Improvement of Dam Crack Detection Algorithm for YOLOv9
Dams, as crucial water conservancy engineering facilities, play a role in safe guarding people's livelihoods and providing economic benefits. However, due to the impact of natural factors and human activities, dams may develop cracks and other potential safety hazards during operation. Crack de...
Saved in:
| Published in | IET image processing Vol. 19; no. 1 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.01.2025
|
| Online Access | Get full text |
| ISSN | 1751-9659 1751-9667 1751-9667 |
| DOI | 10.1049/ipr2.70124 |
Cover
| Abstract | Dams, as crucial water conservancy engineering facilities, play a role in safe guarding people's livelihoods and providing economic benefits. However, due to the impact of natural factors and human activities, dams may develop cracks and other potential safety hazards during operation. Crack detection can identify these potential issues in a timely manner, allowing for appropriate measures to be taken for repair and reinforcement, thereby preventing catastrophic consequences such as dam breaches under extreme weather or geological conditions. In the process of dam crack detection, this paper presents a method, YOLOv9‐LAE, which may solve missed or false detections. Firstly, the large separable kernel attention (LSKA) module is introduced, which emphasises positional information while focusing on channel features. Secondly, the SPPFELAN in YOLOV9 is replaced by the AIFI module, as capturing the key information needed in the image will enable the following modules to accurately detect the crack information. Finally, the EIOU to calculate the loss, accelerating training convergence and improving the accuracy of crack detection. The research results indicate that YOLOV9‐LAE achieves a precision of 90.7%, the recall rate is 75.1%, with at 81.5% and at 60.6%. Compared to YOLOv9, the precision has improved by 9.9%, the recall has increased by 2%, has risen by 1.5% and has been enhanced by 1.5%. |
|---|---|
| AbstractList | Dams, as crucial water conservancy engineering facilities, play a role in safe guarding people's livelihoods and providing economic benefits. However, due to the impact of natural factors and human activities, dams may develop cracks and other potential safety hazards during operation. Crack detection can identify these potential issues in a timely manner, allowing for appropriate measures to be taken for repair and reinforcement, thereby preventing catastrophic consequences such as dam breaches under extreme weather or geological conditions. In the process of dam crack detection, this paper presents a method, YOLOv9‐LAE, which may solve missed or false detections. Firstly, the large separable kernel attention (LSKA) module is introduced, which emphasises positional information while focusing on channel features. Secondly, the SPPFELAN in YOLOV9 is replaced by the AIFI module, as capturing the key information needed in the image will enable the following modules to accurately detect the crack information. Finally, the EIOU to calculate the loss, accelerating training convergence and improving the accuracy of crack detection. The research results indicate that YOLOV9‐LAE achieves a precision of 90.7%, the recall rate is 75.1%, with at 81.5% and at 60.6%. Compared to YOLOv9, the precision has improved by 9.9%, the recall has increased by 2%, has risen by 1.5% and has been enhanced by 1.5%. |
| Author | Zhang, Huixia Liu, Yitong Qian, JinHua Jiang, Xuhui Ni, Lixue |
| Author_xml | – sequence: 1 givenname: Huixia surname: Zhang fullname: Zhang, Huixia organization: School of Ocean Engineering Jiangsu Ocean University Lianyungang China – sequence: 2 givenname: Xuhui orcidid: 0009-0001-1486-8949 surname: Jiang fullname: Jiang, Xuhui organization: School of Ocean Engineering Jiangsu Ocean University Lianyungang China – sequence: 3 givenname: Yitong surname: Liu fullname: Liu, Yitong organization: School of Makarov College of Marine Engineering Jiangsu Ocean University Lianyungang China – sequence: 4 givenname: JinHua surname: Qian fullname: Qian, JinHua organization: School of Ocean Engineering Jiangsu Ocean University Lianyungang China – sequence: 5 givenname: Lixue surname: Ni fullname: Ni, Lixue organization: School of Mechanical Engineering Jiangsu Ocean University Lianyungang China |
| BookMark | eNp9j0FLwzAYhoNMcJte_AU5K51fsiZNjqNzOij0ogdPJU2_aLVtSlon-_duTjx6el94H154ZmTS-Q4JuWawYBDru7oPfJEA4_EZmbJEsEhLmUz-utAXZDYM7wBCgxJTkmzbPvgdttiN1Du6Ni1Ng7EfdI0j2rH2HV01rz7U41tLnQ_0Jc_ynb4k5840A1795pw8b-6f0scoyx-26SqLLOdqjJbOlDaWyqJUopSuRGbAxY5LqVBJiFGUlXUcEUziKkDQzOgSDzsvFauWc3J7-v3serP_Mk1T9KFuTdgXDIqjc3F0Ln6cD_TNibbBD0NA9x_8DbPZWcA |
| Cites_doi | 10.1609/aaai.v34i07.6999 10.1016/j.autcon.2023.105262 10.1109/IJCNN.2016.7727522 10.1109/ICIVC47709.2019.8981093 10.1109/ICCVW54120.2021.00312 10.1109/CVPR52729.2023.00721 10.1109/JOE.2019.2911447 10.1145/3366194.3366327 10.1155/2023/9940881 10.1109/CVPR.2016.91 10.1007/978-3-319-46448-0_2 10.1007/978-3-031-72751-1_1 10.1016/j.eswa.2023.121352 10.1109/TPAMI.1986.4767851 10.1109/CVPR52733.2024.01605 10.1016/j.compeleceng.2022.108269 10.1109/TCYB.2021.3095305 10.1016/j.engstruct.2022.115158 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1049/ipr2.70124 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1751-9667 |
| ExternalDocumentID | 10.1049/ipr2.70124 10_1049_ipr2_70124 |
| GroupedDBID | .DC 0R~ 1OC 24P 29I 4.4 5GY 6IK 8FE 8FG 8VB AAHJG AAJGR AAMMB AAYXX ABJCF ABQXS ACCMX ACESK ACGFS ACIWK ACXQS AEFGJ AENEX AFFHD AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CITATION CS3 DU5 EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IDLOA IPLJI ITC K1G L6V LAI M43 M7S MCNEO MS~ O9- OK1 P2P P62 PHGZM PHGZT PQGLB PTHSS QWB RNS ROL RUI S0W WIN ZL0 ADTOC PUEGO UNPAY |
| ID | FETCH-LOGICAL-c228t-3fabc468ce685b6fbe1a0f4f2668e8604e5bdcf2ee0a7fd0e091a9be2662b81d3 |
| IEDL.DBID | UNPAY |
| ISSN | 1751-9659 1751-9667 |
| IngestDate | Wed Oct 01 16:10:08 EDT 2025 Wed Oct 29 21:16:36 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c228t-3fabc468ce685b6fbe1a0f4f2668e8604e5bdcf2ee0a7fd0e091a9be2662b81d3 |
| ORCID | 0009-0001-1486-8949 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ipr2.70124 |
| ParticipantIDs | unpaywall_primary_10_1049_ipr2_70124 crossref_primary_10_1049_ipr2_70124 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IET image processing |
| PublicationYear | 2025 |
| References | e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 Mao Y. C. (e_1_2_8_12_1) 2019 e_1_2_8_13_1 e_1_2_8_24_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_10_1 e_1_2_8_21_1 e_1_2_8_11_1 e_1_2_8_22_1 e_1_2_8_23_1 Gupta S. (e_1_2_8_2_1) 2013; 2 |
| References_xml | – ident: e_1_2_8_5_1 – ident: e_1_2_8_24_1 doi: 10.1609/aaai.v34i07.6999 – volume: 2 start-page: 1578 issue: 2 year: 2013 ident: e_1_2_8_2_1 article-title: Sobel Edge Detection Algorithm publication-title: International Journal of Computer Science and Management Research – ident: e_1_2_8_18_1 doi: 10.1016/j.autcon.2023.105262 – ident: e_1_2_8_10_1 doi: 10.1109/IJCNN.2016.7727522 – ident: e_1_2_8_14_1 – ident: e_1_2_8_6_1 – ident: e_1_2_8_15_1 doi: 10.1109/ICIVC47709.2019.8981093 – ident: e_1_2_8_7_1 doi: 10.1109/ICCVW54120.2021.00312 – ident: e_1_2_8_8_1 doi: 10.1109/CVPR52729.2023.00721 – year: 2019 ident: e_1_2_8_12_1 article-title: Dam Defect Recognition and Classification Based on Feature Combination and CNN publication-title: Computer Science – ident: e_1_2_8_13_1 doi: 10.1109/JOE.2019.2911447 – ident: e_1_2_8_16_1 doi: 10.1145/3366194.3366327 – ident: e_1_2_8_17_1 doi: 10.1155/2023/9940881 – ident: e_1_2_8_4_1 doi: 10.1109/CVPR.2016.91 – ident: e_1_2_8_9_1 doi: 10.1007/978-3-319-46448-0_2 – ident: e_1_2_8_20_1 doi: 10.1007/978-3-031-72751-1_1 – ident: e_1_2_8_21_1 doi: 10.1016/j.eswa.2023.121352 – ident: e_1_2_8_3_1 doi: 10.1109/TPAMI.1986.4767851 – ident: e_1_2_8_22_1 doi: 10.1109/CVPR52733.2024.01605 – ident: e_1_2_8_11_1 doi: 10.1016/j.compeleceng.2022.108269 – ident: e_1_2_8_23_1 doi: 10.1109/TCYB.2021.3095305 – ident: e_1_2_8_19_1 doi: 10.1016/j.engstruct.2022.115158 |
| SSID | ssj0059085 |
| Score | 2.3389525 |
| Snippet | Dams, as crucial water conservancy engineering facilities, play a role in safe guarding people's livelihoods and providing economic benefits. However, due to... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Index Database |
| Title | Improvement of Dam Crack Detection Algorithm for YOLOv9 |
| URI | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ipr2.70124 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9667 databaseCode: IDLOA dateStart: 20130201 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9667 databaseCode: AVUZU dateStart: 20130201 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059085 issn: 1751-9667 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT8IwEG4UHnwSf0aMkibyOhyj7dbHBSTEKPjgDPhC2q5VAoxlDo3-9bbbIOCDMfFtybpku_XuvrvefQdAHVPTIuMwS2KBzDGjtoMtR4cqgpmqQoZwaPKQ933SC9DtEA83uvhzfoh1ws1oRmavjYLHocrtfB51Ino9iROn4Wobi3ZBmWCNxkugHPQf_FHWB2kmyJNsXlpxTdwVQ-nWw1s-aW8Zxezzg81mG46mWwFs9Yp5fcm0sUx5Q3z9YG_8zzccgP0ChUI_3zaHYEdGR6BSIFJY6PvbMXDznEOWQoQLBTtsDtsJE1PYkWlWxBVBf_aySCbp6xxq_AtHg7vBOz0BQffmsd2zilELlnAcL7VainGBiCck8TAnissmsxVS2n170iM2kpiHQjlS2sxVoS01zGCUS33f4Rrytk5BKVpE8gxAhghiQlJkh4b6xmZUMdoMJUI6tFG4WQVXK2GP45xRY5ydhCM6NrIYZ7Kogvr6P_yy7Pxvyy5AKU2W8lLjh5TXQNl_Cp6DWrFVvgED68dR |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT8IwEG4UHnwSf0aMmibyOhyj7dZHAhJiFHyQBJ7ItWuVAGOZQ6N_ve02DPhgTHxbsi7Zbr2776533yFUo9y2yHjgKCqJPWY0drDpmVBFgq0qBEJDm4d86LPekNyN6Gijiz_nh_hOuFnNyOy1VfA41Lmdz6NOwm-mceLVfWNjyS4qM2rQeAmVh_3H1jjrg7QT5Fk2L624Zv6aoXTr4S2ftLeKYvh4h_l8w9F0KwjWr5jXl8zqq1TU5ecP9sb_fMMB2i9QKG7l2-YQ7ajoCFUKRIoLfX89Rn6ec8hSiHipcQcWuJ2AnOGOSrMirgi35s_LZJq-LLDBv3g8uB-88RM07N4-tXtOMWrBkZ4XpE5Tg5CEBVKxgAqmhWqAq4k27jtQAXOJoiKU2lPKBV-HrjIwA7hQ5r4nDORtnqJStIzUGcJAGAGpOHFDS33jAtfAG6EixIQ2mjaq6Hot7EmcM2pMspNwwidWFpNMFlVU-_4Pvyw7_9uyC1RKk5W6NPghFVfFFvkC0MfFkw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+Dam+Crack+Detection+Algorithm+for+YOLOv9&rft.jtitle=IET+image+processing&rft.au=Zhang%2C+Huixia&rft.au=Jiang%2C+Xuhui&rft.au=Liu%2C+Yitong&rft.au=Qian%2C+JinHua&rft.date=2025-01-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1049%2Fipr2.70124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ipr2_70124 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |