ITSEF: Inception-based two-stage ensemble framework for P300 detection

To address the problems of low signal-to-noise ratio, significant individual differences between subjects, and class imbalance in P300-based brain-computer interface (BCI), this paper proposes a novel Inception-based two-stage ensemble framework (ITSEF) to improve detection accuracy. Firstly, an Inc...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 193; p. 108014
Main Authors Hu, Wenjun, Zhang, Dingguo, Chen, Wanzhong
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.01.2026
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2025.108014

Cover

Abstract To address the problems of low signal-to-noise ratio, significant individual differences between subjects, and class imbalance in P300-based brain-computer interface (BCI), this paper proposes a novel Inception-based two-stage ensemble framework (ITSEF) to improve detection accuracy. Firstly, an Inception-based convolutional neural network (ICNN) is designed to extract multi-scale features and conduct cross-channel learning. In addition, a two-stage ensemble framework (TSEF) combined with a pre-training and fine-tuning strategy is developed, aiming to enhance the classification performance of the minority class and improve the generalization ability of the model. The framework comprises a conventional learning branch and a re-balancing branch, each based on an ICNN pre-trained with a different loss function. The prediction results of both branches are dynamically weighted by a cumulative learning strategy, so that the model gradually shifts its learning focus from the majority class to the minority class, comprehensively improving the identification ability for both classes. Experimental results on two datasets, Dataset II of BCI Competition III and BCIAUT-P300, demonstrate that the proposed ITSEF achieves state-of-the-art performance in the P300 classification task, with average classification accuracies of 86.16 % and 92.13 %, respectively. Compared with the existing state-of-the-art methods, the ITSEF achieves improvements of 4.61 % and 1.01 % on the two datasets, respectively. Furthermore, it exhibits significant improvements compared to baseline models and widely used class re-balancing strategies. The proposed ITSEF method provides an innovative deep learning framework for P300 signal analysis and has application potential in the field of P300-BCI.
AbstractList To address the problems of low signal-to-noise ratio, significant individual differences between subjects, and class imbalance in P300-based brain-computer interface (BCI), this paper proposes a novel Inception-based two-stage ensemble framework (ITSEF) to improve detection accuracy. Firstly, an Inception-based convolutional neural network (ICNN) is designed to extract multi-scale features and conduct cross-channel learning. In addition, a two-stage ensemble framework (TSEF) combined with a pre-training and fine-tuning strategy is developed, aiming to enhance the classification performance of the minority class and improve the generalization ability of the model. The framework comprises a conventional learning branch and a re-balancing branch, each based on an ICNN pre-trained with a different loss function. The prediction results of both branches are dynamically weighted by a cumulative learning strategy, so that the model gradually shifts its learning focus from the majority class to the minority class, comprehensively improving the identification ability for both classes. Experimental results on two datasets, Dataset II of BCI Competition III and BCIAUT-P300, demonstrate that the proposed ITSEF achieves state-of-the-art performance in the P300 classification task, with average classification accuracies of 86.16 % and 92.13 %, respectively. Compared with the existing state-of-the-art methods, the ITSEF achieves improvements of 4.61 % and 1.01 % on the two datasets, respectively. Furthermore, it exhibits significant improvements compared to baseline models and widely used class re-balancing strategies. The proposed ITSEF method provides an innovative deep learning framework for P300 signal analysis and has application potential in the field of P300-BCI.
To address the problems of low signal-to-noise ratio, significant individual differences between subjects, and class imbalance in P300-based brain-computer interface (BCI), this paper proposes a novel Inception-based two-stage ensemble framework (ITSEF) to improve detection accuracy. Firstly, an Inception-based convolutional neural network (ICNN) is designed to extract multi-scale features and conduct cross-channel learning. In addition, a two-stage ensemble framework (TSEF) combined with a pre-training and fine-tuning strategy is developed, aiming to enhance the classification performance of the minority class and improve the generalization ability of the model. The framework comprises a conventional learning branch and a re-balancing branch, each based on an ICNN pre-trained with a different loss function. The prediction results of both branches are dynamically weighted by a cumulative learning strategy, so that the model gradually shifts its learning focus from the majority class to the minority class, comprehensively improving the identification ability for both classes. Experimental results on two datasets, Dataset II of BCI Competition III and BCIAUT-P300, demonstrate that the proposed ITSEF achieves state-of-the-art performance in the P300 classification task, with average classification accuracies of 86.16 % and 92.13 %, respectively. Compared with the existing state-of-the-art methods, the ITSEF achieves improvements of 4.61 % and 1.01 % on the two datasets, respectively. Furthermore, it exhibits significant improvements compared to baseline models and widely used class re-balancing strategies. The proposed ITSEF method provides an innovative deep learning framework for P300 signal analysis and has application potential in the field of P300-BCI.To address the problems of low signal-to-noise ratio, significant individual differences between subjects, and class imbalance in P300-based brain-computer interface (BCI), this paper proposes a novel Inception-based two-stage ensemble framework (ITSEF) to improve detection accuracy. Firstly, an Inception-based convolutional neural network (ICNN) is designed to extract multi-scale features and conduct cross-channel learning. In addition, a two-stage ensemble framework (TSEF) combined with a pre-training and fine-tuning strategy is developed, aiming to enhance the classification performance of the minority class and improve the generalization ability of the model. The framework comprises a conventional learning branch and a re-balancing branch, each based on an ICNN pre-trained with a different loss function. The prediction results of both branches are dynamically weighted by a cumulative learning strategy, so that the model gradually shifts its learning focus from the majority class to the minority class, comprehensively improving the identification ability for both classes. Experimental results on two datasets, Dataset II of BCI Competition III and BCIAUT-P300, demonstrate that the proposed ITSEF achieves state-of-the-art performance in the P300 classification task, with average classification accuracies of 86.16 % and 92.13 %, respectively. Compared with the existing state-of-the-art methods, the ITSEF achieves improvements of 4.61 % and 1.01 % on the two datasets, respectively. Furthermore, it exhibits significant improvements compared to baseline models and widely used class re-balancing strategies. The proposed ITSEF method provides an innovative deep learning framework for P300 signal analysis and has application potential in the field of P300-BCI.
