Multi‐Fatigue Feature Selection and Fuzzy Logic‐Based Intelligent Driver Drowsiness Detection

Driver drowsiness poses a critical threat, frequently resulting in highly perilous traffic accidents. The drowsiness detection is complicated by various challenges such as lighting conditions, occluded facial features, eyeglasses, and false alarms, making the accuracy, robustness across environments...

Full description

Saved in:
Bibliographic Details
Published inIET image processing Vol. 19; no. 1
Main Authors Arava, Mohan, Sundaram, Divya Meena
Format Journal Article
LanguageEnglish
Published 01.01.2025
Online AccessGet full text
ISSN1751-9659
1751-9667
1751-9667
DOI10.1049/ipr2.70052

Cover

Abstract Driver drowsiness poses a critical threat, frequently resulting in highly perilous traffic accidents. The drowsiness detection is complicated by various challenges such as lighting conditions, occluded facial features, eyeglasses, and false alarms, making the accuracy, robustness across environments, and computational efficiency a major challenge. This study proposes a non‐intrusive driver drowsiness detection system, leveraging image processing techniques and advanced fuzzy logic methods. It also introduces improvements to the Viola‐Jones algorithm for swift and precise driver face, eye, and mouth identification. Extensive experiments involving diverse individuals and scenarios were conducted to assess the system's performance in detecting eye and mouth states. The results are highly promising, with eye detection accuracy at 91.8% and mouth detection achieving a remarkable 94.6%, surpassing existing methods. Real‐time testing in varied conditions, including day and night scenarios and subjects with and without glasses, demonstrated the system's robustness, yielding a 97.5% test accuracy in driver drowsiness detection.
AbstractList Driver drowsiness poses a critical threat, frequently resulting in highly perilous traffic accidents. The drowsiness detection is complicated by various challenges such as lighting conditions, occluded facial features, eyeglasses, and false alarms, making the accuracy, robustness across environments, and computational efficiency a major challenge. This study proposes a non‐intrusive driver drowsiness detection system, leveraging image processing techniques and advanced fuzzy logic methods. It also introduces improvements to the Viola‐Jones algorithm for swift and precise driver face, eye, and mouth identification. Extensive experiments involving diverse individuals and scenarios were conducted to assess the system's performance in detecting eye and mouth states. The results are highly promising, with eye detection accuracy at 91.8% and mouth detection achieving a remarkable 94.6%, surpassing existing methods. Real‐time testing in varied conditions, including day and night scenarios and subjects with and without glasses, demonstrated the system's robustness, yielding a 97.5% test accuracy in driver drowsiness detection.
Author Arava, Mohan
Sundaram, Divya Meena
Author_xml – sequence: 1
  givenname: Mohan
  surname: Arava
  fullname: Arava, Mohan
