates to the nearest cluster in the test data is based on the smallest distance or similar parameters. Furthermore, the output value is used to predict heart disease. There are three different types of experiments that are performed: In the first experiment comprises modifying the rough K-means[Formula: see text] clustering algorithm, the second experiment evaluates the classification result, and the third experiment suggests hybrid model representation. When the Hybrid Modified Rough k-means[Formula: see text] - RBM model is compared with any single model, it provides the highest accuracy. |
| Author | Prasanna, Kamepalli S. L. Challa, Nagendra Panini |
| Author_xml | – sequence: 1 givenname: Kamepalli S. L. surname: Prasanna fullname: Prasanna, Kamepalli S. L. – sequence: 2 givenname: Nagendra Panini surname: Challa fullname: Challa, Nagendra Panini |
| BookMark | eNp9kdtqGzEQhkVJoU7aB-idoJdhUx1WWql3zqkOydLiNNeLrJ21FdZSIskE50HyvJXrUkoDZS6GYf5vZvjnEB344AGhj5ScUFqzz7eEUVUrJRivCSFCvkET2mheyZrSAzTZtatd_x06TOm-SHij6wl6mW0X0fW4nV9XLRif8HGJ-WmL29DD-AVPPb4YBmcd-IxnYGLG5y6BSYC_R-idzc4v8e02ZVjju7QrCukGB_08bJarv8dOx2WILq_W2PgezyHlWHjo8WkY8_PaeI9bY1fOw3v0djBjgg-_8xG6u7z4cTarbr59vTqb3lSWMS0rkFrxQYlFYy3RTLN60NIuQA-iV4Jbo4FrpbkgUmuoNRWMMUmstMICk4YfoU_7uQ8xPG7KQd192ERfVnZM8VqJhklWVM1eZWNIKcLQWZdNdsHnaNzYUdLtntC9ekIh6T_kQ3RrE7f_ZcieeQpx7NMv54uf9g_6GvkJRzeYDg |
| CitedBy_id | crossref_primary_10_1142_S0218488525500060 crossref_primary_10_1007_s00034_024_02851_7 |
| Cites_doi | 10.1007/s10916-019-1451-x 10.1016/j.mehy.2020.110072 10.1007/s11227-021-03677-9 10.1109/ACCESS.2020.2985646 10.1109/ACCESS.2019.2904800 10.1007/s00500-020-05253-4 10.1007/s13369-021-06058-9 10.1109/ACCESS.2019.2957367 10.1109/ACCESS.2020.3039439 10.1109/ACCESS.2020.3010511 10.1007/s10732-006-7284-z 10.1016/j.bspc.2021.103033 10.1142/S021812661750061X 10.1109/ACCESS.2021.3053759 10.1007/s12065-019-00336-0 10.1007/s13369-020-05105-1 10.1007/s42979-021-00518-7 10.1089/big.2018.0023 10.1371/journal.pone.0225991 10.1109/ACCESS.2019.2923707 10.1007/s42979-020-0097-6 10.1109/ACCESS.2020.3028714 10.1016/j.imu.2020.100402 10.1016/j.ijar.2014.05.004 10.1109/ACCESS.2020.3015757 10.5120/2237-2860 10.1007/s12065-019-00327-1 10.1016/j.compbiomed.2021.104672 10.4018/IJBDAH.2018010101 10.1007/s11042-022-12425-x 10.1109/ACCESS.2021.3064084 10.1155/2021/8387680 10.1016/j.imu.2020.100330 10.1155/2020/8843115 10.1016/j.imu.2019.100257 |
| ContentType | Journal Article |
| Copyright | 2023, World Scientific Publishing Company 2023. World Scientific Publishing Company |
| Copyright_xml | – notice: 2023, World Scientific Publishing Company – notice: 2023. World Scientific Publishing Company |
| DBID | AAYXX CITATION |
| DOI | 10.1142/S0218488523400056 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1793-6411 |
| EndPage | 99 |
| ExternalDocumentID | 10_1142_S0218488523400056 S0218488523400056 |
| GroupedDBID | .DC 0R~ 4.4 5GY 8VB ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CAG COF CS3 DU5 EBS EJD ESX HZ~ K1G O9- P71 QWB RWJ VOH WSC ZL0 AAYXX AMVHM CITATION |
| ID | FETCH-LOGICAL-c2296-e6983f85b7cc092924f96cbe9f5d853ca9e3989350699e491522260c6c5ce26a3 |
| ISSN | 0218-4885 |
| IngestDate | Sun Jun 29 16:13:38 EDT 2025 Thu Apr 24 22:54:05 EDT 2025 Tue Jul 01 03:07:21 EDT 2025 Fri Aug 23 08:19:27 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Supp01 |
| Keywords | K-means Restricted Boltzmann machine Hybrid modified RoughK-means Heart disease Classification Clustering Rough set algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2296-e6983f85b7cc092924f96cbe9f5d853ca9e3989350699e491522260c6c5ce26a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2834857262 |
| PQPubID | 2049874 |
| PageCount | 35 |
| ParticipantIDs | crossref_citationtrail_10_1142_S0218488523400056 crossref_primary_10_1142_S0218488523400056 proquest_journals_2834857262 worldscientific_primary_S0218488523400056 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230500 2023-05-00 20230501 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 20230500 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | International journal of uncertainty, fuzziness, and knowledge-based systems |
| PublicationYear | 2023 |
| Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
| Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
| References | Amarbayasgalan T. (S0218488523400056BIB004) 2019; 14 Jeyaranjani J. (S0218488523400056BIB006) 2021 Mienye I. D. (S0218488523400056BIB009) 2020; 20 Hameed A. Z. (S0218488523400056BIB027) 2021; 77 Pathan M. S. (S0218488523400056BIB018) 2020; 8 Fitriyani N. L. (S0218488523400056BIB026) 2020; 8 Shankar V. (S0218488523400056BIB010) 2020; 1 Arthur D. (S0218488523400056BIB028) 2006 Lu P. (S0218488523400056BIB033) 2018; 2018 Liu X. (S0218488523400056BIB038) 2017; 2017 Ripan R. C. (S0218488523400056BIB012) 2021; 2 Dileep P. (S0218488523400056BIB047) 2022 Ghosh P. (S0218488523400056BIB048) 2021; 9 Imamverdiyev Y. (S0218488523400056BIB032) 2018; 6 Ishaq A. (S0218488523400056BIB020) 2021; 9 Kora P. (S0218488523400056BIB007) 2019; 17 Vincent Paul S. M. (S0218488523400056BIB025) 2022; 47 Ali M. M. (S0218488523400056BIB001) 2021; 136 Joo G. (S0218488523400056BIB017) 2020; 8 Ren S. (S0218488523400056BIB035) 2020; 17 Mohan S. (S0218488523400056BIB014) 2019; 7 Acharjya D. P. (S0218488523400056BIB021) 2020; 44 Ali L. (S0218488523400056BIB024) 2019; 7 Sheng W. (S0218488523400056BIB036) 2006; 12 Reddy G. T. (S0218488523400056BIB040) 2017; 26 Safa M. (S0218488523400056BIB042) 2021 Magesh G. (S0218488523400056BIB039) 2021; 14 El-Shafiey M. G. (S0218488523400056BIB046) 2022; 81 Acharjya D. P. (S0218488523400056BIB043) 2020; 44 Irene D. S. (S0218488523400056BIB034) 2020; 143 Kumar P. (S0218488523400056BIB031); 1 Bharti R. (S0218488523400056BIB011) 2021; 2021 Mehmood A. (S0218488523400056BIB023) 2021; 46 Yekkala I. (S0218488523400056BIB029) 2018; 3 Javeed A. (S0218488523400056BIB022) 2020; 2020 Gárate-Escamila A. K. (S0218488523400056BIB008) 2020; 19 Elumalai A. (S0218488523400056BIB037) 2021 Al-Yarimi F. A. M. (S0218488523400056BIB045) 2021; 25 Ali S. A. (S0218488523400056BIB016) 2020; 8 Pasha S. J. (S0218488523400056BIB019) 2020; 8 Subhadra K. (S0218488523400056BIB003) 2019; 8 Zhang T. (S0218488523400056BIB030) 2014; 55 Soni J. (S0218488523400056BIB002) 2011; 17 Valarmathi R. (S0218488523400056BIB005) 2021; 70 Chang W. (S0218488523400056BIB015) 2019; 7 Reddy G. T. (S0218488523400056BIB044) 2020; 13 |
| References_xml | – volume: 44 start-page: 1 issue: 1 year: 2020 ident: S0218488523400056BIB021 publication-title: Journal of Medical Systems doi: 10.1007/s10916-019-1451-x – volume: 2018 year: 2018 ident: S0218488523400056BIB033 publication-title: Journal of Healthcare Engineering – volume: 143 start-page: 110072 year: 2020 ident: S0218488523400056BIB034 publication-title: Medical Hypotheses doi: 10.1016/j.mehy.2020.110072 – volume: 77 start-page: 10117 issue: 9 year: 2021 ident: S0218488523400056BIB027 publication-title: The Journal of Supercomputing doi: 10.1007/s11227-021-03677-9 – volume: 8 start-page: 65947 year: 2020 ident: S0218488523400056BIB016 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2985646 – volume: 7 start-page: 34938 year: 2019 ident: S0218488523400056BIB024 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2904800 – volume: 17 start-page: 847 issue: 6 year: 2020 ident: S0218488523400056BIB035 publication-title: Int. Arab J. Inf. Technol. – volume: 25 start-page: 1821 issue: 3 year: 2021 ident: S0218488523400056BIB045 publication-title: Soft Computing doi: 10.1007/s00500-020-05253-4 – volume: 47 start-page: 2159 issue: 2 year: 2022 ident: S0218488523400056BIB025 publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-021-06058-9 – volume: 7 start-page: 175248 year: 2019 ident: S0218488523400056BIB015 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2957367 – volume: 8 start-page: 210318 year: 2020 ident: S0218488523400056BIB018 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3039439 – volume: 8 start-page: 133034 year: 2020 ident: S0218488523400056BIB026 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3010511 – volume: 12 start-page: 447 issue: 6 year: 2006 ident: S0218488523400056BIB036 publication-title: Journal of Heuristics doi: 10.1007/s10732-006-7284-z – volume: 70 start-page: 103033 year: 2021 ident: S0218488523400056BIB005 publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2021.103033 – volume-title: k-Means: The Advantages of Careful Seeding year: 2006 ident: S0218488523400056BIB028 – volume: 26 issue: 4 year: 2017 ident: S0218488523400056BIB040 publication-title: Journal of Circuits, Systems and Computers doi: 10.1142/S021812661750061X – volume: 9 start-page: 19304 year: 2021 ident: S0218488523400056BIB048 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3053759 – volume: 14 start-page: 583 issue: 2 year: 2021 ident: S0218488523400056BIB039 publication-title: Evolutionary Intelligence doi: 10.1007/s12065-019-00336-0 – volume: 46 start-page: 3409 issue: 4 year: 2021 ident: S0218488523400056BIB023 publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-020-05105-1 – volume: 2 start-page: 1 issue: 2 year: 2021 ident: S0218488523400056BIB012 publication-title: SN Computer Science doi: 10.1007/s42979-021-00518-7 – volume: 6 start-page: 159 issue: 2 year: 2018 ident: S0218488523400056BIB032 publication-title: Big Data doi: 10.1089/big.2018.0023 – start-page: 1 year: 2021 ident: S0218488523400056BIB037 publication-title: Journal of Ambient Intelligence and Humanized Computing – volume: 14 start-page: e0225991 issue: 12 year: 2019 ident: S0218488523400056BIB004 publication-title: PLoS One doi: 10.1371/journal.pone.0225991 – start-page: 1 year: 2021 ident: S0218488523400056BIB042 publication-title: Wireless Personal Communications – year: 2021 ident: S0218488523400056BIB006 publication-title: Materials Today: Proceedings – volume: 7 start-page: 81542 year: 2019 ident: S0218488523400056BIB014 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923707 – volume: 1 start-page: 1 issue: 3 year: 2020 ident: S0218488523400056BIB010 publication-title: SN Computer Science doi: 10.1007/s42979-020-0097-6 – volume: 8 start-page: 184087 year: 2020 ident: S0218488523400056BIB019 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3028714 – volume: 20 start-page: 100402 year: 2020 ident: S0218488523400056BIB009 publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2020.100402 – volume: 2017 year: 2017 ident: S0218488523400056BIB038 publication-title: Computational and Mathematical Methods in Medicine – volume: 8 start-page: 484 issue: 5 year: 2019 ident: S0218488523400056BIB003 publication-title: International Journal of Innovative Technology and Exploring Engineering – volume: 55 start-page: 1805 issue: 8 year: 2014 ident: S0218488523400056BIB030 publication-title: International Journal of Approximate Reasoning doi: 10.1016/j.ijar.2014.05.004 – volume: 8 start-page: 157643 year: 2020 ident: S0218488523400056BIB017 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3015757 – volume: 17 start-page: 43 issue: 8 year: 2011 ident: S0218488523400056BIB002 publication-title: International Journal of Computer Applications doi: 10.5120/2237-2860 – volume: 1 start-page: 136 volume-title: Proceedings of CSIT: 2009 International Symposium on Computing, Communication, and Control (ISCCC 2009) ident: S0218488523400056BIB031 – volume: 13 start-page: 185 issue: 2 year: 2020 ident: S0218488523400056BIB044 publication-title: Evolutionary Intelligence doi: 10.1007/s12065-019-00327-1 – volume: 136 start-page: 104672 year: 2021 ident: S0218488523400056BIB001 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.104672 – volume: 3 start-page: 1 issue: 1 year: 2018 ident: S0218488523400056BIB029 publication-title: International Journal of Big Data and Analytics in Healthcare (IJBDAH) doi: 10.4018/IJBDAH.2018010101 – volume: 81 start-page: 18155 issue: 13 year: 2022 ident: S0218488523400056BIB046 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-022-12425-x – volume: 9 start-page: 39707 year: 2021 ident: S0218488523400056BIB020 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3064084 – start-page: 1 year: 2022 ident: S0218488523400056BIB047 publication-title: Neural Computing and Applications – volume: 2021 year: 2021 ident: S0218488523400056BIB011 publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2021/8387680 – volume: 19 start-page: 100330 year: 2020 ident: S0218488523400056BIB008 publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2020.100330 – volume: 2020 year: 2020 ident: S0218488523400056BIB022 publication-title: Mobile Information Systems doi: 10.1155/2020/8843115 – volume: 44 start-page: 1 issue: 1 year: 2020 ident: S0218488523400056BIB043 publication-title: Journal of Medical Systems doi: 10.1007/s10916-019-1451-x – volume: 17 start-page: 100257 year: 2019 ident: S0218488523400056BIB007 publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2019.100257 |
| SSID | ssj0003794 ssib019635265 |
| Score | 2.3290074 |
| Snippet | The clinical diagnosis of heart disease in most situations is based on a difficult amalgamation of pathological and clinical information. Because of this... |
| SourceID | proquest crossref worldscientific |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 65 |
| SubjectTerms | Algorithms Cardiovascular disease Clustering Data acquisition Forecasting Heart Heart diseases Hybrid structures Machine learning Mathematical models Modules Test procedures |
| Title | Hybrid MRK-Means + + RBM Model: An Efficient Heart Disease Predicting System Using ModifiedRoughK-Means + + Algorithm and Restricted Boltzmann Machine |
| URI | http://www.worldscientific.com/doi/abs/10.1142/S0218488523400056 https://www.proquest.com/docview/2834857262 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1793-6411 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0003794 issn: 0218-4885 databaseCode: AMVHM dateStart: 19930901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLZKd4HDgAGibCAfuEDlEjmJE3Nr0VAFBKGyod2qxHG2ojRFbXpYfwh_F15_1A3NhBiqGlVpYqt5n77fHwi9DNNcioj6pCh4SAKaRSTNU4_EKpRb8Iz7oSoUTj6z8Xnw4SK86HR-NbKW1nU2EJsb60r-h6pwDuiqqmRvQVm3KJyAz0BfOAKF4fhPNB5fq3qrfjL5SBIJMgfoONLvySjRU85K6_c71Y0iVNh_DMiuVc9NFZZRCRi5qglRXbl1S-e-SSGAe2cFKKcTNcNnf_FheblYzuqruS1uVJM_hFJcR4uy3szTqlLjjK62Afvvu1z5neux0bACBKtJSzDjCYr1ZqNT8bd5pc7rR5TEzW3vaWcKfFmmK9jSVrbNQbqW5az_ddD_NGikLgDYjSyBZ5kvU1Ccq1k1a7o8aCPB0DBWnWakeZ_Op2p67NpcFHQYAlzKhM6l4fLAlAgLLJe3YsAKIwN3NVLV7mgYOwsbKoIZ6dQWPgHV4W9lNcOG1A-URrzX6FurDq1r7qADCmLJ66KDYfJt7BxOij-aAQZWufAjPdvT_SobqIet37QW_VPV2tlPh7oZ78o9v4ZCdfYAHVpLCA8NrB-ijqyO0P3tlBFshc4Rupe4zsKrR-inwTx2mMd9eAHescb7WzyssEM71mjHFu14h3Zs0I412vFNaNfLOqRjACLeIR07pGOL9Mfo_P3p2bsxsbNFiKCUMyIZj_0iDrNICA9MBBoUnIlM8iLMQYMVKZc-B10-9BjnMuCg5oKh4gkmQiEpS_0nqFstKvkUYRZR-DIG26GQgQQDIGdxDlZFXlAucu71kLclw1TYxvtq_ks5NU0B6LRFuR567W75YbrO_O3iky1tp_bfu5qC1RDEYUQZ7aFXe_R2S7aWenaLa4_RXap8Tzqx9QR16-VaPgcFvc5eWBD_BqsU4GI |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+MRK-Means+%2B+%2B+RBM+Model%3A+An+Efficient+Heart+Disease+Predicting+System+Using+ModifiedRoughK-Means+%2B+%2B+Algorithm+and+Restricted+Boltzmann+Machine&rft.jtitle=International+journal+of+uncertainty%2C+fuzziness%2C+and+knowledge-based+systems&rft.au=Prasanna%2C+Kamepalli+S.+L.&rft.au=Challa%2C+Nagendra+Panini&rft.date=2023-05-01&rft.pub=World+Scientific+Publishing+Company&rft.issn=0218-4885&rft.eissn=1793-6411&rft.volume=31&rft.issue=Supp01&rft.spage=65&rft.epage=99&rft_id=info:doi/10.1142%2FS0218488523400056&rft.externalDocID=S0218488523400056 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0218-4885&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0218-4885&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0218-4885&client=summon |