Improved Method Based on MPF for Multi-target Tracking

Particle filter algorithm is poor at consistently maintaining the multi-modality problem and remains particle degeneracy phenomenon. This shortcoming can be addressed through using Mixture Particle Filter (MPF) to model the target distribution as a non-parametric mixture model. According to computat...

Full description

Saved in:
Bibliographic Details
Published inAASRI procedia Vol. 3; pp. 177 - 183
Main Authors Lin, Qing, Yang, Yaping, Yin, Ying, Wang, Shitong, Liao, Dingan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2012
Subjects
Online AccessGet full text
ISSN2212-6716
2212-6724
2212-6724
DOI10.1016/j.aasri.2012.11.030

Cover

Abstract Particle filter algorithm is poor at consistently maintaining the multi-modality problem and remains particle degeneracy phenomenon. This shortcoming can be addressed through using Mixture Particle Filter (MPF) to model the target distribution as a non-parametric mixture model. According to computational complexity of the particle filter algorithm, Gaussian Particle Filter (GPF) is used. The particle set is obtained by sampling of Gaussian density function instead of re-sampling to improve the computing speed of particle filter algorithm. In this paper, combined with the advantages of GPF and MPF, GM-MPF algorithm is proposed to improve the real-time of MPF. The experimental results show that GM-MPF algorithm can effectively solve the problem of multi-modality, particle degradation and achieve real-time multi-target tracking.
AbstractList Particle filter algorithm is poor at consistently maintaining the multi-modality problem and remains particle degeneracy phenomenon. This shortcoming can be addressed through using Mixture Particle Filter (MPF) to model the target distribution as a non-parametric mixture model. According to computational complexity of the particle filter algorithm, Gaussian Particle Filter (GPF) is used. The particle set is obtained by sampling of Gaussian density function instead of re-sampling to improve the computing speed of particle filter algorithm. In this paper, combined with the advantages of GPF and MPF, GM-MPF algorithm is proposed to improve the real-time of MPF. The experimental results show that GM-MPF algorithm can effectively solve the problem of multi-modality, particle degradation and achieve real-time multi-target tracking.
Author Liao, Dingan
Yang, Yaping
Wang, Shitong
Lin, Qing
Yin, Ying
Author_xml – sequence: 1
  givenname: Qing
  surname: Lin
  fullname: Lin, Qing
  organization: School of Computer Science and Telecommunications Engineering, Jiangsu University, Zhenjiang, 212013, China
– sequence: 2
  givenname: Yaping
  surname: Yang
  fullname: Yang, Yaping
  email: xgkx06s003@126.com, jcs533@qq.com
  organization: School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing, 210094, China
– sequence: 3
  givenname: Ying
  surname: Yin
  fullname: Yin, Ying
  organization: School of Information Technology, Southern Yangtze University, Wuxi 214122, China
– sequence: 4
  givenname: Shitong
  surname: Wang
  fullname: Wang, Shitong
  organization: School of Computer Science and Telecommunications Engineering, Jiangsu University, Zhenjiang, 212013, China
– sequence: 5
  givenname: Dingan
  surname: Liao
  fullname: Liao, Dingan
  organization: School of Computer Science and Telecommunications Engineering, Jiangsu University, Zhenjiang, 212013, China
BookMark eNqNj01PwkAQhjdGExH5BV76B1p39qvtwYMSURKIHvC8WbZTXCxdslsw_HuLGI_GObwzc3je5Lki561vkZAboBlQULfrzJgYXMYosAwgo5yekQFjwFKVM3H-e4O6JKMY17SfXFBaiAFR0802-D1WyRy7d18lDyb2j2-T-eskqX1I5rumc2lnwgq7ZBGM_XDt6ppc1KaJOPrZQ_I2eVyMn9PZy9N0fD9LLWNFly4RcsF5JaGUHJe1lFhwa5VVtM9CcquEUVVRWiGkEKXgdVmropSlkIrnnA-JOPXu2q05fJqm0dvgNiYcNFB91Ndr_a2vj_oaQPf6PcZPmA0-xoD1P6m7E4W90d5h0NE6bC1WLqDtdOXdn_wX9BJ0aA
Cites_doi 10.1007/978-1-4757-3437-9
10.1115/1.3662552
10.1023/A:1008935410038
10.1109/TPAMI.2003.1195991
10.1109/TSP.2003.816758
10.1109/ICCV.2003.1238473
ContentType Journal Article
Copyright 2012 The Authors
Copyright_xml – notice: 2012 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.aasri.2012.11.030
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2212-6724
EndPage 183
ExternalDocumentID 10.1016/j.aasri.2012.11.030
10_1016_j_aasri_2012_11_030
S2212671612001898
GroupedDBID 0R~
0SF
4.4
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ADBBV
ADEZE
AEXQZ
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
HZ~
IXB
KQ8
M41
NCXOZ
O-L
O9-
OK1
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c228t-be17433d51953ebf55e83cc6c60cc6853c64a6d89c44544943f9f689594563733
IEDL.DBID UNPAY
ISSN 2212-6716
2212-6724
IngestDate Tue Aug 19 18:46:55 EDT 2025
Tue Jul 01 04:34:52 EDT 2025
Wed May 17 00:10:32 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Keywords Mixture Particle filter
Gaussian Particle Filtering
GM-MPF
Particle filter
Particle degradation
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
https://www.elsevier.com/tdm/userlicense/1.0
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c228t-be17433d51953ebf55e83cc6c60cc6853c64a6d89c44544943f9f689594563733
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.aasri.2012.11.030
PageCount 7
ParticipantIDs unpaywall_primary_10_1016_j_aasri_2012_11_030
crossref_primary_10_1016_j_aasri_2012_11_030
elsevier_sciencedirect_doi_10_1016_j_aasri_2012_11_030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012
2012-00-00
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationTitle AASRI procedia
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kotecha J H, Djuric P M, Gaussian particle filtering, J. IEEE Transactions on Signal Processing, 2003, 51(10): 2592-2601.
Vermaak J, Doucet A, Perez P, Maintaining multi-modality mixture tracking, C. Proceedings oftlie Ninth IEEE International Conference on Computer Vision, Nice, 2003: 1110-1116.
Doucet A, Godsill S, Andrieu C, On sequential monte carlo sampling methods for bayesian filtering, J. Statistics and Computing, 2000, 10(3): 197-208.
Li Peihua, Moving object tracking method in image sequences, M. Science Press.
Doucet, A, de Freitas, J.F. G., N.J. Gordon, editors: Sequential Monte Carlo Methods in Practice, M. Springer-Verlag, New York, 2001.
Comaniciu D, Ramesh V, Meer P, Kernel-based object tracking, J. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.
R.E. Kalman, A new approach to linear filtering and prediction problems, Transactions of the ASME—Journal of Basic Engineering, J. 1960, 82: 35-45.
Lin Qing, Xu Zliu, Wang Slii-Tong, Zlian Yong-Zliao, Moving Object Detection of Adaptive Gaussian Mixture on HSV, J Computer Science, 2010, 37(10): 254-256.
Information on littp://ftp.pets.rdg.ac.uk!PETS2001/.
10.1016/j.aasri.2012.11.030_bib0035
10.1016/j.aasri.2012.11.030_bib0025
10.1016/j.aasri.2012.11.030_bib0015
10.1016/j.aasri.2012.11.030_bib0005
10.1016/j.aasri.2012.11.030_bib0020
10.1016/j.aasri.2012.11.030_bib0010
10.1016/j.aasri.2012.11.030_bib0045
10.1016/j.aasri.2012.11.030_bib0040
10.1016/j.aasri.2012.11.030_bib0030
References_xml – reference: Comaniciu D, Ramesh V, Meer P, Kernel-based object tracking, J. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.
– reference: Doucet A, Godsill S, Andrieu C, On sequential monte carlo sampling methods for bayesian filtering, J. Statistics and Computing, 2000, 10(3): 197-208.
– reference: Kotecha J H, Djuric P M, Gaussian particle filtering, J. IEEE Transactions on Signal Processing, 2003, 51(10): 2592-2601.
– reference: Lin Qing, Xu Zliu, Wang Slii-Tong, Zlian Yong-Zliao, Moving Object Detection of Adaptive Gaussian Mixture on HSV, J Computer Science, 2010, 37(10): 254-256.
– reference: Information on littp://ftp.pets.rdg.ac.uk!PETS2001/.
– reference: Li Peihua, Moving object tracking method in image sequences, M. Science Press.
– reference: Doucet, A, de Freitas, J.F. G., N.J. Gordon, editors: Sequential Monte Carlo Methods in Practice, M. Springer-Verlag, New York, 2001.
– reference: R.E. Kalman, A new approach to linear filtering and prediction problems, Transactions of the ASME—Journal of Basic Engineering, J. 1960, 82: 35-45.
– reference: Vermaak J, Doucet A, Perez P, Maintaining multi-modality mixture tracking, C. Proceedings oftlie Ninth IEEE International Conference on Computer Vision, Nice, 2003: 1110-1116.
– ident: 10.1016/j.aasri.2012.11.030_bib0010
  doi: 10.1007/978-1-4757-3437-9
– ident: 10.1016/j.aasri.2012.11.030_bib0005
  doi: 10.1115/1.3662552
– ident: 10.1016/j.aasri.2012.11.030_bib0015
  doi: 10.1023/A:1008935410038
– ident: 10.1016/j.aasri.2012.11.030_bib0020
  doi: 10.1109/TPAMI.2003.1195991
– ident: 10.1016/j.aasri.2012.11.030_bib0025
– ident: 10.1016/j.aasri.2012.11.030_bib0030
  doi: 10.1109/TSP.2003.816758
– ident: 10.1016/j.aasri.2012.11.030_bib0035
  doi: 10.1109/ICCV.2003.1238473
– ident: 10.1016/j.aasri.2012.11.030_bib0040
– ident: 10.1016/j.aasri.2012.11.030_bib0045
SSID ssj0000740084
Score 1.7938358
Snippet Particle filter algorithm is poor at consistently maintaining the multi-modality problem and remains particle degeneracy phenomenon. This shortcoming can be...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 177
SubjectTerms Gaussian Particle Filtering
GM-MPF
Mixture Particle filter
Particle degradation
Particle filter
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lF72I9YH1RQ4eFIxtN9k0OdpiqUJF0EJvIZtNoFK2pQ_Ef-_MPkRBRLws7LIhy5fNfJPhmxlCLjpJ4qVsC-ZhwZkISjIbSc6CjhPnrQo8z3ofPcrhWDxM4kmN9KtcGJRVlra_sOm5tS6ftEo0W4vptPUcgdWV4O53UBakNCb8cqGwfcP9pPcZZwGKxJrx2GMO3mc4oCo-lMu8rF0tpyjxim6wmieqoX8mqK1NtrDvb3Y2-0JAg12yU3qO9Lb4uAap-WyPNMq9uaKXZQHpq30ii0iBT-ko7w9Ne0BVKZ1ndPQ0oOCl0jztlhUqcAp05TBgfkDGg7uX_pCV_RGYiyK1ZonH4wRPsUAM90mIY6-4c9LJNlyBh50UVqZKOyFiIbTgQQepdKzBa-Jdzg9JPZtn_ohQH2Alte0C3WvY0rF22oe020ki4WyQ7Sa5rkAxi6IMhqn0Ya8mx9AghnCgMIBhk8gKOPNtNQ0Y6t8Hsk-Y_zLR8X8nOiHbeFcEU05Jfb3c-DNwL9bJef7_fABHQ8nN
  priority: 102
  providerName: Elsevier
Title Improved Method Based on MPF for Multi-target Tracking
URI https://dx.doi.org/10.1016/j.aasri.2012.11.030
https://doi.org/10.1016/j.aasri.2012.11.030
UnpaywallVersion publishedVersion
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2212-6724
  dateEnd: 20141231
  omitProxy: true
  ssIdentifier: ssj0000740084
  issn: 2212-6716
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 2212-6724
  dateEnd: 20141231
  omitProxy: true
  ssIdentifier: ssj0000740084
  issn: 2212-6716
  databaseCode: IXB
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2212-6724
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000740084
  issn: 2212-6716
  databaseCode: AKRWK
  dateStart: 20120101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HTyp8wMnOnLwoGDG1qRpc9zEMR0bQxzOU0nTBNTRjX0g-tf70qaioqKX0kM_6Htpfr-XvPd7CJ0041hz3mBEg8MJMyEn0uOUGOHHSsvQ0KzqvT_g3RG7Hvtjp7Nta2E-7d9neVhSLuYPNgfLq1u5TQrxeZn7QLxLqDwaDFv3tn0cTMCEB1mjU3fusUJj6Pun_IRDG6t0Jl-e5WTyAWc6W3kB9yKTJ7TpJU_11TKuq9cv4o1__IRttOn4Jm7lA6SC1nS6gyruj17gUyc7fbaLeL6-oBPcz7pK4zYAXIKnKe4POxi4Lc6KdUmeO44B5JRdZt9Do87l7UWXuK4KRHleuCSxtkEITaysDNWx8X0dUqW44g04AnorziRPQqEY8xkTjBpheCh8AVyLBpTuo1I6TfUBwtqA_4UMgCQImAh8oYQ2SdCMPaak4Y0qOi9sHM1y8YyoyCp7jDKrRNYqEIZEYJUq4oUfIof_Oa5HYNLfbyTvXvvLiw7_ef0RKi3nK30M9GMZ11C51bu569XQ-tW4XXOD8A1b1dVi
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HupFrA-szxw8KBjbbh7dHG2xVO0WwRZ6W7LZBCplW_pA_PdO9lEURMTLHnYJWb5J5psM30wQumpGkRGiwYgBgxNmfUGUJyixkkfaKN_StOo9GIjeiD2N-biEOkUtjJNV5r4_8-mpt87f1HM06_PJpP7qgdcVEO43nSzIl_4W2mYcohNXxTdubxItwJGuaby7ZA4GEDei6D6U6ryUWi4mTuPl3bl2nk4O_TNDVdbJXH28q-n0CwN199BuHjri--zvqqhkkn1UzTfnEl_nHaRvDpDIUgUmxkF6QTRuA1fFeJbg4KWLIUzFad0tyWTgGPhKu4z5IRp1H4adHskvSCDa8_wViYw7T9DYdYihJrKcG59qLbRowBOIWAumROxLzRhnTDJqpRW-5BLCJtqi9AiVk1lijhE2FkwpVQv4XsKe5lJLY-NWM_KYVlY0aui2ACWcZ30wwkIg9hamGIYOQzhRhIBhDYkCuPCbOUPw1L8PJBuY_zLRyX8nukSV3jDoh_3HwfMp2nFfsszKGSqvFmtzDrHGKrpI19InjdvM8w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7SHjyp9YEVlRw8KJjSbh67OVaxFKGlBwv1tCTZBNSylj4Q_fVOdrOiolIvyx72wc5k832TzHyD0FlHaytEmxELDifMJYKoSFDiJNfGqsTRoup9MBT9Mbud8EnQ2fa1MF_274s8LKUW8wefgxW1vNwmhfi8LjgQ7xqqj4ej7r1vHwcTMBFx0eg0nEes0hj6-Sm_4dDmKp-p1xc1nX7Cmd52WcC9KOQJfXrJU2u11C3z9k28cc1P2EFbgW_ibjlAGmjD5ruoEf7oBT4PstMXe0iU6ws2w4OiqzS-AoDL8HOOB6MeBm6Li2JdUuaOYwA545fZ99G4d3N33SehqwIxUZQsibY-CKGZl5WhVjvObUKNEUa04QjobQRTIkukYYwzJhl10olEcglci8aUHqBa_pzbQ4StA_9LFQNJkDARcGmkdVnc0REzyol2E11WNk5npXhGWmWVPaaFVVJvFQhDUrBKE4nKD2nA_xLXUzDp3zeSD6-t86Kjf15_jGrL-cqeAP1Y6tMw7N4BxYLSuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Method+Based+on+MPF+for+Multi-target+Tracking&rft.jtitle=AASRI+procedia&rft.au=Lin%2C+Qing&rft.au=Yang%2C+Yaping&rft.au=Yin%2C+Ying&rft.au=Wang%2C+Shitong&rft.date=2012&rft.issn=2212-6716&rft.volume=3&rft.spage=177&rft.epage=183&rft_id=info:doi/10.1016%2Fj.aasri.2012.11.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aasri_2012_11_030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-6716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-6716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-6716&client=summon