ITSEF: Inception-based two-stage ensemble framework for P300 detection
To address the problems of low signal-to-noise ratio, significant individual differences between subjects, and class imbalance in P300-based brain-computer interface (BCI), this paper proposes a novel Inception-based two-stage ensemble framework (ITSEF) to improve detection accuracy. Firstly, an Inc...
Saved in:
Published in | Neural networks Vol. 193; p. 108014 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.01.2026
|
Subjects | |
Online Access | Get full text |
ISSN | 0893-6080 1879-2782 1879-2782 |
DOI | 10.1016/j.neunet.2025.108014 |
Cover
Abstract | To address the problems of low signal-to-noise ratio, significant individual differences between subjects, and class imbalance in P300-based brain-computer interface (BCI), this paper proposes a novel Inception-based two-stage ensemble framework (ITSEF) to improve detection accuracy. Firstly, an Inception-based convolutional neural network (ICNN) is designed to extract multi-scale features and conduct cross-channel learning. In addition, a two-stage ensemble framework (TSEF) combined with a pre-training and fine-tuning strategy is developed, aiming to enhance the classification performance of the minority class and improve the generalization ability of the model. The framework comprises a conventional learning branch and a re-balancing branch, each based on an ICNN pre-trained with a different loss function. The prediction results of both branches are dynamically weighted by a cumulative learning strategy, so that the model gradually shifts its learning focus from the majority class to the minority class, comprehensively improving the identification ability for both classes. Experimental results on two datasets, Dataset II of BCI Competition III and BCIAUT-P300, demonstrate that the proposed ITSEF achieves state-of-the-art performance in the P300 classification task, with average classification accuracies of 86.16 % and 92.13 %, respectively. Compared with the existing state-of-the-art methods, the ITSEF achieves improvements of 4.61 % and 1.01 % on the two datasets, respectively. Furthermore, it exhibits significant improvements compared to baseline models and widely used class re-balancing strategies. The proposed ITSEF method provides an innovative deep learning framework for P300 signal analysis and has application potential in the field of P300-BCI. |
---|---|
AbstractList | To address the problems of low signal-to-noise ratio, significant individual differences between subjects, and class imbalance in P300-based brain-computer interface (BCI), this paper proposes a novel Inception-based two-stage ensemble framework (ITSEF) to improve detection accuracy. Firstly, an Inception-based convolutional neural network (ICNN) is designed to extract multi-scale features and conduct cross-channel learning. In addition, a two-stage ensemble framework (TSEF) combined with a pre-training and fine-tuning strategy is developed, aiming to enhance the classification performance of the minority class and improve the generalization ability of the model. The framework comprises a conventional learning branch and a re-balancing branch, each based on an ICNN pre-trained with a different loss function. The prediction results of both branches are dynamically weighted by a cumulative learning strategy, so that the model gradually shifts its learning focus from the majority class to the minority class, comprehensively improving the identification ability for both classes. Experimental results on two datasets, Dataset II of BCI Competition III and BCIAUT-P300, demonstrate that the proposed ITSEF achieves state-of-the-art performance in the P300 classification task, with average classification accuracies of 86.16 % and 92.13 %, respectively. Compared with the existing state-of-the-art methods, the ITSEF achieves improvements of 4.61 % and 1.01 % on the two datasets, respectively. Furthermore, it exhibits significant improvements compared to baseline models and widely used class re-balancing strategies. The proposed ITSEF method provides an innovative deep learning framework for P300 signal analysis and has application potential in the field of P300-BCI. To address the problems of low signal-to-noise ratio, significant individual differences between subjects, and class imbalance in P300-based brain-computer interface (BCI), this paper proposes a novel Inception-based two-stage ensemble framework (ITSEF) to improve detection accuracy. Firstly, an Inception-based convolutional neural network (ICNN) is designed to extract multi-scale features and conduct cross-channel learning. In addition, a two-stage ensemble framework (TSEF) combined with a pre-training and fine-tuning strategy is developed, aiming to enhance the classification performance of