In vivo and In vitro Crosstalk Among CBD, Aβ, and endocannabinoid system enzymes and receptors

Cannabidiol (CBD), a non-psychotropic compound derived from Cannabis sativa, has garnered attention as a potential therapeutic agent for various neurodegenerative diseases, including Alzheimer's disease (AD). Despite growing interest, additional research is required to clarify the specific mech...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of pharmacology Vol. 1000; p. 177720
Main Authors Duan, Fangyuan, Xiao, Dan, Wang, Jiayu, Li, Runze, Si, Xiaoyue, Lu, Weihong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 05.08.2025
Subjects
Online AccessGet full text
ISSN0014-2999
1879-0712
1879-0712
DOI10.1016/j.ejphar.2025.177720

Cover

More Information
Summary:Cannabidiol (CBD), a non-psychotropic compound derived from Cannabis sativa, has garnered attention as a potential therapeutic agent for various neurodegenerative diseases, including Alzheimer's disease (AD). Despite growing interest, additional research is required to clarify the specific mechanisms by which CBD influences the pathological accumulation of β-amyloid (Aβ) associated with AD. Moreover, the interactions between CBD and the endocannabinoid system (ECS), both in the presence and absence of Aβ expression, remain a subject of active investigation. Elucidating these mechanisms may provide valuable insights for advancing both our understanding and the development of targeted interventions in neurodegenerative disease management. Using a multifaceted approach that integrates pharmacological interventions, immunofluorescence imaging, flow cytometry, and biochemical assays, we examined the effects of CBD on Aβ40 and Aβ42. Additionally, we analyzed the modulation of cannabinoid receptor 1(CB1 receptor) and fatty acid amide hydrolase (FAAH) in the presence or absence of Aβ expression, uncovering the intricate regulatory mechanisms of CBD. Our findings indicate a nuanced response to CBD; while it may produce side effects in non-pathological cells, it demonstrates an ability to induce autophagy and apoptosis in Aβ-expressing cells via the activation of the Microtubule-associated protein 1 light chain 3 B(LC3B) and Caspase-3 pathways. Furthermore, our investigation into faah-1 involvement highlighted its role in alleviating pharyngeal dysfunction and counteracting weight loss in Aβ-expressing Caenorhabditis elegans(C. elegans) strains. These insights advance our understanding of CBD's therapeutic potential in addressing neurodegenerative pathologies. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0014-2999
1879-0712
1879-0712
DOI:10.1016/j.ejphar.2025.177720