ArticleNumber 108014
Author Hu, Wenjun
Chen, Wanzhong
Zhang, Dingguo
Author_xml – sequence: 1
  givenname: Wenjun
  orcidid: 0009-0009-3366-2872
  surname: Hu
  fullname: Hu, Wenjun
  organization: College of Communication Engineering, Jilin University, Changchun, China
– sequence: 2
  givenname: Dingguo
  orcidid: 0000-0003-4803-7489
  surname: Zhang
  fullname: Zhang, Dingguo
  organization: Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom
– sequence: 3
  givenname: Wanzhong
  surname: Chen
  fullname: Chen, Wanzhong
  email: chenwz@jlu.edu.cn
  organization: College of Communication Engineering, Jilin University, Changchun, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40857922$$D View this record in MEDLINE/PubMed
BookMark eNp9kN9LwzAQx4Mo7of-ByJ99KUzSdM29UGQselgoOB8Dmlykc62mUnr8L83o9NHuYeDu8_34D4TdNraFhC6InhGMMlut7MW-ha6GcU0DSOOCTtBY8LzIqY5p6dojHmRxFnYjNDE-y3GOOMsOUcjhnmaF5SO0XK1eV0s76JVq2DXVbaNS-lBR93exr6T7xBB66Epa4iMkw3srfuIjHXRS4JxpKEDdUhdoDMjaw-Xxz5Fb8vFZv4Ur58fV_OHdawo5V3MJIFUs5RIRbTWOSakBMoxy8MwLUqiTYEVNbpMCoNVKKM51YUpoQxAnkzRzXB35-xnD74TTeUV1LVswfZeJJRlCaeE0oBeH9G-bECLnasa6b7F7-8BYAOgnPXegflDCBYHxWIrBsXioFgMikPsfohB-POrAie8qiDo05ULMoS21f8HfgA9m4SO
Cites_doi 10.1109/TNSRE.2023.3246588
10.3389/fnins.2023.1133933
10.1109/TCYB.2024.3390805
10.1109/JBHI.2022.3174771
10.1613/jair.953
10.1109/TNSRE.2024.3415474
10.1109/TSMC.2022.3156861
10.1109/TIM.2021.3123218
10.1109/TNSRE.2023.3237319
10.1109/TCE.2024.3439719
10.1016/j.chaos.2024.115288
10.1016/j.neunet.2021.10.021
10.1016/j.neunet.2023.11.037
10.1016/j.neunet.2018.07.011
10.1016/j.patcog.2024.111114
10.1109/TITS.2025.3540852
10.1016/0013-4694(88)90149-6
10.1109/LNET.2018.2883859
10.1109/TNSRE.2020.3048106
10.1109/TPAMI.2023.3268118
10.3389/fnins.2020.568104
10.3390/brainsci13020315
10.1109/THMS.2022.3168421
10.1016/j.neunet.2025.107124
10.1109/TSMC.2020.3041382
10.1016/j.patcog.2023.109827
10.1016/j.neucom.2020.10.104
10.1016/j.bspc.2023.104924
10.1002/hbm.23730
10.1088/1741-2552/aace8c
10.1016/j.neucom.2022.08.031
10.1016/j.neunet.2024.106655
10.1109/TNSRE.2006.875642
10.1016/j.compeleceng.2021.107608
10.1109/TNSRE.2021.3070327
10.1016/j.bspc.2023.105018
10.1109/TNNLS.2024.3437676
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.neunet.2025.108014
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
ExternalDocumentID 40857922
10_1016_j_neunet_2025_108014
S0893608025008949
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABCQJ
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADRHT
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
~HD
AAYXX
CITATION
AGCQF
NPM
7X8
ID FETCH-LOGICAL-c228t-4a1e5d451ac1ddd7011be28047d4559b1df90c2fdb39f0c0c0fd82d9fbeb45573
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Sat Sep 06 05:50:52 EDT 2025
Thu Sep 04 05:00:33 EDT 2025
Wed Oct 01 05:24:37 EDT 2025
Sat Sep 27 17:13:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Brain-computer interface (BCI)
Convolutional neural networks
Class imbalance
P300
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c228t-4a1e5d451ac1ddd7011be28047d4559b1df90c2fdb39f0c0c0fd82d9fbeb45573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0009-3366-2872
0000-0003-4803-7489
PMID 40857922
PQID 3246382122
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3246382122
pubmed_primary_40857922
crossref_primary_10_1016_j_neunet_2025_108014
elsevier_sciencedirect_doi_10_1016_j_neunet_2025_108014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2026-01-01
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Pei, Xu, Xu, Bezerianos, Sun, Li (bib0037) 2021; 70
Bhandari, Londhe, Kshirsagar (bib0006) 2023; 85
Fu, Xiang, Zahid, Ding, Mei, Shen, Han (bib0014) 2022; 509
Li, Daly, Guan, Cichocki, Jin (bib0022) 2024; 180
Zhang, He, Mai, Luo, Li, Cheng, Huang, Lin (bib0044) 2024; 36
Zhou, Zhai, Cao (bib0045) 2023; 144
Szegedy, Ioffe, Vanhoucke, Alemi (bib0035) 2017; 31
Santamaría-Vázquez, Martínez-Cagigal, Vaquerizo-Villar, Hornero (bib0029) 2020; 28
Wang, Wang, Yan, Zheng (bib0039) 2024
Ali, Ullah, Ahmad, Wu, Li, Bai (bib0001) 2025
Alvarado-Gonzalez, Fuentes-Pineda, Cervantes-Ojeda (bib0004) 2021; 425
Peketi, Dhok (bib0028) 2023; 13
Wang, Wang, Sun, Yuan, Xu, Li (bib0038) 2024; 32
Lin, Do (bib0024) 2020; 51
Chawla, Bowyer, Hall, Kegelmeyer (bib0010) 2002; 16
Blankertz, Muller, Krusienski, Schalk, Wolpaw, Schlogl, Pfurtscheller, Millan, Schroder, Birbaumer (bib0007) 2006; 14
Jin, Xu, Daly, Zhao, Wang, Cichocki (bib0017) 2024; 54
Lin, Goyal, Girshick, He, Dollár (bib0025) 2017
Ma, Yu, Zhong, Yu, Li, Gu (bib0026) 2021; 29
Simonyan, K. (2014). Very deep convolutional networks for large-scale image recognition.
Zhang, Kang, Hooi, Yan, Feng (bib0043) 2023; 45
Li, Zhao, Liu, Jin, Guan (bib0023) 2025; 159
Bai, Li, Qi, Ng, Ng, Qian (bib0005) 2023; 17
Simões, Borra, Santamaría-Vázquez, Gbt-Upm, Bittencourt-Villalpando, Krzemiński, Miladinović, Neural_Engineering_Group, Schmid, Zhao (bib0033) 2020; 14
Daǧ, Dui, Ferrante, Pedrocchi, Antonietti (bib0011) 2022; 26
Wang, Chen, Li, Wan, Sun, Wang (bib0041) 2023; 31
Haider, Jiang, Jamshed, Pervaiz, Mumtaz (bib0015) 2018; 1
Sharafian, Ullah, Singh, Ali, Khan, Bai (bib0031) 2024; 186
Hashmi, Kene, Kotambkar, Matte, Keskar (bib0016) 2022; 97
Cao, Wei, Gaidon, Aréchiga, Ma (bib0009) 2019
Farwell, Donchin (bib0013) 1988; 70
Shukla, P. K., Cecotti, H., & Meena, Y. K. (2024). Towards effective deep neural network approach for multi-trial P300-based character recognition in brain-computer interfaces.
Demšar (bib0012) 2006; 7
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0036) 2015
Kotas, Piela, Contreras-Ortiz (bib0019) 2022; 52
.
Kalra, Mittal, Mittal, Arora, Tewari, Chharia, Upadhyay, Kumar, Longo (bib0018) 2023; 31
Buda, Maki, Mazurowski (bib0008) 2018; 106
Ali, Ullah, Shabaz, Sharafian, Khan, Bai, Qiu (bib0002) 2024; 70
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (bib0030) 2017; 38
Kshirsagar, Londhe (bib0020) 2022; 52
Xu, Allison, Zhao, Liang, Wang, Cichocki, Jin (bib0042) 2025; 184
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (bib0021) 2018; 15
Wang, Wang, Qi, Kong, Wang (bib0040) 2024; 170
Ali, Zhu, Zakarya (bib0003) 2022; 145
Patel, Bhatt, Munshi, Pandya, Jain, Thakkar, Yoon (bib0027) 2024; 88
Wang (10.1016/j.neunet.2025.108014_bib0040) 2024; 170
Zhou (10.1016/j.neunet.2025.108014_bib0045) 2023; 144
Bhandari (10.1016/j.neunet.2025.108014_bib0006) 2023; 85
Kotas (10.1016/j.neunet.2025.108014_bib0019) 2022; 52
Zhang (10.1016/j.neunet.2025.108014_bib0043) 2023; 45
Chawla (10.1016/j.neunet.2025.108014_bib0010) 2002; 16
Wang (10.1016/j.neunet.2025.108014_bib0041) 2023; 31
Cao (10.1016/j.neunet.2025.108014_bib0009) 2019
Ma (10.1016/j.neunet.2025.108014_bib0026) 2021; 29
Wang (10.1016/j.neunet.2025.108014_bib0039) 2024
Ali (10.1016/j.neunet.2025.108014_bib0002) 2024; 70
Kalra (10.1016/j.neunet.2025.108014_bib0018) 2023; 31
Santamaría-Vázquez (10.1016/j.neunet.2025.108014_bib0029) 2020; 28
Wang (10.1016/j.neunet.2025.108014_bib0038) 2024; 32
Sharafian (10.1016/j.neunet.2025.108014_bib0031) 2024; 186
Wang (10.1016/j.neunet.2025.108014_bib0037) 2021; 70
Zhang (10.1016/j.neunet.2025.108014_bib0044) 2024; 36
Schirrmeister (10.1016/j.neunet.2025.108014_bib0030) 2017; 38
Fu (10.1016/j.neunet.2025.108014_bib0014) 2022; 509
Szegedy (10.1016/j.neunet.2025.108014_bib0036) 2015
Simões (10.1016/j.neunet.2025.108014_bib0033) 2020; 14
Ali (10.1016/j.neunet.2025.108014_bib0001) 2025
Lin (10.1016/j.neunet.2025.108014_bib0025) 2017
Xu (10.1016/j.neunet.2025.108014_bib0042) 2025; 184
Haider (10.1016/j.neunet.2025.108014_bib0015) 2018; 1
Hashmi (10.1016/j.neunet.2025.108014_bib0016) 2022; 97
Kshirsagar (10.1016/j.neunet.2025.108014_bib0020) 2022; 52
Lawhern (10.1016/j.neunet.2025.108014_bib0021) 2018; 15
Li (10.1016/j.neunet.2025.108014_bib0022) 2024; 180
Buda (10.1016/j.neunet.2025.108014_bib0008) 2018; 106
Ali (10.1016/j.neunet.2025.108014_bib0003) 2022; 145
Bai (10.1016/j.neunet.2025.108014_bib0005) 2023; 17
Jin (10.1016/j.neunet.2025.108014_bib0017) 2024; 54
Li (10.1016/j.neunet.2025.108014_bib0023) 2025; 159
Patel (10.1016/j.neunet.2025.108014_bib0027) 2024; 88
Alvarado-Gonzalez (10.1016/j.neunet.2025.108014_bib0004) 2021; 425
Peketi (10.1016/j.neunet.2025.108014_bib0028) 2023; 13
10.1016/j.neunet.2025.108014_bib0032
Farwell (10.1016/j.neunet.2025.108014_bib0013) 1988; 70
Lin (10.1016/j.neunet.2025.108014_bib0024) 2020; 51
Blankertz (10.1016/j.neunet.2025.108014_bib0007) 2006; 14
Daǧ (10.1016/j.neunet.2025.108014_bib0011) 2022; 26
Demšar (10.1016/j.neunet.2025.108014_bib0012) 2006; 7
10.1016/j.neunet.2025.108014_bib0034
Szegedy (10.1016/j.neunet.2025.108014_bib0035) 2017; 31
References_xml – volume: 36
  start-page: 8166
  year: 2024
  end-page: 8177
  ident: bib0044
  article-title: Convolutional dynamically convergent differential neural network for brain signal classification
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 31
  year: 2017
  ident: bib0035
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: Proceedings of the AAAI conference on artificial intelligence
– volume: 184
  year: 2025
  ident: bib0042
  article-title: Multi-scale pyramid squeeze attention similarity optimization classification neural network for ERP detection
  publication-title: Neural Networks
– reference: Shukla, P. K., Cecotti, H., & Meena, Y. K. (2024). Towards effective deep neural network approach for multi-trial P300-based character recognition in brain-computer interfaces.
– volume: 425
  start-page: 37
  year: 2021
  end-page: 52
  ident: bib0004
  article-title: A few filters are enough: Convolutional neural network for P300 detection
  publication-title: Neurocomputing
– volume: 28
  start-page: 2773
  year: 2020
  end-page: 2782
  ident: bib0029
  article-title: EEG-Inception: A novel deep convolutional neural network for assistive ERP-based brain-computer interfaces
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 14
  start-page: 153
  year: 2006
  end-page: 159
  ident: bib0007
  article-title: The BCI competition III: Validating alternative approaches to actual BCI problems
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– year: 2019
  ident: bib0009
  article-title: Learning imbalanced datasets with label-distribution-aware margin loss
  publication-title: Neural information processing systems
– volume: 88
  year: 2024
  ident: bib0027
  article-title: CNN-FEBAC: A framework for attention measurement of autistic individuals
  publication-title: Biomedical Signal Processing and Control
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bib0010
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
– volume: 180
  year: 2024
  ident: bib0022
  article-title: Inter-participant transfer learning with attention based domain adversarial training for P300 detection
  publication-title: Neural Networks
– volume: 85
  year: 2023
  ident: bib0006
  article-title: Compact temporal dilated convolution with channel-wise attention and cost sensitive learning for single trial P300 detection
  publication-title: Biomedical Signal Processing and Control
– volume: 509
  start-page: 290
  year: 2022
  end-page: 309
  ident: bib0014
  article-title: Long-tailed visual recognition with deep models: A methodological survey and evaluation
  publication-title: Neurocomputing
– volume: 54
  start-page: 5565
  year: 2024
  end-page: 5576
  ident: bib0017
  article-title: MOCNN: A multiscale deep convolutional neural network for ERP-based brain-computer interfaces
  publication-title: IEEE Transactions on Cybernetics
– year: 2025
  ident: bib0001
  article-title: An attention-driven spatio-temporal deep hybrid neural networks for traffic flow prediction in transportation systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 51
  start-page: 298
  year: 2020
  end-page: 312
  ident: bib0024
  article-title: Direct-sense brain–computer interfaces and wearable computers
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 186
  year: 2024
  ident: bib0031
  article-title: Adaptive fuzzy backstepping secure control for incommensurate fractional order cyber–physical power systems under intermittent denial of service attacks
  publication-title: Chaos, Solitons & Fractals
– volume: 106
  start-page: 249
  year: 2018
  end-page: 259
  ident: bib0008
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural Networks
– volume: 14
  year: 2020
  ident: bib0033
  article-title: BCIAUT-P300: A multi-session and multi-subject benchmark dataset on autism for P300-based brain-computer-interfaces
  publication-title: Frontiers in Neuroscience
– volume: 70
  start-page: 510
  year: 1988
  end-page: 523
  ident: bib0013
  article-title: Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 31
  start-page: 1429
  year: 2023
  end-page: 1439
  ident: bib0018
  article-title: How visual stimuli evoked P300 is transforming the brain–computer interface landscape: A PRISMA compliant systematic review
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 13
  start-page: 315
  year: 2023
  ident: bib0028
  article-title: Machine learning enabled P300 classifier for autism spectrum disorder using adaptive signal decomposition
  publication-title: Brain Sciences
– start-page: 2980
  year: 2017
  end-page: 2988
  ident: bib0025
  article-title: Focal loss for dense object detection
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0012
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 144
  year: 2023
  ident: bib0045
  article-title: Feature fusion network for long-tailed visual recognition
  publication-title: Pattern Recognition
– volume: 32
  start-page: 2270
  year: 2024
  end-page: 2280
  ident: bib0038
  article-title: A cascade xDAWN EEGNet structure for unified visual-evoked related potential detection
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 70
  start-page: 1
  year: 2021
  end-page: 12
  ident: bib0037
  article-title: Performance enhancement of P300 detection by multiscale-CNN
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 26
  start-page: 4892
  year: 2022
  end-page: 4902
  ident: bib0011
  article-title: Leveraging deep learning techniques to improve P300-based brain computer interfaces
  publication-title: IEEE Journal of Biomedical and Health Informatics
– reference: Simonyan, K. (2014). Very deep convolutional networks for large-scale image recognition.
– volume: 52
  start-page: 7431
  year: 2022
  end-page: 7443
  ident: bib0020
  article-title: DS-P3SNet: An efficient classification approach for devanagari script-based P300 speller using compact channelwise convolution and knowledge distillation
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 1
  start-page: 26
  year: 2018
  end-page: 29
  ident: bib0015
  article-title: Performance enhancement in P300 ERP single trial by machine learning adaptive denoising mechanism
  publication-title: IEEE Networking Letters
– reference: .
– volume: 29
  start-page: 718
  year: 2021
  end-page: 730
  ident: bib0026
  article-title: Capsule network for ERP detection in brain-computer interface
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 159
  year: 2025
  ident: bib0023
  article-title: Self-distillation with beta label smoothing-based cross-subject transfer learning for P300 classification
  publication-title: Pattern Recognition
– volume: 70
  start-page: 7252
  year: 2024
  end-page: 7265
  ident: bib0002
  article-title: A resource-aware multi-graph neural network for urban traffic flow prediction in multi-access edge computing systems
  publication-title: IEEE Transactions on Consumer Electronics
– volume: 145
  start-page: 233
  year: 2022
  end-page: 247
  ident: bib0003
  article-title: Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction
  publication-title: Neural Networks
– volume: 170
  start-page: 312
  year: 2024
  end-page: 324
  ident: bib0040
  article-title: BrainGridNet: A two-branch depthwise CNN for decoding EEG-based multi-class motor imagery
  publication-title: Neural Networks
– start-page: 1
  year: 2024
  end-page: 9
  ident: bib0039
  article-title: A novel parameter-free attention-based multiscale convolution prototype networks for P300 brain-computer interface
  publication-title: 2024 international joint conference on neural networks (IJCNN)
– volume: 15
  year: 2018
  ident: bib0021
  article-title: EEGNet: A compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: Journal of Neural Engineering
– volume: 31
  start-page: 991
  year: 2023
  end-page: 1000
  ident: bib0041
  article-title: ST-CapsNet: Linking spatial and temporal attention with capsule network for P300 detection improvement
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: bib0030
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Mapping
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0036
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 97
  year: 2022
  ident: bib0016
  article-title: An efficient P300 detection algorithm based on kernel principal component analysis-support vector machine
  publication-title: Computers & Electrical Engineering
– volume: 52
  start-page: 677
  year: 2022
  end-page: 686
  ident: bib0019
  article-title: Modified spatio-temporal matched filtering for brain responses classification
  publication-title: IEEE Transactions on Human-Machine Systems
– volume: 45
  start-page: 10795
  year: 2023
  end-page: 10816
  ident: bib0043
  article-title: Deep long-tailed learning: A survey
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 17
  year: 2023
  ident: bib0005
  article-title: A hybrid P300-SSVEP brain-computer interface speller with a frequency enhanced row and column paradigm
  publication-title: Frontiers in Neuroscience
– start-page: 1
  year: 2024
  ident: 10.1016/j.neunet.2025.108014_bib0039
  article-title: A novel parameter-free attention-based multiscale convolution prototype networks for P300 brain-computer interface
– volume: 31
  start-page: 1429
  year: 2023
  ident: 10.1016/j.neunet.2025.108014_bib0018
  article-title: How visual stimuli evoked P300 is transforming the brain–computer interface landscape: A PRISMA compliant systematic review
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2023.3246588
– ident: 10.1016/j.neunet.2025.108014_bib0034
– ident: 10.1016/j.neunet.2025.108014_bib0032
– volume: 17
  year: 2023
  ident: 10.1016/j.neunet.2025.108014_bib0005
  article-title: A hybrid P300-SSVEP brain-computer interface speller with a frequency enhanced row and column paradigm
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2023.1133933
– volume: 54
  start-page: 5565
  issue: 9
  year: 2024
  ident: 10.1016/j.neunet.2025.108014_bib0017
  article-title: MOCNN: A multiscale deep convolutional neural network for ERP-based brain-computer interfaces
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2024.3390805
– volume: 26
  start-page: 4892
  issue: 10
  year: 2022
  ident: 10.1016/j.neunet.2025.108014_bib0011
  article-title: Leveraging deep learning techniques to improve P300-based brain computer interfaces
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2022.3174771
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.neunet.2025.108014_bib0010
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– volume: 32
  start-page: 2270
  year: 2024
  ident: 10.1016/j.neunet.2025.108014_bib0038
  article-title: A cascade xDAWN EEGNet structure for unified visual-evoked related potential detection
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2024.3415474
– volume: 52
  start-page: 7431
  issue: 12
  year: 2022
  ident: 10.1016/j.neunet.2025.108014_bib0020
  article-title: DS-P3SNet: An efficient classification approach for devanagari script-based P300 speller using compact channelwise convolution and knowledge distillation
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2022.3156861
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.neunet.2025.108014_bib0037
  article-title: Performance enhancement of P300 detection by multiscale-CNN
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2021.3123218
– volume: 7
  start-page: 1
  issue: Jan
  year: 2006
  ident: 10.1016/j.neunet.2025.108014_bib0012
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 31
  start-page: 991
  year: 2023
  ident: 10.1016/j.neunet.2025.108014_bib0041
  article-title: ST-CapsNet: Linking spatial and temporal attention with capsule network for P300 detection improvement
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2023.3237319
– start-page: 2980
  year: 2017
  ident: 10.1016/j.neunet.2025.108014_bib0025
  article-title: Focal loss for dense object detection
– volume: 70
  start-page: 7252
  issue: 4
  year: 2024
  ident: 10.1016/j.neunet.2025.108014_bib0002
  article-title: A resource-aware multi-graph neural network for urban traffic flow prediction in multi-access edge computing systems
  publication-title: IEEE Transactions on Consumer Electronics
  doi: 10.1109/TCE.2024.3439719
– volume: 186
  year: 2024
  ident: 10.1016/j.neunet.2025.108014_bib0031
  article-title: Adaptive fuzzy backstepping secure control for incommensurate fractional order cyber–physical power systems under intermittent denial of service attacks
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2024.115288
– volume: 145
  start-page: 233
  year: 2022
  ident: 10.1016/j.neunet.2025.108014_bib0003
  article-title: Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2021.10.021
– volume: 170
  start-page: 312
  year: 2024
  ident: 10.1016/j.neunet.2025.108014_bib0040
  article-title: BrainGridNet: A two-branch depthwise CNN for decoding EEG-based multi-class motor imagery
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2023.11.037
– volume: 106
  start-page: 249
  year: 2018
  ident: 10.1016/j.neunet.2025.108014_bib0008
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.07.011
– volume: 159
  year: 2025
  ident: 10.1016/j.neunet.2025.108014_bib0023
  article-title: Self-distillation with beta label smoothing-based cross-subject transfer learning for P300 classification
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2024.111114
– year: 2025
  ident: 10.1016/j.neunet.2025.108014_bib0001
  article-title: An attention-driven spatio-temporal deep hybrid neural networks for traffic flow prediction in transportation systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2025.3540852
– volume: 70
  start-page: 510
  issue: 6
  year: 1988
  ident: 10.1016/j.neunet.2025.108014_bib0013
  article-title: Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0013-4694(88)90149-6
– volume: 1
  start-page: 26
  issue: 1
  year: 2018
  ident: 10.1016/j.neunet.2025.108014_bib0015
  article-title: Performance enhancement in P300 ERP single trial by machine learning adaptive denoising mechanism
  publication-title: IEEE Networking Letters
  doi: 10.1109/LNET.2018.2883859
– start-page: 1
  year: 2015
  ident: 10.1016/j.neunet.2025.108014_bib0036
  article-title: Going deeper with convolutions
– volume: 28
  start-page: 2773
  issue: 12
  year: 2020
  ident: 10.1016/j.neunet.2025.108014_bib0029
  article-title: EEG-Inception: A novel deep convolutional neural network for assistive ERP-based brain-computer interfaces
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2020.3048106
– volume: 45
  start-page: 10795
  issue: 9
  year: 2023
  ident: 10.1016/j.neunet.2025.108014_bib0043
  article-title: Deep long-tailed learning: A survey
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2023.3268118
– volume: 14
  year: 2020
  ident: 10.1016/j.neunet.2025.108014_bib0033
  article-title: BCIAUT-P300: A multi-session and multi-subject benchmark dataset on autism for P300-based brain-computer-interfaces
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2020.568104
– volume: 13
  start-page: 315
  issue: 2
  year: 2023
  ident: 10.1016/j.neunet.2025.108014_bib0028
  article-title: Machine learning enabled P300 classifier for autism spectrum disorder using adaptive signal decomposition
  publication-title: Brain Sciences
  doi: 10.3390/brainsci13020315
– volume: 52
  start-page: 677
  issue: 4
  year: 2022
  ident: 10.1016/j.neunet.2025.108014_bib0019
  article-title: Modified spatio-temporal matched filtering for brain responses classification
  publication-title: IEEE Transactions on Human-Machine Systems
  doi: 10.1109/THMS.2022.3168421
– volume: 184
  year: 2025
  ident: 10.1016/j.neunet.2025.108014_bib0042
  article-title: Multi-scale pyramid squeeze attention similarity optimization classification neural network for ERP detection
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2025.107124
– volume: 51
  start-page: 298
  issue: 1
  year: 2020
  ident: 10.1016/j.neunet.2025.108014_bib0024
  article-title: Direct-sense brain–computer interfaces and wearable computers
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMC.2020.3041382
– volume: 144
  year: 2023
  ident: 10.1016/j.neunet.2025.108014_bib0045
  article-title: Feature fusion network for long-tailed visual recognition
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2023.109827
– volume: 425
  start-page: 37
  year: 2021
  ident: 10.1016/j.neunet.2025.108014_bib0004
  article-title: A few filters are enough: Convolutional neural network for P300 detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.10.104
– volume: 85
  year: 2023
  ident: 10.1016/j.neunet.2025.108014_bib0006
  article-title: Compact temporal dilated convolution with channel-wise attention and cost sensitive learning for single trial P300 detection
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2023.104924
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: 10.1016/j.neunet.2025.108014_bib0030
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23730
– volume: 15
  issue: 5
  year: 2018
  ident: 10.1016/j.neunet.2025.108014_bib0021
  article-title: EEGNet: A compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aace8c
– volume: 509
  start-page: 290
  year: 2022
  ident: 10.1016/j.neunet.2025.108014_bib0014
  article-title: Long-tailed visual recognition with deep models: A methodological survey and evaluation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.08.031
– volume: 180
  year: 2024
  ident: 10.1016/j.neunet.2025.108014_bib0022
  article-title: Inter-participant transfer learning with attention based domain adversarial training for P300 detection
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2024.106655
– volume: 31
  year: 2017
  ident: 10.1016/j.neunet.2025.108014_bib0035
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
– volume: 14
  start-page: 153
  issue: 2
  year: 2006
  ident: 10.1016/j.neunet.2025.108014_bib0007
  article-title: The BCI competition III: Validating alternative approaches to actual BCI problems
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2006.875642
– volume: 97
  year: 2022
  ident: 10.1016/j.neunet.2025.108014_bib0016
  article-title: An efficient P300 detection algorithm based on kernel principal component analysis-support vector machine
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2021.107608
– volume: 29
  start-page: 718
  year: 2021
  ident: 10.1016/j.neunet.2025.108014_bib0026
  article-title: Capsule network for ERP detection in brain-computer interface
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2021.3070327
– volume: 88
  year: 2024
  ident: 10.1016/j.neunet.2025.108014_bib0027
  article-title: CNN-FEBAC: A framework for attention measurement of autistic individuals
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2023.105018
– year: 2019
  ident: 10.1016/j.neunet.2025.108014_bib0009
  article-title: Learning imbalanced datasets with label-distribution-aware margin loss
– volume: 36
  start-page: 8166
  issue: 5
  year: 2024
  ident: 10.1016/j.neunet.2025.108014_bib0044
  article-title: Convolutional dynamically convergent differential neural network for brain signal classification
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2024.3437676
SSID ssj0006843
Score 2.476615
Snippet To address the problems of low signal-to-noise ratio, significant individual differences between subjects, and class imbalance in P300-based brain-computer...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 108014
SubjectTerms Brain-computer interface (BCI)
Class imbalance
Convolutional neural networks
Deep learning
P300
Title ITSEF: Inception-based two-stage ensemble framework for P300 detection
URI https://dx.doi.org/10.1016/j.neunet.2025.108014
https://www.ncbi.nlm.nih.gov/pubmed/40857922
https://www.proquest.com/docview/3246382122
Volume 193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DX3zxfpmXEcHXuDS9xrcxVjaFIWyDvYWkSWWi2dAO3_ztnvSi-DAE6VND2oYv55zvtP1OgtBNknDjM61JzGhCAq4VUUxHRNMsp76MmTGlynccDWfB_Tyct1C_qYVxsso69lcxvYzWdUu3RrO7Wiy6EwpUG7lS0RB4jAeuiM-t_gU2ffv5I_OIkko5B52J692Uz5UaL2vW1jhFJQtLsZ0XbKKnTelnSUPpPtqt80fcq4Z4gFrGHqK9Zm8GXLvqEUpH08kgvcMjW-tWiOMrjYuPJYGE8MlgeH81r-rF4LzRZ2FIYPGjTynWpiglWvYYzdLBtD8k9Z4JJGMsKUggPRPqIPRk5mmtY3BfZVhCgxgaQ648nXOasVwrn-c0gyPXCdM8V0ZBh9g_QVt2ac0ZwpRJ8HDpKF4GPtwkB7wTJrnHeSY1bSPSQCVW1dIYotGMPYsKWuGgFRW0bRQ3eIpfUywgev9x5XUDvwDrd780pDXL9buAdBACCNAva6PTal6-x-LWbos5Y-f_fu4F2oGz-ovLJdoq3tbmCnKQQnVKI-ug7d7oYTj-AjJ-2X8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFL3ouNCN78f4jOA2TJqm08adiMOMj0FwBHchaVJRtCPawd_3pk0FFyJId2nShpPec27bkwTgJMuki7m1NOUso0JaQw23fWpZXrBYp9y52uU77g_vxeVD8jAH5-1cGG-rDNzfcHrN1qGkF9DsvT099e4YSm3fTxVNUMekkPOwIBLk5A4snI2uhuNvQu5njXkO61PfoJ1BV9u8SjcrnTdV8qT220XiN4X6LQOtlWiwCsshhSRnTS_XYM6V67DSbs9AQrRuwGA0ubsYnJJRGawr1EuWJdXnlGJO-OgIvsK6V_PiSNFatAjmsOQ2ZoxYV9UurXIT7gcXk_MhDdsm0JzzrKJCRy6xIol0HllrU4xg43jGRIqFiTSRLSTLeWFNLAuW41HYjFtZGGewQhpvQaeclm4HCOMag1x7ldcixosUCHnGtYykzLVlXaAtVOqtWR1DtbaxZ9VAqzy0qoG2C2mLp_oxygoJ_I-Wxy38CgPA_9XQpZvOPhRmhMghqMC8C9vNuHz3xS_flkrOd_993yNYHE5urtX1aHy1B0t4JnyA2YdO9T5zB5iSVOYwPHJfqaPcKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ITSEF%3A+Inception-based+two-stage+ensemble+framework+for+P300+detection&rft.jtitle=Neural+networks&rft.au=Hu%2C+Wenjun&rft.au=Zhang%2C+Dingguo&rft.au=Chen%2C+Wanzhong&rft.date=2026-01-01&rft.issn=0893-6080&rft.volume=193&rft.spage=108014&rft_id=info:doi/10.1016%2Fj.neunet.2025.108014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2025_108014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon