Ordinary Smooth Topological Spaces

In this paper, we introduce the concept of ordinary smooth topology on a set X by considering the gradation of openness of ordinary subsets of X. And we obtain the result [Corollary 2.13] : An ordinary smooth topology is fully determined its decomposition in classical topologies. Also we introduce t...

Full description

Saved in:
Bibliographic Details
Published inINTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol. 12; no. 1; pp. 66 - 76
Main Authors Lim, Pyung-Ki, Ryoo, Byeong-Guk, Hur, Kul
Format Journal Article
LanguageEnglish
Published 한국지능시스템학회 2012
Subjects
Online AccessGet full text
ISSN1598-2645
2093-744X
DOI10.5391/IJFIS.2012.12.1.66

Cover

Abstract In this paper, we introduce the concept of ordinary smooth topology on a set X by considering the gradation of openness of ordinary subsets of X. And we obtain the result [Corollary 2.13] : An ordinary smooth topology is fully determined its decomposition in classical topologies. Also we introduce the notion of ordinary smooth [resp. strong and weak] continuity and study some its properties. Also we introduce the concepts of a base and a subbase in an ordinary smooth topological space and study their properties. Finally, we investigate some properties of an ordinary smooth subspace.
AbstractList In this paper, we introduce the concept of ordinary smooth topology on a set X by considering the gradation of openness of ordinary subsets of X. And we obtain the result [Corollary 2.13] : An ordinary smooth topology is fully determined its decomposition in classical topologies. Also we introduce the notion of ordinary smooth [resp. strong and weak] continuity and study some its properties. Also we introduce the concepts of a base and a subbase in an ordinary smooth topological space and study their properties. Finally, we investigate some properties of an ordinary smooth subspace.
In this paper, we introduce the concept of ordinary smooth topology on a set X by considering the gradation of openness of ordinary subsets of X. And we obtain the result [Corollary 2.13] : An ordinary smooth topology is fully determined its decomposition in classical topologies. Also we introduce the notion of ordinary smooth [resp. strong and weak] continuity and study some its properties. Also we introduce the concepts of a base and a subbase in an ordinary smooth topological space and study their properties. Finally, we investigate some properties of an ordinary smooth subspace. KCI Citation Count: 4
Author Kul Hur
Byeong Guk Ryoo
Pyung Ki Lim
Author_xml – sequence: 1
  givenname: Pyung-Ki
  surname: Lim
  fullname: Lim, Pyung-Ki
– sequence: 2
  givenname: Byeong-Guk
  surname: Ryoo
  fullname: Ryoo, Byeong-Guk
– sequence: 3
  givenname: Kul
  surname: Hur
  fullname: Hur, Kul
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001645793$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kM9LwzAUx4MoOOf-AU9DELy0Nj-aNMcxN-0cFtwEbyFN0xnWNSOpB_9702148CA8eIf3-bz3-F6B89a2GoAbmMQp5vAhX8zzVYwSiOK-YkrPwAAlHEeMkI9zMIApzyJESXoJRt6bMsEUsQxCOAC3hatMK933eLWztvscr-3eNnZjlGzGq71U2l-Di1o2Xo9OfQje57P19DlaFk_5dLKMFEKcRoplNeOSkAxrqTXBVGKKESepQlpxyXkpS14qoknFIAuPI6JIjZKyolwqiYfg_ri3dbXYKiOsNIe-sWLrxORtnQtKMwZRQO-O6Nb4zoi28o1YTF6KPoMwxoQHjJPAZUdOOeu907VQppOdsW3npGkETESfoDgkKHpb9BXOBBX9UffO7EJQ_0unv9qvAOvKyF_rtXicJTDDNMUM_wAsXH6c
CitedBy_id crossref_primary_10_5391_JKIIS_2012_22_6_799
crossref_primary_10_5391_JKIIS_2013_23_1_80
crossref_primary_10_3390_sym11091075
crossref_primary_10_5391_IJFIS_2014_14_3_231
crossref_primary_10_5831_HMJ_2012_34_4_559
crossref_primary_10_3390_sym12020193
Cites_doi 10.1016/0165-0114(91)90100-5
10.1016/0165-0114(92)90329-3
10.1016/S0165-0114(98)00318-2
10.1016/0165-0114(92)90352-5
10.1016/0022-247X(80)90048-7
10.1016/0165-0114(93)90132-2
10.1016/0165-0114(93)90277-O
10.1016/0022-247X(68)90057-7
10.1016/0022-247X(76)90029-9
10.1016/0165-0114(92)90093-J
ContentType Journal Article
DBID DBRKI
TDB
AAYXX
CITATION
JDI
ACYCR
DEWEY 006.3
DOI 10.5391/IJFIS.2012.12.1.66
DatabaseName DBPIA - 디비피아
Nurimedia DBPIA Journals
CrossRef
KoreaScience
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Ordinary Smooth Topological Spaces
EISSN 2093-744X
EndPage 76
ExternalDocumentID oai_kci_go_kr_ARTI_668712
JAKO201212334987194
10_5391_IJFIS_2012_12_1_66
NODE01836537
GroupedDBID .UV
ALMA_UNASSIGNED_HOLDINGS
DBRKI
TDB
AAYXX
CITATION
JDI
ACYCR
ID FETCH-LOGICAL-c2296-c78f79a4483eaee436a3632945c2ec9a99bab9bc4e4d71739124c4f20bd69aca3
ISSN 1598-2645
IngestDate Sun Mar 09 07:50:36 EDT 2025
Fri Dec 22 12:01:23 EST 2023
Tue Jul 01 01:49:39 EDT 2025
Thu Apr 24 23:02:25 EDT 2025
Thu Feb 06 13:17:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ordinary smooth open [resp. closed] mapping
ordinary smooth (co)topological space
ordinary smooth subspace
ordinary smooth base [resp. subbase]
r-level and strong r-level
ordinary smooth [resp. weak and strong] continuity
ordinary smooth open [resp
ordinary smooth base [resp
subbase
weak and strong] continuity
ordinary smooth [resp
closed] mapping
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2296-c78f79a4483eaee436a3632945c2ec9a99bab9bc4e4d71739124c4f20bd69aca3
Notes KISTI1.1003/JNL.JAKO201212334987194
G704-001602.2012.12.1.010
OpenAccessLink http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201212334987194&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
PageCount 11
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_668712
kisti_ndsl_JAKO201212334987194
crossref_citationtrail_10_5391_IJFIS_2012_12_1_66
crossref_primary_10_5391_IJFIS_2012_12_1_66
nurimedia_primary_NODE01836537
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationTitle INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS
PublicationTitleAlternate International journal of fuzzy logic and intelligent systems : IJFIS
PublicationYear 2012
Publisher 한국지능시스템학회
Publisher_xml – name: 한국지능시스템학회
References (E1FLA5_2012_v12n1_66_002) 1992; 49
(E1FLA5_2012_v12n1_66_001) 1968; 24
(E1FLA5_2012_v12n1_66_004) 1992; 45
(E1FLA5_2012_v12n1_66_005) 1976; 56
(E1FLA5_2012_v12n1_66_007) 1980; 76
(E1FLA5_2012_v12n1_66_003) 1993; 54
(E1FLA5_2012_v12n1_66_008) 1992; 48
(E1FLA5_2012_v12n1_66_006) 1999; 104
(E1FLA5_2012_v12n1_66_009) 1991; 39
(E1FLA5_2012_v12n1_66_010) 1993; 55
References_xml – volume: 39
  start-page: 303
  year: 1991
  ident: E1FLA5_2012_v12n1_66_009
  publication-title: Fuzzy sets and Systems
  doi: 10.1016/0165-0114(91)90100-5
– volume: 49
  start-page: 237
  year: 1992
  ident: E1FLA5_2012_v12n1_66_002
  publication-title: Fuzzy sets and Systems
  doi: 10.1016/0165-0114(92)90329-3
– volume: 104
  start-page: 423
  year: 1999
  ident: E1FLA5_2012_v12n1_66_006
  publication-title: Fuzzy sets and Systems
  doi: 10.1016/S0165-0114(98)00318-2
– volume: 48
  start-page: 371
  year: 1992
  ident: E1FLA5_2012_v12n1_66_008
  publication-title: Fuzzy sets and Systems
  doi: 10.1016/0165-0114(92)90352-5
– volume: 76
  start-page: 571
  year: 1980
  ident: E1FLA5_2012_v12n1_66_007
  publication-title: J.Math.Anal.Appl.
  doi: 10.1016/0022-247X(80)90048-7
– volume: 55
  start-page: 193
  year: 1993
  ident: E1FLA5_2012_v12n1_66_010
  publication-title: Fuzzy sets and Systems
  doi: 10.1016/0165-0114(93)90132-2
– volume: 54
  start-page: 207
  year: 1993
  ident: E1FLA5_2012_v12n1_66_003
  publication-title: Fuzzy sets and Systems
  doi: 10.1016/0165-0114(93)90277-O
– volume: 24
  start-page: 182
  year: 1968
  ident: E1FLA5_2012_v12n1_66_001
  publication-title: J.Math.Anal.Appl.
  doi: 10.1016/0022-247X(68)90057-7
– volume: 56
  start-page: 621
  year: 1976
  ident: E1FLA5_2012_v12n1_66_005
  publication-title: J.Math.Anal.Appl
  doi: 10.1016/0022-247X(76)90029-9
– volume: 45
  start-page: 79
  year: 1992
  ident: E1FLA5_2012_v12n1_66_004
  publication-title: Fuzzy sets and Systems
  doi: 10.1016/0165-0114(92)90093-J
SSID ssib036278111
ssib053376760
ssib044740918
ssib005299754
Score 1.7885529
Snippet In this paper, we introduce the concept of ordinary smooth topology on a set X by considering the gradation of openness of ordinary subsets of X. And we obtain...
SourceID nrf
kisti
crossref
nurimedia
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 66
SubjectTerms 전기공학
Title Ordinary Smooth Topological Spaces
URI https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE01836537
http://click.ndsl.kr/servlet/LinkingDetailView?cn=JAKO201212334987194&dbt=JAKO&org_code=O481&site_code=SS1481&service_code=01
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001645793
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX International Journal of Fuzzy Logic and Intelligent systems, 2012, 12(1), , pp.66-76
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2093-744X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044740918
  issn: 1598-2645
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9ow0GLtw_YybdqmsY-KTctTlC44jh0_BggFqsE0QGr7EiXGmRAMKgYP7GEP--W7iyFkbbUvCSXBnJ3k7rgP-85HyDsZcD8FP8BJReY6TCauk06462iRKclEoiYpruh-6PPOmPUu_ItK5UcpammzTk_VtzvzSv6HqtAGdMUs2X-gbDEoNMA10BeOQGE4_hWNB0DdPJ12-GUJGLdHpuJBjvfhNQZblW3PO3a_hTMYi-3x1dWlnVdFMOHBAAg-_lnUH9nDy-EoOkxcf9yCcLDPp5gYVXjyW40Fi842M_vTdrk8LA7N7c5mVZ5WqB_cTytqWdK3ZNOKQqvhW2HLippWKDDyImpYQWiFPrYEjRymmbcw7BWYXqa7zC9CK2iWpasMMKTOLGPrvI260nMEM2GahUimt1jPyFfOS5raFI65qQN8T6IO6Pba3SGG7lGc7q2f8hsbbucqvD9oRS4INe574h45pgKsFQz__B4dZBToa3EwuUDfY25uIRMZE-AhH_Q7WM-CC5Ocvn9bk6uFz_X-9lP9Yg8do9MwBTNnsYJv9xcbLPEAcqJk8owekYc7X6UWGsZ7TCp68YS83TNdzTBdrcR0NcN0T8m4HY2aHWdXaMNRlEruKBFkQibgqXs60Zp5PPG4RyXzFdVKJlKmSSpTxTSbYNSGBKNQsYy68LeWiUq8Z-RosVzo56SWuSoTE0W5yBKWZjqpaz-lQicZlVkw8aqkvn_dWO12ocdiKPMYvFFEUZyjKEYUxfiJOa8Su-hzbfZg-S30SY7FeDH5Oo974fkAfwUDzWMyEHXJquQNoDeeqWmMe6vj-fMynq1i8CC7MAAAURikQH5xzzK3vPgTwEvyAO9rZutekaP1aqNfg_26Tk9yBvsJA1yC-w
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ordinary+Smooth+Topological+Spaces&rft.jtitle=INTERNATIONAL+JOURNAL+of+FUZZY+LOGIC+and+INTELLIGENT+SYSTEMS&rft.au=Pyung+Ki+Lim&rft.au=Byeong+Guk+Ryoo&rft.au=Kul+Hur&rft.date=2012&rft.pub=%ED%95%9C%EA%B5%AD%EC%A7%80%EB%8A%A5%EC%8B%9C%EC%8A%A4%ED%85%9C%ED%95%99%ED%9A%8C&rft.issn=1598-2645&rft.eissn=2093-744X&rft.volume=12&rft.issue=1&rft.spage=66&rft.epage=76&rft_id=info:doi/10.5391%2FIJFIS.2012.12.1.66&rft.externalDocID=NODE01836537
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-2645&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-2645&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-2645&client=summon