the minority class and improve the generalization ability of the model. The framework comprises a conventional learning branch and a re-balancing branch, each based on an ICNN pre-trained with a different loss function. The prediction results of both branches are dynamically weighted by a cumulative learning strategy, so that the model gradually shifts its learning focus from the majority class to the minority class, comprehensively improving the identification ability for both classes. Experimental results on two datasets, Dataset II of BCI Competition III and BCIAUT-P300, demonstrate that the proposed ITSEF achieves state-of-the-art performance in the P300 classification task, with average classification accuracies of 86.16 % and 92.13 %, respectively. Compared with the existing state-of-the-art methods, the ITSEF achieves improvements of 4.61 % and 1.01 % on the two datasets, respectively. Furthermore, it exhibits significant improvements compared to baseline models and widely used class re-balancing strategies. The proposed ITSEF method provides an innovative deep learning framework for P300 signal analysis and has application potential in the field of P300-BCI.To address the problems of low signal-to-noise ratio, significant individual differences between subjects, and class imbalance in P300-based brain-computer interface (BCI), this paper proposes a novel Inception-based two-stage ensemble framework (ITSEF) to improve detection accuracy. Firstly, an Inception-based convolutional neural network (ICNN) is designed to extract multi-scale features and conduct cross-channel learning. In addition, a two-stage ensemble framework (TSEF) combined with a pre-training and fine-tuning strategy is developed, aiming to enhance the classification performance of the minority class and improve the generalization ability of the model. The framework comprises a conventional learning branch and a re-balancing branch, each based on an ICNN pre-trained with a different loss function. The prediction results of both branches are dynamically weighted by a cumulative learning strategy, so that the model gradually shifts its learning focus from the majority class to the minority class, comprehensively improving the identification ability for both classes. Experimental results on two datasets, Dataset II of BCI Competition III and BCIAUT-P300, demonstrate that the proposed ITSEF achieves state-of-the-art performance in the P300 classification task, with average classification accuracies of 86.16 % and 92.13 %, respectively. Compared with the existing state-of-the-art methods, the ITSEF achieves improvements of 4.61 % and 1.01 % on the two datasets, respectively. Furthermore, it exhibits significant improvements compared to baseline models and widely used class re-balancing strategies. The proposed ITSEF method provides an innovative deep learning framework for P300 signal analysis and has application potential in the field of P300-BCI. |
ArticleNumber | 108014 |
Author | Hu, Wenjun Chen, Wanzhong Zhang, Dingguo |
Author_xml | – sequence: 1 givenname: Wenjun orcidid: 0009-0009-3366-2872 surname: Hu fullname: Hu, Wenjun organization: College of Communication Engineering, Jilin University, Changchun, China – sequence: 2 givenname: Dingguo orcidid: 0000-0003-4803-7489 surname: Zhang fullname: Zhang, Dingguo organization: Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom – sequence: 3 givenname: Wanzhong surname: Chen fullname: Chen, Wanzhong email: chenwz@jlu.edu.cn organization: College of Communication Engineering, Jilin University, Changchun, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40857922$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kN9LwzAQx4Mo7of-ByJ99KUzSdM29UGQselgoOB8Dmlykc62mUnr8L83o9NHuYeDu8_34D4TdNraFhC6InhGMMlut7MW-ha6GcU0DSOOCTtBY8LzIqY5p6dojHmRxFnYjNDE-y3GOOMsOUcjhnmaF5SO0XK1eV0s76JVq2DXVbaNS-lBR93exr6T7xBB66Epa4iMkw3srfuIjHXRS4JxpKEDdUhdoDMjaw-Xxz5Fb8vFZv4Ur58fV_OHdawo5V3MJIFUs5RIRbTWOSakBMoxy8MwLUqiTYEVNbpMCoNVKKM51YUpoQxAnkzRzXB35-xnD74TTeUV1LVswfZeJJRlCaeE0oBeH9G-bECLnasa6b7F7-8BYAOgnPXegflDCBYHxWIrBsXioFgMikPsfohB-POrAie8qiDo05ULMoS21f8HfgA9m4SO |
Cites_doi | 10.1109/TNSRE.2023.3246588 10.3389/fnins.2023.1133933 10.1109/TCYB.2024.3390805 10.1109/JBHI.2022.3174771 10.1613/jair.953 10.1109/TNSRE.2024.3415474 10.1109/TSMC.2022.3156861 10.1109/TIM.2021.3123218 10.1109/TNSRE.2023.3237319 10.1109/TCE.2024.3439719 10.1016/j.chaos.2024.115288 10.1016/j.neunet.2021.10.021 10.1016/j.neunet.2023.11.037 10.1016/j.neunet.2018.07.011 10.1016/j.patcog.2024.111114 10.1109/TITS.2025.3540852 10.1016/0013-4694(88)90149-6 10.1109/LNET.2018.2883859 10.1109/TNSRE.2020.3048106 10.1109/TPAMI.2023.3268118 10.3389/fnins.2020.568104 10.3390/brainsci13020315 10.1109/THMS.2022.3168421 10.1016/j.neunet.2025.107124 10.1109/TSMC.2020.3041382 10.1016/j.patcog.2023.109827 10.1016/j.neucom.2020.10.104 10.1016/j.bspc.2023.104924 10.1002/hbm.23730 10.1088/1741-2552/aace8c 10.1016/j.neucom.2022.08.031 10.1016/j.neunet.2024.106655 10.1109/TNSRE.2006.875642 10.1016/j.compeleceng.2021.107608 10.1109/TNSRE.2021.3070327 10.1016/j.bspc.2023.105018 10.1109/TNNLS.2024.3437676 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd Copyright © 2025 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Copyright © 2025 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.neunet.2025.108014 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
ExternalDocumentID | 40857922 10_1016_j_neunet_2025_108014 S0893608025008949 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYFN AAYWO ABAOU ABBOA ABCQJ ABDPE ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI ADJOM ADMUD ADNMO ADRHT AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- ~HD AAYXX CITATION AGCQF NPM 7X8 |
ID | FETCH-LOGICAL-c228t-4a1e5d451ac1ddd7011be28047d4559b1df90c2fdb39f0c0c0fd82d9fbeb45573 |
IEDL.DBID | .~1 |
ISSN | 0893-6080 1879-2782 |
IngestDate | Sat Sep 06 05:50:52 EDT 2025 Thu Sep 04 05:00:33 EDT 2025 Wed Oct 01 05:24:37 EDT 2025 Sat Sep 27 17:13:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Brain-computer interface (BCI) Convolutional neural networks Class imbalance P300 |
Language | English |
License | Copyright © 2025 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c228t-4a1e5d451ac1ddd7011be28047d4559b1df90c2fdb39f0c0c0fd82d9fbeb45573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0009-3366-2872 0000-0003-4803-7489 |
PMID | 40857922 |
PQID | 3246382122 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3246382122 pubmed_primary_40857922 crossref_primary_10_1016_j_neunet_2025_108014 elsevier_sciencedirect_doi_10_1016_j_neunet_2025_108014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2026-01-01 |
PublicationDateYYYYMMDD | 2026-01-01 |
PublicationDate_xml | – month: 01 year: 2026 text: 2026-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2026 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Pei, Xu, Xu, Bezerianos, Sun, Li (bib0037) 2021; 70 Bhandari, Londhe, Kshirsagar (bib0006) 2023; 85 Fu, Xiang, Zahid, Ding, Mei, Shen, Han (bib0014) 2022; 509 Li, Daly, Guan, Cichocki, Jin (bib0022) 2024; 180 Zhang, He, Mai, Luo, Li, Cheng, Huang, Lin (bib0044) 2024; 36 Zhou, Zhai, Cao (bib0045) 2023; 144 Szegedy, Ioffe, Vanhoucke, Alemi (bib0035) 2017; 31 Santamaría-Vázquez, Martínez-Cagigal, Vaquerizo-Villar, Hornero (bib0029) 2020; 28 Wang, Wang, Yan, Zheng (bib0039) 2024 Ali, Ullah, Ahmad, Wu, Li, Bai (bib0001) 2025 Alvarado-Gonzalez, Fuentes-Pineda, Cervantes-Ojeda (bib0004) 2021; 425 Peketi, Dhok (bib0028) 2023; 13 Wang, Wang, Sun, Yuan, Xu, Li (bib0038) 2024; 32 Lin, Do (bib0024) 2020; 51 Chawla, Bowyer, Hall, Kegelmeyer (bib0010) 2002; 16 Blankertz, Muller, Krusienski, Schalk, Wolpaw, Schlogl, Pfurtscheller, Millan, Schroder, Birbaumer (bib0007) 2006; 14 Jin, Xu, Daly, Zhao, Wang, Cichocki (bib0017) 2024; 54 Lin, Goyal, Girshick, He, Dollár (bib0025) 2017 Ma, Yu, Zhong, Yu, Li, Gu (bib0026) 2021; 29 Simonyan, K. (2014). Very deep convolutional networks for large-scale image recognition. Zhang, Kang, Hooi, Yan, Feng (bib0043) 2023; 45 Li, Zhao, Liu, Jin, Guan (bib0023) 2025; 159 Bai, Li, Qi, Ng, Ng, Qian (bib0005) 2023; 17 Simões, Borra, Santamaría-Vázquez, Gbt-Upm, Bittencourt-Villalpando, Krzemiński, Miladinović, Neural_Engineering_Group, Schmid, Zhao (bib0033) 2020; 14 Daǧ, Dui, Ferrante, Pedrocchi, Antonietti (bib0011) 2022; 26 Wang, Chen, Li, Wan, Sun, Wang (bib0041) 2023; 31 Haider, Jiang, Jamshed, Pervaiz, Mumtaz (bib0015) 2018; 1 Sharafian, Ullah, Singh, Ali, Khan, Bai (bib0031) 2024; 186 Hashmi, Kene, Kotambkar, Matte, Keskar (bib0016) 2022; 97 Cao, Wei, Gaidon, Aréchiga, Ma (bib0009) 2019 Farwell, Donchin (bib0013) 1988; 70 Shukla, P. K., Cecotti, H., & Meena, Y. K. (2024). Towards effective deep neural network approach for multi-trial P300-based character recognition in brain-computer interfaces. Demšar (bib0012) 2006; 7 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0036) 2015 Kotas, Piela, Contreras-Ortiz (bib0019) 2022; 52 . Kalra, Mittal, Mittal, Arora, Tewari, Chharia, Upadhyay, Kumar, Longo (bib0018) 2023; 31 Buda, Maki, Mazurowski (bib0008) 2018; 106 Ali, Ullah, Shabaz, Sharafian, Khan, Bai, Qiu (bib0002) 2024; 70 Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (bib0030) 2017; 38 Kshirsagar, Londhe (bib0020) 2022; 52 Xu, Allison, Zhao, Liang, Wang, Cichocki, Jin (bib0042) 2025; 184 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (bib0021) 2018; 15 Wang, Wang, Qi, Kong, Wang (bib0040) 2024; 170 Ali, Zhu, Zakarya (bib0003) 2022; 145 Patel, Bhatt, Munshi, Pandya, Jain, Thakkar, Yoon (bib0027) 2024; 88 Wang (10.1016/j.neunet.2025.108014_bib0040) 2024; 170 Zhou (10.1016/j.neunet.2025.108014_bib0045) 2023; 144 Bhandari (10.1016/j.neunet.2025.108014_bib0006) 2023; 85 Kotas (10.1016/j.neunet.2025.108014_bib0019) 2022; 52 Zhang (10.1016/j.neunet.2025.108014_bib0043) 2023; 45 Chawla (10.1016/j.neunet.2025.108014_bib0010) 2002; 16 Wang (10.1016/j.neunet.2025.108014_bib0041) 2023; 31 Cao (10.1016/j.neunet.2025.108014_bib0009) 2019 Ma (10.1016/j.neunet.2025.108014_bib0026) 2021; 29 Wang (10.1016/j.neunet.2025.108014_bib0039) 2024 Ali (10.1016/j.neunet.2025.108014_bib0002) 2024; 70 Kalra (10.1016/j.neunet.2025.108014_bib0018) 2023; 31 Santamaría-Vázquez (10.1016/j.neunet.2025.108014_bib0029) 2020; 28 Wang (10.1016/j.neunet.2025.108014_bib0038) 2024; 32 Sharafian (10.1016/j.neunet.2025.108014_bib0031) 2024; 186 Wang (10.1016/j.neunet.2025.108014_bib0037) 2021; 70 Zhang (10.1016/j.neunet.2025.108014_bib0044) 2024; 36 Schirrmeister (10.1016/j.neunet.2025.108014_bib0030) 2017; 38 Fu (10.1016/j.neunet.2025.108014_bib0014) 2022; 509 Szegedy (10.1016/j.neunet.2025.108014_bib0036) 2015 Simões (10.1016/j.neunet.2025.108014_bib0033) 2020; 14 Ali (10.1016/j.neunet.2025.108014_bib0001) 2025 Lin (10.1016/j.neunet.2025.108014_bib0025) 2017 Xu (10.1016/j.neunet.2025.108014_bib0042) 2025; 184 Haider (10.1016/j.neunet.2025.108014_bib0015) 2018; 1 Hashmi (10.1016/j.neunet.2025.108014_bib0016) 2022; 97 Kshirsagar (10.1016/j.neunet.2025.108014_bib0020) 2022; 52 Lawhern (10.1016/j.neunet.2025.108014_bib0021) 2018; 15 Li (10.1016/j.neunet.2025.108014_bib0022) 2024; 180 Buda (10.1016/j.neunet.2025.108014_bib0008) 2018; 106 Ali (10.1016/j.neunet.2025.108014_bib0003) 2022; 145 Bai (10.1016/j.neunet.2025.108014_bib0005) 2023; 17 Jin (10.1016/j.neunet.2025.108014_bib0017) 2024; 54 Li (10.1016/j.neunet.2025.108014_bib0023) 2025; 159 Patel (10.1016/j.neunet.2025.108014_bib0027) 2024; 88 Alvarado-Gonzalez (10.1016/j.neunet.2025.108014_bib0004) 2021; 425 Peketi (10.1016/j.neunet.2025.108014_bib0028) 2023; 13 10.1016/j.neunet.2025.108014_bib0032 Farwell (10.1016/j.neunet.2025.108014_bib0013) 1988; 70 Lin (10.1016/j.neunet.2025.108014_bib0024) 2020; 51 Blankertz (10.1016/j.neunet.2025.108014_bib0007) 2006; 14 Daǧ (10.1016/j.neunet.2025.108014_bib0011) 2022; 26 Demšar (10.1016/j.neunet.2025.108014_bib0012) 2006; 7 10.1016/j.neunet.2025.108014_bib0034 Szegedy (10.1016/j.neunet.2025.108014_bib0035) 2017; 31 |
References_xml | – volume: 36 start-page: 8166 year: 2024 end-page: 8177 ident: bib0044 article-title: Convolutional dynamically convergent differential neural network for brain signal classification publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 31 year: 2017 ident: bib0035 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning publication-title: Proceedings of the AAAI conference on artificial intelligence – volume: 184 year: 2025 ident: bib0042 article-title: Multi-scale pyramid squeeze attention similarity optimization classification neural network for ERP detection publication-title: Neural Networks – reference: Shukla, P. K., Cecotti, H., & Meena, Y. K. (2024). Towards effective deep neural network approach for multi-trial P300-based character recognition in brain-computer interfaces. – volume: 425 start-page: 37 year: 2021 end-page: 52 ident: bib0004 article-title: A few filters are enough: Convolutional neural network for P300 detection publication-title: Neurocomputing – volume: 28 start-page: 2773 year: 2020 end-page: 2782 ident: bib0029 article-title: EEG-Inception: A novel deep convolutional neural network for assistive ERP-based brain-computer interfaces publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 14 start-page: 153 year: 2006 end-page: 159 ident: bib0007 article-title: The BCI competition III: Validating alternative approaches to actual BCI problems publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – year: 2019 ident: bib0009 article-title: Learning imbalanced datasets with label-distribution-aware margin loss publication-title: Neural information processing systems – volume: 88 year: 2024 ident: bib0027 article-title: CNN-FEBAC: A framework for attention measurement of autistic individuals publication-title: Biomedical Signal Processing and Control – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: bib0010 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: Journal of Artificial Intelligence Research – volume: 180 year: 2024 ident: bib0022 article-title: Inter-participant transfer learning with attention based domain adversarial training for P300 detection publication-title: Neural Networks – volume: 85 year: 2023 ident: bib0006 article-title: Compact temporal dilated convolution with channel-wise attention and cost sensitive learning for single trial P300 detection publication-title: Biomedical Signal Processing and Control – volume: 509 start-page: 290 year: 2022 end-page: 309 ident: bib0014 article-title: Long-tailed visual recognition with deep models: A methodological survey and evaluation publication-title: Neurocomputing – volume: 54 start-page: 5565 year: 2024 end-page: 5576 ident: bib0017 article-title: MOCNN: A multiscale deep convolutional neural network for ERP-based brain-computer interfaces publication-title: IEEE Transactions on Cybernetics – year: 2025 ident: bib0001 article-title: An attention-driven spatio-temporal deep hybrid neural networks for traffic flow prediction in transportation systems publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 51 start-page: 298 year: 2020 end-page: 312 ident: bib0024 article-title: Direct-sense brain–computer interfaces and wearable computers publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 186 year: 2024 ident: bib0031 article-title: Adaptive fuzzy backstepping secure control for incommensurate fractional order cyber–physical power systems under intermittent denial of service attacks publication-title: Chaos, Solitons & Fractals – volume: 106 start-page: 249 year: 2018 end-page: 259 ident: bib0008 article-title: A systematic study of the class imbalance problem in convolutional neural networks publication-title: Neural Networks – volume: 14 year: 2020 ident: bib0033 article-title: BCIAUT-P300: A multi-session and multi-subject benchmark dataset on autism for P300-based brain-computer-interfaces publication-title: Frontiers in Neuroscience – volume: 70 start-page: 510 year: 1988 end-page: 523 ident: bib0013 article-title: Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials publication-title: Electroencephalography and Clinical Neurophysiology – volume: 31 start-page: 1429 year: 2023 end-page: 1439 ident: bib0018 article-title: How visual stimuli evoked P300 is transforming the brain–computer interface landscape: A PRISMA compliant systematic review publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 13 start-page: 315 year: 2023 ident: bib0028 article-title: Machine learning enabled P300 classifier for autism spectrum disorder using adaptive signal decomposition publication-title: Brain Sciences – start-page: 2980 year: 2017 end-page: 2988 ident: bib0025 article-title: Focal loss for dense object detection publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib0012 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – volume: 144 year: 2023 ident: bib0045 article-title: Feature fusion network for long-tailed visual recognition publication-title: Pattern Recognition – volume: 32 start-page: 2270 year: 2024 end-page: 2280 ident: bib0038 article-title: A cascade xDAWN EEGNet structure for unified visual-evoked related potential detection publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 70 start-page: 1 year: 2021 end-page: 12 ident: bib0037 article-title: Performance enhancement of P300 detection by multiscale-CNN publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 26 start-page: 4892 year: 2022 end-page: 4902 ident: bib0011 article-title: Leveraging deep learning techniques to improve P300-based brain computer interfaces publication-title: IEEE Journal of Biomedical and Health Informatics – reference: Simonyan, K. (2014). Very deep convolutional networks for large-scale image recognition. – volume: 52 start-page: 7431 year: 2022 end-page: 7443 ident: bib0020 article-title: DS-P3SNet: An efficient classification approach for devanagari script-based P300 speller using compact channelwise convolution and knowledge distillation publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems – volume: 1 start-page: 26 year: 2018 end-page: 29 ident: bib0015 article-title: Performance enhancement in P300 ERP single trial by machine learning adaptive denoising mechanism publication-title: IEEE Networking Letters – reference: . – volume: 29 start-page: 718 year: 2021 end-page: 730 ident: bib0026 article-title: Capsule network for ERP detection in brain-computer interface publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 159 year: 2025 ident: bib0023 article-title: Self-distillation with beta label smoothing-based cross-subject transfer learning for P300 classification publication-title: Pattern Recognition – volume: 70 start-page: 7252 year: 2024 end-page: 7265 ident: bib0002 article-title: A resource-aware multi-graph neural network for urban traffic flow prediction in multi-access edge computing systems publication-title: IEEE Transactions on Consumer Electronics – volume: 145 start-page: 233 year: 2022 end-page: 247 ident: bib0003 article-title: Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction publication-title: Neural Networks – volume: 170 start-page: 312 year: 2024 end-page: 324 ident: bib0040 article-title: BrainGridNet: A two-branch depthwise CNN for decoding EEG-based multi-class motor imagery publication-title: Neural Networks – start-page: 1 year: 2024 end-page: 9 ident: bib0039 article-title: A novel parameter-free attention-based multiscale convolution prototype networks for P300 brain-computer interface publication-title: 2024 international joint conference on neural networks (IJCNN) – volume: 15 year: 2018 ident: bib0021 article-title: EEGNet: A compact convolutional neural network for EEG-based brain-computer interfaces publication-title: Journal of Neural Engineering – volume: 31 start-page: 991 year: 2023 end-page: 1000 ident: bib0041 article-title: ST-CapsNet: Linking spatial and temporal attention with capsule network for P300 detection improvement publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 38 start-page: 5391 year: 2017 end-page: 5420 ident: bib0030 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Human Brain Mapping – start-page: 1 year: 2015 end-page: 9 ident: bib0036 article-title: Going deeper with convolutions publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 97 year: 2022 ident: bib0016 article-title: An efficient P300 detection algorithm based on kernel principal component analysis-support vector machine publication-title: Computers & Electrical Engineering – volume: 52 start-page: 677 year: 2022 end-page: 686 ident: bib0019 article-title: Modified spatio-temporal matched filtering for brain responses classification publication-title: IEEE Transactions on Human-Machine Systems – volume: 45 start-page: 10795 year: 2023 end-page: 10816 ident: bib0043 article-title: Deep long-tailed learning: A survey publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 17 year: 2023 ident: bib0005 article-title: A hybrid P300-SSVEP brain-computer interface speller with a frequency enhanced row and column paradigm publication-title: Frontiers in Neuroscience – start-page: 1 year: 2024 ident: 10.1016/j.neunet.2025.108014_bib0039 article-title: A novel parameter-free attention-based multiscale convolution prototype networks for P300 brain-computer interface – volume: 31 start-page: 1429 year: 2023 ident: 10.1016/j.neunet.2025.108014_bib0018 article-title: How visual stimuli evoked P300 is transforming the brain–computer interface landscape: A PRISMA compliant systematic review publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2023.3246588 – ident: 10.1016/j.neunet.2025.108014_bib0034 – ident: 10.1016/j.neunet.2025.108014_bib0032 – volume: 17 year: 2023 ident: 10.1016/j.neunet.2025.108014_bib0005 article-title: A hybrid P300-SSVEP brain-computer interface speller with a frequency enhanced row and column paradigm publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2023.1133933 – volume: 54 start-page: 5565 issue: 9 year: 2024 ident: 10.1016/j.neunet.2025.108014_bib0017 article-title: MOCNN: A multiscale deep convolutional neural network for ERP-based brain-computer interfaces publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2024.3390805 – volume: 26 start-page: 4892 issue: 10 year: 2022 ident: 10.1016/j.neunet.2025.108014_bib0011 article-title: Leveraging deep learning techniques to improve P300-based brain computer interfaces publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2022.3174771 – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.neunet.2025.108014_bib0010 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.953 – volume: 32 start-page: 2270 year: 2024 ident: 10.1016/j.neunet.2025.108014_bib0038 article-title: A cascade xDAWN EEGNet structure for unified visual-evoked related potential detection publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2024.3415474 – volume: 52 start-page: 7431 issue: 12 year: 2022 ident: 10.1016/j.neunet.2025.108014_bib0020 article-title: DS-P3SNet: An efficient classification approach for devanagari script-based P300 speller using compact channelwise convolution and knowledge distillation publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2022.3156861 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.neunet.2025.108014_bib0037 article-title: Performance enhancement of P300 detection by multiscale-CNN publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2021.3123218 – volume: 7 start-page: 1 issue: Jan year: 2006 ident: 10.1016/j.neunet.2025.108014_bib0012 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – volume: 31 start-page: 991 year: 2023 ident: 10.1016/j.neunet.2025.108014_bib0041 article-title: ST-CapsNet: Linking spatial and temporal attention with capsule network for P300 detection improvement publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2023.3237319 – start-page: 2980 year: 2017 ident: 10.1016/j.neunet.2025.108014_bib0025 article-title: Focal loss for dense object detection – volume: 70 start-page: 7252 issue: 4 year: 2024 ident: 10.1016/j.neunet.2025.108014_bib0002 article-title: A resource-aware multi-graph neural network for urban traffic flow prediction in multi-access edge computing systems publication-title: IEEE Transactions on Consumer Electronics doi: 10.1109/TCE.2024.3439719 – volume: 186 year: 2024 ident: 10.1016/j.neunet.2025.108014_bib0031 article-title: Adaptive fuzzy backstepping secure control for incommensurate fractional order cyber–physical power systems under intermittent denial of service attacks publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2024.115288 – volume: 145 start-page: 233 year: 2022 ident: 10.1016/j.neunet.2025.108014_bib0003 article-title: Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction publication-title: Neural Networks doi: 10.1016/j.neunet.2021.10.021 – volume: 170 start-page: 312 year: 2024 ident: 10.1016/j.neunet.2025.108014_bib0040 article-title: BrainGridNet: A two-branch depthwise CNN for decoding EEG-based multi-class motor imagery publication-title: Neural Networks doi: 10.1016/j.neunet.2023.11.037 – volume: 106 start-page: 249 year: 2018 ident: 10.1016/j.neunet.2025.108014_bib0008 article-title: A systematic study of the class imbalance problem in convolutional neural networks publication-title: Neural Networks doi: 10.1016/j.neunet.2018.07.011 – volume: 159 year: 2025 ident: 10.1016/j.neunet.2025.108014_bib0023 article-title: Self-distillation with beta label smoothing-based cross-subject transfer learning for P300 classification publication-title: Pattern Recognition doi: 10.1016/j.patcog.2024.111114 – year: 2025 ident: 10.1016/j.neunet.2025.108014_bib0001 article-title: An attention-driven spatio-temporal deep hybrid neural networks for traffic flow prediction in transportation systems publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2025.3540852 – volume: 70 start-page: 510 issue: 6 year: 1988 ident: 10.1016/j.neunet.2025.108014_bib0013 article-title: Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0013-4694(88)90149-6 – volume: 1 start-page: 26 issue: 1 year: 2018 ident: 10.1016/j.neunet.2025.108014_bib0015 article-title: Performance enhancement in P300 ERP single trial by machine learning adaptive denoising mechanism publication-title: IEEE Networking Letters doi: 10.1109/LNET.2018.2883859 – start-page: 1 year: 2015 ident: 10.1016/j.neunet.2025.108014_bib0036 article-title: Going deeper with convolutions – volume: 28 start-page: 2773 issue: 12 year: 2020 ident: 10.1016/j.neunet.2025.108014_bib0029 article-title: EEG-Inception: A novel deep convolutional neural network for assistive ERP-based brain-computer interfaces publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2020.3048106 – volume: 45 start-page: 10795 issue: 9 year: 2023 ident: 10.1016/j.neunet.2025.108014_bib0043 article-title: Deep long-tailed learning: A survey publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2023.3268118 – volume: 14 year: 2020 ident: 10.1016/j.neunet.2025.108014_bib0033 article-title: BCIAUT-P300: A multi-session and multi-subject benchmark dataset on autism for P300-based brain-computer-interfaces publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2020.568104 – volume: 13 start-page: 315 issue: 2 year: 2023 ident: 10.1016/j.neunet.2025.108014_bib0028 article-title: Machine learning enabled P300 classifier for autism spectrum disorder using adaptive signal decomposition publication-title: Brain Sciences doi: 10.3390/brainsci13020315 – volume: 52 start-page: 677 issue: 4 year: 2022 ident: 10.1016/j.neunet.2025.108014_bib0019 article-title: Modified spatio-temporal matched filtering for brain responses classification publication-title: IEEE Transactions on Human-Machine Systems doi: 10.1109/THMS.2022.3168421 – volume: 184 year: 2025 ident: 10.1016/j.neunet.2025.108014_bib0042 article-title: Multi-scale pyramid squeeze attention similarity optimization classification neural network for ERP detection publication-title: Neural Networks doi: 10.1016/j.neunet.2025.107124 – volume: 51 start-page: 298 issue: 1 year: 2020 ident: 10.1016/j.neunet.2025.108014_bib0024 article-title: Direct-sense brain–computer interfaces and wearable computers publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems doi: 10.1109/TSMC.2020.3041382 – volume: 144 year: 2023 ident: 10.1016/j.neunet.2025.108014_bib0045 article-title: Feature fusion network for long-tailed visual recognition publication-title: Pattern Recognition doi: 10.1016/j.patcog.2023.109827 – volume: 425 start-page: 37 year: 2021 ident: 10.1016/j.neunet.2025.108014_bib0004 article-title: A few filters are enough: Convolutional neural network for P300 detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.10.104 – volume: 85 year: 2023 ident: 10.1016/j.neunet.2025.108014_bib0006 article-title: Compact temporal dilated convolution with channel-wise attention and cost sensitive learning for single trial P300 detection publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2023.104924 – volume: 38 start-page: 5391 issue: 11 year: 2017 ident: 10.1016/j.neunet.2025.108014_bib0030 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Human Brain Mapping doi: 10.1002/hbm.23730 – volume: 15 issue: 5 year: 2018 ident: 10.1016/j.neunet.2025.108014_bib0021 article-title: EEGNet: A compact convolutional neural network for EEG-based brain-computer interfaces publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/aace8c – volume: 509 start-page: 290 year: 2022 ident: 10.1016/j.neunet.2025.108014_bib0014 article-title: Long-tailed visual recognition with deep models: A methodological survey and evaluation publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.08.031 – volume: 180 year: 2024 ident: 10.1016/j.neunet.2025.108014_bib0022 article-title: Inter-participant transfer learning with attention based domain adversarial training for P300 detection publication-title: Neural Networks doi: 10.1016/j.neunet.2024.106655 – volume: 31 year: 2017 ident: 10.1016/j.neunet.2025.108014_bib0035 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning – volume: 14 start-page: 153 issue: 2 year: 2006 ident: 10.1016/j.neunet.2025.108014_bib0007 article-title: The BCI competition III: Validating alternative approaches to actual BCI problems publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2006.875642 – volume: 97 year: 2022 ident: 10.1016/j.neunet.2025.108014_bib0016 article-title: An efficient P300 detection algorithm based on kernel principal component analysis-support vector machine publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2021.107608 – volume: 29 start-page: 718 year: 2021 ident: 10.1016/j.neunet.2025.108014_bib0026 article-title: Capsule network for ERP detection in brain-computer interface publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2021.3070327 – volume: 88 year: 2024 ident: 10.1016/j.neunet.2025.108014_bib0027 article-title: CNN-FEBAC: A framework for attention measurement of autistic individuals publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2023.105018 – year: 2019 ident: 10.1016/j.neunet.2025.108014_bib0009 article-title: Learning imbalanced datasets with label-distribution-aware margin loss – volume: 36 start-page: 8166 issue: 5 year: 2024 ident: 10.1016/j.neunet.2025.108014_bib0044 article-title: Convolutional dynamically convergent differential neural network for brain signal classification publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2024.3437676 |
SSID | ssj0006843 |
Score | 2.476615 |
Snippet | To address the problems of low signal-to-noise ratio, significant individual differences between subjects, and class imbalance in P300-based brain-computer... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 108014 |
SubjectTerms | Brain-computer interface (BCI) Class imbalance Convolutional neural networks Deep learning P300 |
Title | ITSEF: Inception-based two-stage ensemble framework for P300 detection |
URI | https://dx.doi.org/10.1016/j.neunet.2025.108014 https://www.ncbi.nlm.nih.gov/pubmed/40857922 https://www.proquest.com/docview/3246382122 |
Volume | 193 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DX3zxfpmXEcHXuDS9xrcxVjaFIWyDvYWkSWWi2dAO3_ztnvSi-DAE6VND2oYv55zvtP1OgtBNknDjM61JzGhCAq4VUUxHRNMsp76MmTGlynccDWfB_Tyct1C_qYVxsso69lcxvYzWdUu3RrO7Wiy6EwpUG7lS0RB4jAeuiM-t_gU2ffv5I_OIkko5B52J692Uz5UaL2vW1jhFJQtLsZ0XbKKnTelnSUPpPtqt80fcq4Z4gFrGHqK9Zm8GXLvqEUpH08kgvcMjW-tWiOMrjYuPJYGE8MlgeH81r-rF4LzRZ2FIYPGjTynWpiglWvYYzdLBtD8k9Z4JJGMsKUggPRPqIPRk5mmtY3BfZVhCgxgaQ648nXOasVwrn-c0gyPXCdM8V0ZBh9g_QVt2ac0ZwpRJ8HDpKF4GPtwkB7wTJrnHeSY1bSPSQCVW1dIYotGMPYsKWuGgFRW0bRQ3eIpfUywgev9x5XUDvwDrd780pDXL9buAdBACCNAva6PTal6-x-LWbos5Y-f_fu4F2oGz-ovLJdoq3tbmCnKQQnVKI-ug7d7oYTj-AjJ-2X8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFL3ouNCN78f4jOA2TJqm08adiMOMj0FwBHchaVJRtCPawd_3pk0FFyJId2nShpPec27bkwTgJMuki7m1NOUso0JaQw23fWpZXrBYp9y52uU77g_vxeVD8jAH5-1cGG-rDNzfcHrN1qGkF9DsvT099e4YSm3fTxVNUMekkPOwIBLk5A4snI2uhuNvQu5njXkO61PfoJ1BV9u8SjcrnTdV8qT220XiN4X6LQOtlWiwCsshhSRnTS_XYM6V67DSbs9AQrRuwGA0ubsYnJJRGawr1EuWJdXnlGJO-OgIvsK6V_PiSNFatAjmsOQ2ZoxYV9UurXIT7gcXk_MhDdsm0JzzrKJCRy6xIol0HllrU4xg43jGRIqFiTSRLSTLeWFNLAuW41HYjFtZGGewQhpvQaeclm4HCOMag1x7ldcixosUCHnGtYykzLVlXaAtVOqtWR1DtbaxZ9VAqzy0qoG2C2mLp_oxygoJ_I-Wxy38CgPA_9XQpZvOPhRmhMghqMC8C9vNuHz3xS_flkrOd_993yNYHE5urtX1aHy1B0t4JnyA2YdO9T5zB5iSVOYwPHJfqaPcKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ITSEF%3A+Inception-based+two-stage+ensemble+framework+for+P300+detection&rft.jtitle=Neural+networks&rft.au=Hu%2C+Wenjun&rft.au=Zhang%2C+Dingguo&rft.au=Chen%2C+Wanzhong&rft.date=2026-01-01&rft.issn=0893-6080&rft.volume=193&rft.spage=108014&rft_id=info:doi/10.1016%2Fj.neunet.2025.108014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2025_108014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |