Ordinary Smooth Topological Spaces
In this paper, we introduce the concept of ordinary smooth topology on a set X by considering the gradation of openness of ordinary subsets of X. And we obtain the result [Corollary 2.13] : An ordinary smooth topology is fully determined its decomposition in classical topologies. Also we introduce t...
Saved in:
Published in | INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol. 12; no. 1; pp. 66 - 76 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
한국지능시스템학회
2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1598-2645 2093-744X |
DOI | 10.5391/IJFIS.2012.12.1.66 |
Cover
Abstract | In this paper, we introduce the concept of ordinary smooth topology on a set X by considering the gradation of openness of ordinary subsets of X. And we obtain the result [Corollary 2.13] : An ordinary smooth topology is fully determined its decomposition in classical topologies. Also we introduce the notion of ordinary smooth [resp. strong and weak] continuity and study some its properties. Also we introduce the concepts of a base and a subbase in an ordinary smooth topological space and study their properties. Finally, we investigate some properties of an ordinary smooth subspace. |
---|---|
AbstractList | In this paper, we introduce the concept of ordinary smooth topology on a set X by considering the gradation of openness of ordinary subsets of X. And we obtain the result [Corollary 2.13] : An ordinary smooth topology is fully determined its decomposition in classical topologies. Also we introduce the notion of ordinary smooth [resp. strong and weak] continuity and study some its properties. Also we introduce the concepts of a base and a subbase in an ordinary smooth topological space and study their properties. Finally, we investigate some properties of an ordinary smooth subspace. In this paper, we introduce the concept of ordinary smooth topology on a set X by considering the gradation of openness of ordinary subsets of X. And we obtain the result [Corollary 2.13] : An ordinary smooth topology is fully determined its decomposition in classical topologies. Also we introduce the notion of ordinary smooth [resp. strong and weak] continuity and study some its properties. Also we introduce the concepts of a base and a subbase in an ordinary smooth topological space and study their properties. Finally, we investigate some properties of an ordinary smooth subspace. KCI Citation Count: 4 |
Author | Kul Hur Byeong Guk Ryoo Pyung Ki Lim |
Author_xml | – sequence: 1 givenname: Pyung-Ki surname: Lim fullname: Lim, Pyung-Ki – sequence: 2 givenname: Byeong-Guk surname: Ryoo fullname: Ryoo, Byeong-Guk – sequence: 3 givenname: Kul surname: Hur fullname: Hur, Kul |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001645793$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kM9LwzAUx4MoOOf-AU9DELy0Nj-aNMcxN-0cFtwEbyFN0xnWNSOpB_9702148CA8eIf3-bz3-F6B89a2GoAbmMQp5vAhX8zzVYwSiOK-YkrPwAAlHEeMkI9zMIApzyJESXoJRt6bMsEUsQxCOAC3hatMK933eLWztvscr-3eNnZjlGzGq71U2l-Di1o2Xo9OfQje57P19DlaFk_5dLKMFEKcRoplNeOSkAxrqTXBVGKKESepQlpxyXkpS14qoknFIAuPI6JIjZKyolwqiYfg_ri3dbXYKiOsNIe-sWLrxORtnQtKMwZRQO-O6Nb4zoi28o1YTF6KPoMwxoQHjJPAZUdOOeu907VQppOdsW3npGkETESfoDgkKHpb9BXOBBX9UffO7EJQ_0unv9qvAOvKyF_rtXicJTDDNMUM_wAsXH6c |
CitedBy_id | crossref_primary_10_5391_JKIIS_2012_22_6_799 crossref_primary_10_5391_JKIIS_2013_23_1_80 crossref_primary_10_3390_sym11091075 crossref_primary_10_5391_IJFIS_2014_14_3_231 crossref_primary_10_5831_HMJ_2012_34_4_559 crossref_primary_10_3390_sym12020193 |
Cites_doi | 10.1016/0165-0114(91)90100-5 10.1016/0165-0114(92)90329-3 10.1016/S0165-0114(98)00318-2 10.1016/0165-0114(92)90352-5 10.1016/0022-247X(80)90048-7 10.1016/0165-0114(93)90132-2 10.1016/0165-0114(93)90277-O 10.1016/0022-247X(68)90057-7 10.1016/0022-247X(76)90029-9 10.1016/0165-0114(92)90093-J |
ContentType | Journal Article |
DBID | DBRKI TDB AAYXX CITATION JDI ACYCR |
DEWEY | 006.3 |
DOI | 10.5391/IJFIS.2012.12.1.66 |
DatabaseName | DBPIA - 디비피아 Nurimedia DBPIA Journals CrossRef KoreaScience Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | Ordinary Smooth Topological Spaces |
EISSN | 2093-744X |
EndPage | 76 |
ExternalDocumentID | oai_kci_go_kr_ARTI_668712 JAKO201212334987194 10_5391_IJFIS_2012_12_1_66 NODE01836537 |
GroupedDBID | .UV ALMA_UNASSIGNED_HOLDINGS DBRKI TDB AAYXX CITATION JDI ACYCR |
ID | FETCH-LOGICAL-c2296-c78f79a4483eaee436a3632945c2ec9a99bab9bc4e4d71739124c4f20bd69aca3 |
ISSN | 1598-2645 |
IngestDate | Sun Mar 09 07:50:36 EDT 2025 Fri Dec 22 12:01:23 EST 2023 Tue Jul 01 01:49:39 EDT 2025 Thu Apr 24 23:02:25 EDT 2025 Thu Feb 06 13:17:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | ordinary smooth open [resp. closed] mapping ordinary smooth (co)topological space ordinary smooth subspace ordinary smooth base [resp. subbase] r-level and strong r-level ordinary smooth [resp. weak and strong] continuity ordinary smooth open [resp ordinary smooth base [resp subbase weak and strong] continuity ordinary smooth [resp closed] mapping |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2296-c78f79a4483eaee436a3632945c2ec9a99bab9bc4e4d71739124c4f20bd69aca3 |
Notes | KISTI1.1003/JNL.JAKO201212334987194 G704-001602.2012.12.1.010 |
OpenAccessLink | http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201212334987194&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_668712 kisti_ndsl_JAKO201212334987194 crossref_citationtrail_10_5391_IJFIS_2012_12_1_66 crossref_primary_10_5391_IJFIS_2012_12_1_66 nurimedia_primary_NODE01836537 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – year: 2012 text: 2012 |
PublicationDecade | 2010 |
PublicationTitle | INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS |
PublicationTitleAlternate | International journal of fuzzy logic and intelligent systems : IJFIS |
PublicationYear | 2012 |
Publisher | 한국지능시스템학회 |
Publisher_xml | – name: 한국지능시스템학회 |
References | (E1FLA5_2012_v12n1_66_002) 1992; 49 (E1FLA5_2012_v12n1_66_001) 1968; 24 (E1FLA5_2012_v12n1_66_004) 1992; 45 (E1FLA5_2012_v12n1_66_005) 1976; 56 (E1FLA5_2012_v12n1_66_007) 1980; 76 (E1FLA5_2012_v12n1_66_003) 1993; 54 (E1FLA5_2012_v12n1_66_008) 1992; 48 (E1FLA5_2012_v12n1_66_006) 1999; 104 (E1FLA5_2012_v12n1_66_009) 1991; 39 (E1FLA5_2012_v12n1_66_010) 1993; 55 |
References_xml | – volume: 39 start-page: 303 year: 1991 ident: E1FLA5_2012_v12n1_66_009 publication-title: Fuzzy sets and Systems doi: 10.1016/0165-0114(91)90100-5 – volume: 49 start-page: 237 year: 1992 ident: E1FLA5_2012_v12n1_66_002 publication-title: Fuzzy sets and Systems doi: 10.1016/0165-0114(92)90329-3 – volume: 104 start-page: 423 year: 1999 ident: E1FLA5_2012_v12n1_66_006 publication-title: Fuzzy sets and Systems doi: 10.1016/S0165-0114(98)00318-2 – volume: 48 start-page: 371 year: 1992 ident: E1FLA5_2012_v12n1_66_008 publication-title: Fuzzy sets and Systems doi: 10.1016/0165-0114(92)90352-5 – volume: 76 start-page: 571 year: 1980 ident: E1FLA5_2012_v12n1_66_007 publication-title: J.Math.Anal.Appl. doi: 10.1016/0022-247X(80)90048-7 – volume: 55 start-page: 193 year: 1993 ident: E1FLA5_2012_v12n1_66_010 publication-title: Fuzzy sets and Systems doi: 10.1016/0165-0114(93)90132-2 – volume: 54 start-page: 207 year: 1993 ident: E1FLA5_2012_v12n1_66_003 publication-title: Fuzzy sets and Systems doi: 10.1016/0165-0114(93)90277-O – volume: 24 start-page: 182 year: 1968 ident: E1FLA5_2012_v12n1_66_001 publication-title: J.Math.Anal.Appl. doi: 10.1016/0022-247X(68)90057-7 – volume: 56 start-page: 621 year: 1976 ident: E1FLA5_2012_v12n1_66_005 publication-title: J.Math.Anal.Appl doi: 10.1016/0022-247X(76)90029-9 – volume: 45 start-page: 79 year: 1992 ident: E1FLA5_2012_v12n1_66_004 publication-title: Fuzzy sets and Systems doi: 10.1016/0165-0114(92)90093-J |
SSID | ssib036278111 ssib053376760 ssib044740918 ssib005299754 |
Score | 1.7885529 |
Snippet | In this paper, we introduce the concept of ordinary smooth topology on a set X by considering the gradation of openness of ordinary subsets of X. And we obtain... |
SourceID | nrf kisti crossref nurimedia |
SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 66 |
SubjectTerms | 전기공학 |
Title | Ordinary Smooth Topological Spaces |
URI | https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE01836537 http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201212334987194&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001645793 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | International Journal of Fuzzy Logic and Intelligent systems, 2012, 12(1), , pp.66-76 |
journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2093-744X dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044740918 issn: 1598-2645 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9ow0GLtw_YybdqmsY-KTctTlC44jh0_BggFqsE0QGr7EiXGmRAMKgYP7GEP--W7iyFkbbUvCSXBnJ3k7rgP-85HyDsZcD8FP8BJReY6TCauk06462iRKclEoiYpruh-6PPOmPUu_ItK5UcpammzTk_VtzvzSv6HqtAGdMUs2X-gbDEoNMA10BeOQGE4_hWNB0DdPJ12-GUJGLdHpuJBjvfhNQZblW3PO3a_hTMYi-3x1dWlnVdFMOHBAAg-_lnUH9nDy-EoOkxcf9yCcLDPp5gYVXjyW40Fi842M_vTdrk8LA7N7c5mVZ5WqB_cTytqWdK3ZNOKQqvhW2HLippWKDDyImpYQWiFPrYEjRymmbcw7BWYXqa7zC9CK2iWpasMMKTOLGPrvI260nMEM2GahUimt1jPyFfOS5raFI65qQN8T6IO6Pba3SGG7lGc7q2f8hsbbucqvD9oRS4INe574h45pgKsFQz__B4dZBToa3EwuUDfY25uIRMZE-AhH_Q7WM-CC5Ocvn9bk6uFz_X-9lP9Yg8do9MwBTNnsYJv9xcbLPEAcqJk8owekYc7X6UWGsZ7TCp68YS83TNdzTBdrcR0NcN0T8m4HY2aHWdXaMNRlEruKBFkQibgqXs60Zp5PPG4RyXzFdVKJlKmSSpTxTSbYNSGBKNQsYy68LeWiUq8Z-RosVzo56SWuSoTE0W5yBKWZjqpaz-lQicZlVkw8aqkvn_dWO12ocdiKPMYvFFEUZyjKEYUxfiJOa8Su-hzbfZg-S30SY7FeDH5Oo974fkAfwUDzWMyEHXJquQNoDeeqWmMe6vj-fMynq1i8CC7MAAAURikQH5xzzK3vPgTwEvyAO9rZutekaP1aqNfg_26Tk9yBvsJA1yC-w |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ordinary+Smooth+Topological+Spaces&rft.jtitle=INTERNATIONAL+JOURNAL+of+FUZZY+LOGIC+and+INTELLIGENT+SYSTEMS&rft.au=Pyung+Ki+Lim&rft.au=Byeong+Guk+Ryoo&rft.au=Kul+Hur&rft.date=2012&rft.pub=%ED%95%9C%EA%B5%AD%EC%A7%80%EB%8A%A5%EC%8B%9C%EC%8A%A4%ED%85%9C%ED%95%99%ED%9A%8C&rft.issn=1598-2645&rft.eissn=2093-744X&rft.volume=12&rft.issue=1&rft.spage=66&rft.epage=76&rft_id=info:doi/10.5391%2FIJFIS.2012.12.1.66&rft.externalDocID=NODE01836537 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-2645&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-2645&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-2645&client=summon |