Improvement of Dam Crack Detection Algorithm for YOLOv9

Dams, as crucial water conservancy engineering facilities, play a role in safe guarding people's livelihoods and providing economic benefits. However, due to the impact of natural factors and human activities, dams may develop cracks and other potential safety hazards during operation. Crack de...

Full description

Saved in:
Bibliographic Details
Published inIET image processing Vol. 19; no. 1
Main Authors Zhang, Huixia, Jiang, Xuhui, Liu, Yitong, Qian, JinHua, Ni, Lixue
Format Journal Article
LanguageEnglish
Published 01.01.2025
Online AccessGet full text
ISSN1751-9659
1751-9667
1751-9667
DOI10.1049/ipr2.70124

Cover

Abstract Dams, as crucial water conservancy engineering facilities, play a role in safe guarding people's livelihoods and providing economic benefits. However, due to the impact of natural factors and human activities, dams may develop cracks and other potential safety hazards during operation. Crack detection can identify these potential issues in a timely manner, allowing for appropriate measures to be taken for repair and reinforcement, thereby preventing catastrophic consequences such as dam breaches under extreme weather or geological conditions. In the process of dam crack detection, this paper presents a method, YOLOv9‐LAE, which may solve missed or false detections. Firstly, the large separable kernel attention (LSKA) module is introduced, which emphasises positional information while focusing on channel features. Secondly, the SPPFELAN in YOLOV9 is replaced by the AIFI module, as capturing the key information needed in the image will enable the following modules to accurately detect the crack information. Finally, the EIOU to calculate the loss, accelerating training convergence and improving the accuracy of crack detection. The research results indicate that YOLOV9‐LAE achieves a precision of 90.7%, the recall rate is 75.1%, with at 81.5% and at 60.6%. Compared to YOLOv9, the precision has improved by 9.9%, the recall has increased by 2%, has risen by 1.5% and has been enhanced by 1.5%.
AbstractList Dams, as crucial water conservancy engineering facilities, play a role in safe guarding people's livelihoods and providing economic benefits. However, due to the impact of natural factors and human activities, dams may develop cracks and other potential safety hazards during operation. Crack detection can identify these potential issues in a timely manner, allowing for appropriate measures to be taken for repair and reinforcement, thereby preventing catastrophic consequences such as dam breaches under extreme weather or geological conditions. In the process of dam crack detection, this paper presents a method, YOLOv9‐LAE, which may solve missed or false detections. Firstly, the large separable kernel attention (LSKA) module is introduced, which emphasises positional information while focusing on channel features. Secondly, the SPPFELAN in YOLOV9 is replaced by the AIFI module, as capturing the key information needed in the image will enable the following modules to accurately detect the crack information. Finally, the EIOU to calculate the loss, accelerating training convergence and improving the accuracy of crack detection. The research results indicate that YOLOV9‐LAE achieves a precision of 90.7%, the recall rate is 75.1%, with at 81.5% and at 60.6%. Compared to YOLOv9, the precision has improved by 9.9%, the recall has increased by 2%, has risen by 1.5% and has been enhanced by 1.5%.
Author Zhang, Huixia
Liu, Yitong
Qian, JinHua
Jiang, Xuhui
Ni, Lixue
Author_xml – sequence: 1
  givenname: Huixia
  surname: Zhang
  fullname: Zhang, Huixia
  organization: School of Ocean Engineering Jiangsu Ocean University Lianyungang China
– sequence: 2
  givenname: Xuhui
  orcidid: 0009-0001-1486-8949
  surname: Jiang
  fullname: Jiang, Xuhui
  organization: School of Ocean Engineering Jiangsu Ocean University Lianyungang China
– sequence: 3
  givenname: Yitong
  surname: Liu
  fullname: Liu, Yitong
  organization: School of Makarov College of Marine Engineering Jiangsu Ocean University Lianyungang China
– sequence: 4
  givenname: JinHua
  surname: Qian
  fullname: Qian, JinHua
  organization: School of Ocean Engineering Jiangsu Ocean University Lianyungang China
– sequence: 5
  givenname: Lixue
  surname: Ni
  fullname: Ni, Lixue
  organization: School of Mechanical Engineering Jiangsu Ocean University Lianyungang China
BookMark eNp9j0FLwzAYhoNMcJte_AU5K51fsiZNjqNzOij0ogdPJU2_aLVtSlon-_duTjx6el94H154ZmTS-Q4JuWawYBDru7oPfJEA4_EZmbJEsEhLmUz-utAXZDYM7wBCgxJTkmzbPvgdttiN1Du6Ni1Ng7EfdI0j2rH2HV01rz7U41tLnQ_0Jc_ynb4k5840A1795pw8b-6f0scoyx-26SqLLOdqjJbOlDaWyqJUopSuRGbAxY5LqVBJiFGUlXUcEUziKkDQzOgSDzsvFauWc3J7-v3serP_Mk1T9KFuTdgXDIqjc3F0Ln6cD_TNibbBD0NA9x_8DbPZWcA
Cites_doi 10.1609/aaai.v34i07.6999
10.1016/j.autcon.2023.105262
10.1109/IJCNN.2016.7727522
10.1109/ICIVC47709.2019.8981093
10.1109/ICCVW54120.2021.00312
10.1109/CVPR52729.2023.00721
10.1109/JOE.2019.2911447
10.1145/3366194.3366327
10.1155/2023/9940881
10.1109/CVPR.2016.91
10.1007/978-3-319-46448-0_2
10.1007/978-3-031-72751-1_1
10.1016/j.eswa.2023.121352
10.1109/TPAMI.1986.4767851
10.1109/CVPR52733.2024.01605
10.1016/j.compeleceng.2022.108269
10.1109/TCYB.2021.3095305
10.1016/j.engstruct.2022.115158
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1049/ipr2.70124
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
ExternalDocumentID 10.1049/ipr2.70124
10_1049_ipr2_70124
GroupedDBID .DC
0R~
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
8VB
AAHJG
AAJGR
AAMMB
AAYXX
ABJCF
ABQXS
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
AEFGJ
AENEX
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IDLOA
IPLJI
ITC
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OK1
P2P
P62
PHGZM
PHGZT
PQGLB
PTHSS
QWB
RNS
ROL
RUI
S0W
WIN
ZL0
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c228t-3fabc468ce685b6fbe1a0f4f2668e8604e5bdcf2ee0a7fd0e091a9be2662b81d3
IEDL.DBID UNPAY
ISSN 1751-9659
1751-9667
IngestDate Wed Oct 01 16:10:08 EDT 2025
Wed Oct 29 21:16:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c228t-3fabc468ce685b6fbe1a0f4f2668e8604e5bdcf2ee0a7fd0e091a9be2662b81d3
ORCID 0009-0001-1486-8949
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ipr2.70124
ParticipantIDs unpaywall_primary_10_1049_ipr2_70124
crossref_primary_10_1049_ipr2_70124
PublicationCentury 2000
PublicationDate 2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-00
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2025
References e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
Mao Y. C. (e_1_2_8_12_1) 2019
e_1_2_8_13_1
e_1_2_8_24_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_10_1
e_1_2_8_21_1
e_1_2_8_11_1
e_1_2_8_22_1
e_1_2_8_23_1
Gupta S. (e_1_2_8_2_1) 2013; 2
References_xml – ident: e_1_2_8_5_1
– ident: e_1_2_8_24_1
  doi: 10.1609/aaai.v34i07.6999
– volume: 2
  start-page: 1578
  issue: 2
  year: 2013
  ident: e_1_2_8_2_1
  article-title: Sobel Edge Detection Algorithm
  publication-title: International Journal of Computer Science and Management Research
– ident: e_1_2_8_18_1
  doi: 10.1016/j.autcon.2023.105262
– ident: e_1_2_8_10_1
  doi: 10.1109/IJCNN.2016.7727522
– ident: e_1_2_8_14_1
– ident: e_1_2_8_6_1
– ident: e_1_2_8_15_1
  doi: 10.1109/ICIVC47709.2019.8981093
– ident: e_1_2_8_7_1
  doi: 10.1109/ICCVW54120.2021.00312
– ident: e_1_2_8_8_1
  doi: 10.1109/CVPR52729.2023.00721
– year: 2019
  ident: e_1_2_8_12_1
  article-title: Dam Defect Recognition and Classification Based on Feature Combination and CNN
  publication-title: Computer Science
– ident: e_1_2_8_13_1
  doi: 10.1109/JOE.2019.2911447
– ident: e_1_2_8_16_1
  doi: 10.1145/3366194.3366327
– ident: e_1_2_8_17_1
  doi: 10.1155/2023/9940881
– ident: e_1_2_8_4_1
  doi: 10.1109/CVPR.2016.91
– ident: e_1_2_8_9_1
  doi: 10.1007/978-3-319-46448-0_2
– ident: e_1_2_8_20_1
  doi: 10.1007/978-3-031-72751-1_1
– ident: e_1_2_8_21_1
  doi: 10.1016/j.eswa.2023.121352
– ident: e_1_2_8_3_1
  doi: 10.1109/TPAMI.1986.4767851
– ident: e_1_2_8_22_1
  doi: 10.1109/CVPR52733.2024.01605
– ident: e_1_2_8_11_1
  doi: 10.1016/j.compeleceng.2022.108269
– ident: e_1_2_8_23_1
  doi: 10.1109/TCYB.2021.3095305
– ident: e_1_2_8_19_1
  doi: 10.1016/j.engstruct.2022.115158
SSID ssj0059085
Score 2.3389525
Snippet Dams, as crucial water conservancy engineering facilities, play a role in safe guarding people's livelihoods and providing economic benefits. However, due to...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
Title Improvement of Dam Crack Detection Algorithm for YOLOv9
URI https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ipr2.70124
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: IDLOA
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: AVUZU
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059085
  issn: 1751-9667
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT8IwEG4UHnwSf0aMkibyOhyj7dbHBSTEKPjgDPhC2q5VAoxlDo3-9bbbIOCDMfFtybpku_XuvrvefQdAHVPTIuMwS2KBzDGjtoMtR4cqgpmqQoZwaPKQ933SC9DtEA83uvhzfoh1ws1oRmavjYLHocrtfB51Ino9iROn4Wobi3ZBmWCNxkugHPQf_FHWB2kmyJNsXlpxTdwVQ-nWw1s-aW8Zxezzg81mG46mWwFs9Yp5fcm0sUx5Q3z9YG_8zzccgP0ChUI_3zaHYEdGR6BSIFJY6PvbMXDznEOWQoQLBTtsDtsJE1PYkWlWxBVBf_aySCbp6xxq_AtHg7vBOz0BQffmsd2zilELlnAcL7VainGBiCck8TAnissmsxVS2n170iM2kpiHQjlS2sxVoS01zGCUS33f4Rrytk5BKVpE8gxAhghiQlJkh4b6xmZUMdoMJUI6tFG4WQVXK2GP45xRY5ydhCM6NrIYZ7Kogvr6P_yy7Pxvyy5AKU2W8lLjh5TXQNl_Cp6DWrFVvgED68dR
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT8IwEG4UHnwSf0aMmibyOhyj7dZHAhJiFHyQBJ7ItWuVAGOZQ6N_ve02DPhgTHxbsi7Zbr2776533yFUo9y2yHjgKCqJPWY0drDpmVBFgq0qBEJDm4d86LPekNyN6Gijiz_nh_hOuFnNyOy1VfA41Lmdz6NOwm-mceLVfWNjyS4qM2rQeAmVh_3H1jjrg7QT5Fk2L624Zv6aoXTr4S2ftLeKYvh4h_l8w9F0KwjWr5jXl8zqq1TU5ecP9sb_fMMB2i9QKG7l2-YQ7ajoCFUKRIoLfX89Rn6ec8hSiHipcQcWuJ2AnOGOSrMirgi35s_LZJq-LLDBv3g8uB-88RM07N4-tXtOMWrBkZ4XpE5Tg5CEBVKxgAqmhWqAq4k27jtQAXOJoiKU2lPKBV-HrjIwA7hQ5r4nDORtnqJStIzUGcJAGAGpOHFDS33jAtfAG6EixIQ2mjaq6Hot7EmcM2pMspNwwidWFpNMFlVU-_4Pvyw7_9uyC1RKk5W6NPghFVfFFvkC0MfFkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+Dam+Crack+Detection+Algorithm+for+YOLOv9&rft.jtitle=IET+image+processing&rft.au=Zhang%2C+Huixia&rft.au=Jiang%2C+Xuhui&rft.au=Liu%2C+Yitong&rft.au=Qian%2C+JinHua&rft.date=2025-01-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1049%2Fipr2.70124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ipr2_70124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon