Elliptic Schrödinger Equations with Gradient-Dependent Nonlinearity and Hardy Potential Singular on Manifolds

Let Ω⊂RN (N≥3) be a C2 bounded domain and Σ⊂Ω is a C2 compact boundaryless submanifold in RN of dimension k, 0≤k<N-2. For μ≤(N-k-22)2, put Lμ:=Δ+μdΣ-2 where dΣ(x)=dist(x,Σ). We study boundary value problems for equation -Lμu=g(u,|∇u|) in Ω\Σ, subject to the boundary condition u=ν on ∂Ω∪Σ, where g...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of geometric analysis Vol. 35; no. 7
Main Authors Gkikas, Konstantinos T., Nguyen, Phuoc-Tai
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 01.07.2025
Subjects
Online AccessGet full text
ISSN1050-6926
1559-002X
DOI10.1007/s12220-025-02046-9

Cover

Abstract Let Ω⊂RN (N≥3) be a C2 bounded domain and Σ⊂Ω is a C2 compact boundaryless submanifold in RN of dimension k, 0≤k<N-2. For μ≤(N-k-22)2, put Lμ:=Δ+μdΣ-2 where dΣ(x)=dist(x,Σ). We study boundary value problems for equation -Lμu=g(u,|∇u|) in Ω\Σ, subject to the boundary condition u=ν on ∂Ω∪Σ, where g:R×R+→R+ is a continuous and nondecreasing function with g(0,0)=0, ν is a given nonnegative measure on ∂Ω∪Σ. When g satisfies a so-called subcritical integral condition, we establish an existence result for the problem under a smallness assumption on ν. If g(u,|∇u|)=|u|p|∇u|q, there are ranges of p, q, called subcritical ranges, for which the subcritical integral condition is satisfied, hence the problem admits a solution. Beyond these ranges, where the subcritical integral condition may be violated, we establish various criteria on ν for the existence of a solution to the problem expressed in terms of appropriate Bessel capacities.
AbstractList Let Ω⊂RN (N≥3) be a C2 bounded domain and Σ⊂Ω is a C2 compact boundaryless submanifold in RN of dimension k, 0≤k<N-2. For μ≤(N-k-22)2, put Lμ:=Δ+μdΣ-2 where dΣ(x)=dist(x,Σ). We study boundary value problems for equation -Lμu=g(u,|∇u|) in Ω\Σ, subject to the boundary condition u=ν on ∂Ω∪Σ, where g:R×R+→R+ is a continuous and nondecreasing function with g(0,0)=0, ν is a given nonnegative measure on ∂Ω∪Σ. When g satisfies a so-called subcritical integral condition, we establish an existence result for the problem under a smallness assumption on ν. If g(u,|∇u|)=|u|p|∇u|q, there are ranges of p, q, called subcritical ranges, for which the subcritical integral condition is satisfied, hence the problem admits a solution. Beyond these ranges, where the subcritical integral condition may be violated, we establish various criteria on ν for the existence of a solution to the problem expressed in terms of appropriate Bessel capacities.
ArticleNumber 212
Author Nguyen, Phuoc-Tai
Gkikas, Konstantinos T.
Author_xml – sequence: 1
  givenname: Konstantinos T.
  surname: Gkikas
  fullname: Gkikas, Konstantinos T.
– sequence: 2
  givenname: Phuoc-Tai
  surname: Nguyen
  fullname: Nguyen, Phuoc-Tai
BookMark eNotkN1KAzEQhYMo2FZfwKuA16uT7E-6l1JrK9QfqIJ3IZtkbcqabJMs0hfzBXwxo_VimANzOMP5xujYOqsRuiBwRQDYdSCUUsiAlmmgqLL6CI1IWdYZAH07ThpKyKqaVqdoHMIWkicv2AjZedeZPhqJ13Ljv7-Use_a4_luENE4G_CniRu88EIZbWN2q3ttVVL40dnOWC28iXssrMJL4dUeP7uYrkZ0eJ2Shk547Cx-ENa0rlPhDJ20ogv6_H9P0Ovd_GW2zFZPi_vZzSqTlE5jVleC1XRaKi0p0Uy2LRO6EKohLbRlXstKCdGKiklVF8AYaNbIKaimYU1TEpZP0OUht_duN-gQ-dYN3qaXPKckVc8hp8lFDy7pXQhet7z35kP4PSfAf7nyA1eeuPI_rrzOfwBpYXBT
Cites_doi 10.1007/s00030-024-01018-2
10.1007/978-3-662-03282-4
10.1515/anona-2022-0320
10.2140/apde.2015.8.1931
10.1112/jlms.12844
10.1016/j.jfa.2015.06.020
10.3934/dcds.2018126
10.1515/ans-2019-2070
10.57262/ade/1356651686
10.1080/03605300500394439
10.1215/00127094-2018-0067
10.4171/jems/12
10.1007/s00526-021-02102-6
10.4171/rmi/281
10.1515/ans-2020-2073
10.1016/j.jfa.2012.09.021
10.1016/j.na.2023.113403
10.1090/S0002-9947-03-03389-0
10.1017/S0308210500002286
10.1007/s00208-019-01872-x
10.1090/S0002-9947-99-02215-1
10.1016/j.matpur.2013.11.011
ContentType Journal Article
Copyright Mathematica Josephina, Inc. 2025.
Copyright_xml – notice: Mathematica Josephina, Inc. 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s12220-025-02046-9
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1559-002X
ExternalDocumentID 10_1007_s12220_025_02046_9
GroupedDBID -Y2
-~X
.86
.VR
06D
0R~
0VY
199
1N0
2.D
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYXX
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGWIL
AGWZB
AGYKE
AHAVH
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
CITATION
COF
CS3
CSCUP
D-I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
IAO
IGS
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJN
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WH7
WK8
YLTOR
Z45
ZMTXR
ZWQNP
JQ2
ID FETCH-LOGICAL-c228t-96a79285dec21e7cff7ae4adb1f0f539c6daafa67cd940770e7bc80dbb7bb5173
ISSN 1050-6926
IngestDate Thu Sep 25 00:55:46 EDT 2025
Wed Oct 01 05:28:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-96a79285dec21e7cff7ae4adb1f0f539c6daafa67cd940770e7bc80dbb7bb5173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3216343032
PQPubID 2043891
ParticipantIDs proquest_journals_3216343032
crossref_primary_10_1007_s12220_025_02046_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Journal of geometric analysis
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References M-F Bidaut-Véron (2046_CR4) 2019; 168
M-F Bidaut-Véron (2046_CR7) 2014; 102
MF Bidaut-Véron (2046_CR8) 2000; 16
L Dupaigne (2046_CR13) 2002; 7
G Barbatis (2046_CR3) 2004; 356
2046_CR9
R Filippucci (2046_CR16) 2020; 20
2046_CR19
DR Adams (2046_CR1) 1996
H Chen (2046_CR10) 2018; 38
MM Fall (2046_CR14) 2013; 264
M-F Bidaut-Véron (2046_CR5) 2020; 378
KT Gkikas (2046_CR18) 2020; 20
J Dávila (2046_CR12) 2004; 6
NJ Kalton (2046_CR17) 1999; 351
2046_CR22
2046_CR23
J Ching (2046_CR2) 2015; 8
2046_CR20
2046_CR21
J Dávila (2046_CR11) 2003; 133
V Felli (2046_CR15) 2006; 31
M-F Bidaut-Véron (2046_CR6) 2015; 269
References_xml – ident: 2046_CR22
  doi: 10.1007/s00030-024-01018-2
– volume-title: Function Spaces and Potential Theory
  year: 1996
  ident: 2046_CR1
  doi: 10.1007/978-3-662-03282-4
– ident: 2046_CR9
  doi: 10.1515/anona-2022-0320
– volume: 8
  start-page: 1931
  year: 2015
  ident: 2046_CR2
  publication-title: Anal. PDE
  doi: 10.2140/apde.2015.8.1931
– ident: 2046_CR20
  doi: 10.1112/jlms.12844
– volume: 269
  start-page: 1995
  year: 2015
  ident: 2046_CR6
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2015.06.020
– volume: 38
  start-page: 2945
  year: 2018
  ident: 2046_CR10
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2018126
– volume: 20
  start-page: 245
  year: 2020
  ident: 2046_CR16
  publication-title: Adv. Nonlinear Stud.
  doi: 10.1515/ans-2019-2070
– ident: 2046_CR23
– volume: 7
  start-page: 973
  year: 2002
  ident: 2046_CR13
  publication-title: Adv. Differential Equations
  doi: 10.57262/ade/1356651686
– volume: 31
  start-page: 469
  issue: 1–3
  year: 2006
  ident: 2046_CR15
  publication-title: Comm. Partial Differential Equations
  doi: 10.1080/03605300500394439
– volume: 168
  start-page: 1487
  issue: 8
  year: 2019
  ident: 2046_CR4
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2018-0067
– volume: 6
  start-page: 335
  year: 2004
  ident: 2046_CR12
  publication-title: J. Eur. Math. Soc.
  doi: 10.4171/jems/12
– ident: 2046_CR19
  doi: 10.1007/s00526-021-02102-6
– volume: 16
  start-page: 477
  year: 2000
  ident: 2046_CR8
  publication-title: Rev. Mat. Iberoamericana
  doi: 10.4171/rmi/281
– volume: 20
  start-page: 399
  issue: 2
  year: 2020
  ident: 2046_CR18
  publication-title: Adv. Nonlinear Stud.
  doi: 10.1515/ans-2020-2073
– volume: 264
  start-page: 661
  year: 2013
  ident: 2046_CR14
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2012.09.021
– ident: 2046_CR21
  doi: 10.1016/j.na.2023.113403
– volume: 356
  start-page: 2169
  year: 2004
  ident: 2046_CR3
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-03-03389-0
– volume: 133
  start-page: 61
  year: 2003
  ident: 2046_CR11
  publication-title: Proc. Roy. Soc. Edinburgh Sect. A
  doi: 10.1017/S0308210500002286
– volume: 378
  start-page: 13
  year: 2020
  ident: 2046_CR5
  publication-title: Math. Ann.
  doi: 10.1007/s00208-019-01872-x
– volume: 351
  start-page: 3441
  year: 1999
  ident: 2046_CR17
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-99-02215-1
– volume: 102
  start-page: 315
  year: 2014
  ident: 2046_CR7
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2013.11.011
SSID ssj0046347
Score 2.3641076
Snippet Let Ω⊂RN (N≥3) be a C2 bounded domain and Σ⊂Ω is a C2 compact boundaryless submanifold in RN of dimension k, 0≤k<N-2. For μ≤(N-k-22)2, put Lμ:=Δ+μdΣ-2 where...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Boundary conditions
Boundary value problems
Elliptic functions
Manifolds (mathematics)
Schrodinger equation
Title Elliptic Schrödinger Equations with Gradient-Dependent Nonlinearity and Hardy Potential Singular on Manifolds
URI https://www.proquest.com/docview/3216343032
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1559-002X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046347
  issn: 1050-6926
  databaseCode: AFBBN
  dateStart: 19910301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1559-002X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0046347
  issn: 1050-6926
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1559-002X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0046347
  issn: 1050-6926
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2F9MKFb0ShoD0gLtEiZ22vvccGEipoQyUSKTfLu95toxY7bWwJ-GH8Af4Ysx92EqgQcLEiR3KsmZfZtztvZhB6SXMecsYlUVTkBPYbnKRREREdymGgYZFV2hwNnEzZ0Tx6v4gXvd6XLdVSU4vX8tuNdSX_41W4B341VbL_4NnuoXADPoN_4Qoehutf-dgILlam4-oneW5T3iNWuMaC46vGa9zsQeu7a6vsqslbP_O2Hkxdj4zcDK-zGQSbwx-cVrXRD5keIfAkq1EFfJzk5VJXl64ouOWym6oyy2fPVPXZjOcy_V9do5NO23OxvHB1Yx8cG62XZbXeyLNPz5tKkpkbjD09a7768jR_GEHjTri6exhplNYm_9EVy9jYGsSwU-XUd7728TbmBILyYjsgu_4lHnjJjXE-8HXPwG4CYt-Dwkaf8M2q1mbypx-zyfz4OJuNF7NXqyti5o2ZvLwfvnIL7dGEMdpHe4eT0WjaruIRC-1wuu6lfcGVK7v89Wd3Sc3umm6JyuweuuM9gg8dXO6jniofoLt-t4F9LF8_RGWLHmzQ8-O7Qw7ukIMNcvDvyMHbyMGAHGyRgzvk4BY5uCpxh5xHaD4Zz94cET99g0hK05pwliecpnGhJB2qRGqd5CrKCzHUgY5DLlmR5zpniSx4FCRJoBIh06AQIhEiHibhY9Qvq1I9QThlIgw4EG-dhpHmSjDgnREQ11QxGeZ6Hw1a82Ur12Ql27TTNsbOwNiZNXbG99FBa-HM_xnXWUhhYxEBH6NP__z1M3R7A9wD1K-vG_UceGUtXngI_ARHYX3N
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elliptic+Schr%C3%B6dinger+Equations+with+Gradient-Dependent+Nonlinearity+and+Hardy+Potential+Singular+on+Manifolds&rft.jtitle=The+Journal+of+geometric+analysis&rft.au=Gkikas%2C+Konstantinos+T&rft.au=Phuoc-Tai%2C+Nguyen&rft.date=2025-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1050-6926&rft.eissn=1559-002X&rft.volume=35&rft.issue=7&rft_id=info:doi/10.1007%2Fs12220-025-02046-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-6926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-6926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-6926&client=summon