  organization: School of Computer Science and Engineering VIT‐AP University Amaravati India
– sequence: 2
  givenname: Divya Meena
  orcidid: 0000-0002-5256-5076
  surname: Sundaram
  fullname: Sundaram, Divya Meena
  organization: School of Computer Science and Engineering VIT‐AP University Amaravati India
BookMark eNp9kDFOwzAYhS1UJNrCwgk8g1JsJ07sEVoClYoYgDly7T-VUXAq26FqJ47AGTkJKUWMTO8N33vDN0ID1zpA6JySCSWZvLJrzyYFIZwdoSEtOE1knheDv87lCRqF8NoTkgg-ROqha6L9-vgsVbSrDnAJKnYe8BM0oKNtHVbO4LLb7bZ40a6s7tkbFcDguYvQNHYFLuKZt-_g-2g3wToIAc8gHvan6LhWTYCz3xyjl_L2eXqfLB7v5tPrRaIZEzGRJNfGUCGZlrXKmSJFAZTnWZoypUwhpNZLYgqdpiajggLPuGEglkIQQWSdjtHl4bdza7XdqKap1t6-Kb-tKKn2dqq9nerHTk9fHGjt2xA81P_B330gat0
Cites_doi 10.1109/TIV.2023.3321891
10.1016/j.ijnurstu.2020.103600
10.1016/j.asoc.2014.01.020
10.1016/j.mlwa.2023.100510
10.1109/ICSMC.2010.5641788
10.1016/j.inffus.2017.11.005
10.3390/safety6040055
10.1109/TMM.2020.2985536
10.1177/1748006X221118448
10.1109/TMM.2021.3128738
10.1109/TITS.2018.2868499
10.1109/ICUFN49451.2021.9528706
10.3390/brainsci11020240
10.1109/ACCESS.2023.3287491
10.1016/j.comnet.2018.06.007
10.1016/B978-0-12-815739-8.00010-9
10.1109/TITS.2023.3304128
10.1016/j.neucom.2023.126709
10.1101/2023.12.21.23300419
10.1007/978-3-030-03801-4_38
10.3390/wevj15030099
10.1080/15389588.2019.1706088
10.1049/cvi2.12252
10.1016/j.jshs.2023.09.010
10.1016/j.aap.2020.105955
10.3390/s16111805
10.1117/1.JRS.14.026521
10.3390/s21062026
10.1109/CVPRW.2019.00027
10.1109/TITS.2023.3346054
10.1016/j.aej.2023.01.017
10.1109/TNSRE.2021.3051958
10.3390/s20154093
10.36227/techrxiv.24428014.v1
10.1007/s11571-022-09898-9
10.1007/s12652-021-03311-9
10.3390/s23041874
10.1007/s12193-023-00408-7
10.7717/peerj.15744
10.1109/TIV.2024.3405990
10.1063/5.0212719
10.1109/iFUZZY63051.2024.10661369
10.3390/s21165558
10.7717/peerj‐cs.2447
10.1007/s00521-023-09224-2
10.1109/ACCESS.2024.3424654
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1049/ipr2.70052
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
ExternalDocumentID 10.1049/ipr2.70052
10_1049_ipr2_70052
GroupedDBID .DC
0R~
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
8VB
AAHJG
AAJGR
AAMMB
AAYXX
ABJCF
ABQXS
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
AEFGJ
AENEX
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IDLOA
IPLJI
ITC
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OK1
P2P
P62
PHGZM
PHGZT
PQGLB
PTHSS
QWB
RNS
ROL
RUI
S0W
WIN
ZL0
ADTOC
UNPAY
ID FETCH-LOGICAL-c228t-906cdd1892c9fa62a077e1564332aad789ccb0d7c33d4181e545d2e8b880809f3
IEDL.DBID UNPAY
ISSN 1751-9659
1751-9667
IngestDate Tue Aug 19 23:36:39 EDT 2025
Wed Oct 29 21:47:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c228t-906cdd1892c9fa62a077e1564332aad789ccb0d7c33d4181e545d2e8b880809f3
ORCID 0000-0002-5256-5076
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ipr2.70052
ParticipantIDs unpaywall_primary_10_1049_ipr2_70052
crossref_primary_10_1049_ipr2_70052
PublicationCentury 2000
PublicationDate 2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-00
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2025
References e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
Bakishev K. A. (e_1_2_9_3_1) 2017; 8
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
Arava M. (e_1_2_9_25_1) 2024; 12
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Abtahi S. (e_1_2_9_52_1) 2020
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
Min J. (e_1_2_9_21_1) 2023; 35
AlKishri W. (e_1_2_9_2_1) 2022
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_36_1
  doi: 10.1109/TIV.2023.3321891
– ident: e_1_2_9_8_1
  doi: 10.1016/j.ijnurstu.2020.103600
– ident: e_1_2_9_44_1
  doi: 10.1016/j.asoc.2014.01.020
– ident: e_1_2_9_18_1
  doi: 10.1016/j.mlwa.2023.100510
– ident: e_1_2_9_45_1
  doi: 10.1109/ICSMC.2010.5641788
– ident: e_1_2_9_6_1
  doi: 10.1016/j.inffus.2017.11.005
– ident: e_1_2_9_9_1
  doi: 10.3390/safety6040055
– ident: e_1_2_9_12_1
  doi: 10.1109/TMM.2020.2985536
– ident: e_1_2_9_13_1
  doi: 10.1177/1748006X221118448
– ident: e_1_2_9_23_1
  doi: 10.1109/TMM.2021.3128738
– ident: e_1_2_9_14_1
  doi: 10.1109/TITS.2018.2868499
– ident: e_1_2_9_42_1
  doi: 10.1109/ICUFN49451.2021.9528706
– ident: e_1_2_9_47_1
  doi: 10.3390/brainsci11020240
– ident: e_1_2_9_37_1
  doi: 10.1109/ACCESS.2023.3287491
– ident: e_1_2_9_43_1
  doi: 10.1016/j.comnet.2018.06.007
– ident: e_1_2_9_17_1
  doi: 10.1016/B978-0-12-815739-8.00010-9
– ident: e_1_2_9_32_1
  doi: 10.1109/TITS.2023.3304128
– ident: e_1_2_9_29_1
  doi: 10.1016/j.neucom.2023.126709
– ident: e_1_2_9_7_1
  doi: 10.1101/2023.12.21.23300419
– year: 2022
  ident: e_1_2_9_2_1
  article-title: Enhanced Image Processing and Fuzzy Logic Approach for Optimizing Driver Drowsiness Detection
  publication-title: Applied Computational Intelligence and Soft Computing
– ident: e_1_2_9_50_1
  doi: 10.1007/978-3-030-03801-4_38
– ident: e_1_2_9_38_1
  doi: 10.3390/wevj15030099
– ident: e_1_2_9_10_1
  doi: 10.1080/15389588.2019.1706088
– ident: e_1_2_9_40_1
  doi: 10.1049/cvi2.12252
– volume: 35
  start-page: 8859
  issue: 12
  year: 2023
  ident: e_1_2_9_21_1
  article-title: Fusion of Forehead EEG with Machine Vision for Real‐Time Fatigue Detection in an Automatic Processing Pipeline
  publication-title: Neural Computing and Applications
– ident: e_1_2_9_19_1
  doi: 10.1016/j.jshs.2023.09.010
– ident: e_1_2_9_4_1
  doi: 10.1016/j.aap.2020.105955
– ident: e_1_2_9_30_1
  doi: 10.3390/s16111805
– volume-title: YawDD: Yawning Detection Dataset
  year: 2020
  ident: e_1_2_9_52_1
– ident: e_1_2_9_26_1
  doi: 10.1117/1.JRS.14.026521
– ident: e_1_2_9_41_1
  doi: 10.3390/s21062026
– ident: e_1_2_9_51_1
  doi: 10.1109/CVPRW.2019.00027
– ident: e_1_2_9_28_1
  doi: 10.1109/TITS.2023.3346054
– ident: e_1_2_9_16_1
  doi: 10.1016/j.aej.2023.01.017
– ident: e_1_2_9_33_1
  doi: 10.1109/TNSRE.2021.3051958
– ident: e_1_2_9_46_1
  doi: 10.3390/s20154093
– ident: e_1_2_9_20_1
  doi: 10.36227/techrxiv.24428014.v1
– ident: e_1_2_9_5_1
  doi: 10.1007/s11571-022-09898-9
– ident: e_1_2_9_22_1
  doi: 10.1007/s12652-021-03311-9
– ident: e_1_2_9_35_1
  doi: 10.3390/s23041874
– ident: e_1_2_9_15_1
  doi: 10.1007/s12193-023-00408-7
– ident: e_1_2_9_24_1
  doi: 10.7717/peerj.15744
– volume: 12
  start-page: 437
  issue: 11
  year: 2024
  ident: e_1_2_9_25_1
  article-title: Enhancing Driver Drowsiness Detection: A Fusion of Facial Landmarks and Modified YOLOv5 Architecture
  publication-title: International Journal of Intelligent Systems and Applications in Engineering
– ident: e_1_2_9_34_1
  doi: 10.1109/TIV.2024.3405990
– ident: e_1_2_9_39_1
  doi: 10.1063/5.0212719
– ident: e_1_2_9_48_1
  doi: 10.1109/iFUZZY63051.2024.10661369
– ident: e_1_2_9_11_1
  doi: 10.3390/s21165558
– ident: e_1_2_9_49_1
  doi: 10.7717/peerj‐cs.2447
– volume: 8
  start-page: 1456
  issue: 5
  year: 2017
  ident: e_1_2_9_3_1
  article-title: Analysis and Prediction of the state of Road Accidents and Traffic Crimes in the Republic of Kazakhstan
  publication-title: Journal of Advanced Research in Law and Economics
– ident: e_1_2_9_27_1
  doi: 10.1007/s00521-023-09224-2
– ident: e_1_2_9_31_1
  doi: 10.1109/ACCESS.2024.3424654
SSID ssj0059085
Score 2.3387566
Snippet Driver drowsiness poses a critical threat, frequently resulting in highly perilous traffic accidents. The drowsiness detection is complicated by various...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
Title Multi‐Fatigue Feature Selection and Fuzzy Logic‐Based Intelligent Driver Drowsiness Detection
URI https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ipr2.70052
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: IDLOA
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: AVUZU
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Openly Available Collection - Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEF60PXiy_mJFy4JeU-PmZ7PHai1VsAgaqV7C7s5WxJKWmFDak4_gM_ok7iZpaT2I4Ck5zEKyM7PzZTLzDUKnQgZK2wFYNFDEcgHAEgyERaiymQ1CKDD5jtue3w3dm77XX-riL_ghFgk34xn5eW0cfAyD4pwvvjpddvY6TkiTmtTmOqr6nkbjFVQNe3etp7wP0kyQ9_N5aeW9T-cMpSuLV2LSRhaP-XTCh8OlQNOpIT5_xKK-5K2ZpaIpZz_YG__zDltos0ShuFWYzTZaU_EOqpWIFJf-_r6LeN6f-_Xx2dEKfMkUNogxSxS-z8fnaJ1iHgPuZLPZFJuxzVLLXujACPh6wfWZ4nZiqj_0ZTQpyuxxW6XF-j0Udq4eLrtWOZTBkoQEqcVsXwKcB4xINuA-4TalyjDOOA7hHGjApBQ2UOk44Gr4oDREA6ICERgGSzZw9lElHsXqAOFAgg2erQSltivFgGmbccFzhJSuhqVOHZ3M1RKNC-6NKP9n7rLI7FqU71odnS409ovY4d_EjlAlTTJ1rJFGKhqo2noMn8NGaVTfK6Xa0g
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEF60PXiy_mJFZcFeU-PmZ7PHag1VsAhaqKewu7MVsaQhJpT25CP4jD6Ju0laWg8ieEoOs5DszOx8mcx8g1BLyEBpOwCLBopYLgBYgoGwCFU2s0EIBSbfcd_3ewP3bugNV7r4S36IZcLNeEZxXhsHT2BUnvPlV6fLLl6TlLSpSW1uorrvaTReQ_VB_6HzXPRBmgnyfjEvrbr36YKhdG3xWkzayuOEz6Z8PF4JNGED8cUjlvUlb-08E205_8He-J932EHbFQrFndJsdtGGivdQo0KkuPL3933Ei_7cr4_PUCvwJVfYIMY8VfixGJ-jdYp5DDjM5_MZNmObpZa90oER8O2S6zPD3dRUf-jLZFqW2eOuysr1B2gQ3jxd96xqKIMlCQkyi9m-BLgMGJFsxH3CbUqVYZxxHMI50IBJKWyg0nHA1fBBaYgGRAUiMAyWbOQcolo8idURwoEEGzxbCUptV4oR0zbjgucIKV0NS50mOl-oJUpK7o2o-GfussjsWlTsWhO1lhr7Rez4b2InqJaluTrVSCMTZ5UxfQNcedkU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90Fatigue+Feature+Selection+and+Fuzzy+Logic%E2%80%90Based+Intelligent+Driver+Drowsiness+Detection&rft.jtitle=IET+image+processing&rft.au=Arava%2C+Mohan&rft.au=Sundaram%2C+Divya+Meena&rft.date=2025-01-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1049%2Fipr2.70052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ipr2_70052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon