Interaction force control of industrial manipulators via neural network-based integral terminal sliding mode control algorithm
For the interaction force control problem of the industrial robots system, a novel impedance-based finite-time disturbance rejection interaction force control algorithm is designed. Firstly, based on the impedance control framework, the interaction force tracking control problem is transformed into...
Saved in:
| Published in | Nonlinear dynamics Vol. 113; no. 19; pp. 26361 - 26375 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Nature B.V
01.10.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-090X 1573-269X |
| DOI | 10.1007/s11071-025-11483-8 |
Cover
| Abstract | For the interaction force control problem of the industrial robots system, a novel impedance-based finite-time disturbance rejection interaction force control algorithm is designed. Firstly, based on the impedance control framework, the interaction force tracking control problem is transformed into a trajectory tracking control problem. Secondly, in the absence of uncertain disturbances, a finite-time trajectory tracking control algorithm is developed using homogeneous system theory and the dynamic properties of the robot system. Then, considering the presence of uncertain disturbances, an online disturbance estimation method is constructed based on an RBF neural network. To address the disturbance estimation residual, an integral terminal sliding mode controller is designed via sliding mode control techniques, guaranteeing finite-time convergence of the closed-loop system. Finally, simulation and experimental results demonstrate the effectiveness of the proposed algorithm. |
|---|---|
| AbstractList | For the interaction force control problem of the industrial robots system, a novel impedance-based finite-time disturbance rejection interaction force control algorithm is designed. Firstly, based on the impedance control framework, the interaction force tracking control problem is transformed into a trajectory tracking control problem. Secondly, in the absence of uncertain disturbances, a finite-time trajectory tracking control algorithm is developed using homogeneous system theory and the dynamic properties of the robot system. Then, considering the presence of uncertain disturbances, an online disturbance estimation method is constructed based on an RBF neural network. To address the disturbance estimation residual, an integral terminal sliding mode controller is designed via sliding mode control techniques, guaranteeing finite-time convergence of the closed-loop system. Finally, simulation and experimental results demonstrate the effectiveness of the proposed algorithm. |
| Author | Du, Haibo Cong, Yongzheng Jiang, Cuiqing Zong, Like Luo, Yueyue |
| Author_xml | – sequence: 1 givenname: Like surname: Zong fullname: Zong, Like – sequence: 2 givenname: Cuiqing surname: Jiang fullname: Jiang, Cuiqing – sequence: 3 givenname: Haibo surname: Du fullname: Du, Haibo – sequence: 4 givenname: Yueyue surname: Luo fullname: Luo, Yueyue – sequence: 5 givenname: Yongzheng surname: Cong fullname: Cong, Yongzheng |
| BookMark | eNpFkE1LAzEQhoNUsK3-AU8LnqOTz2aPUvwoFLwo9Bayu9maupvUJKt48be7tYKnGV7eeRieGZr44C1ClwSuCcDiJhECC4KBCkwIVwyrEzQlYsEwleVmgqZQUo6hhM0ZmqW0AwBGQU3R98pnG02dXfBFG2Jtizr4HENXhLZwvhlSjs50RW-82w-dySGm4sOZwtshjrm3-TPEN1yZZJvxINvtIR6hvfPjkjrXOL8t-tD8o023DdHl1_4cnbamS_bib87Ry_3d8_IRr58eVsvbNa4pVRnTWrSmrAxISYmRQtBm0VgqlapZZQ0HCSVvuARipaik4LTilbKl4rIy1Co2R1dH7j6G98GmrHdhiON_STMqWElAgRxb9NiqY0gp2lbvo-tN_NIE9MGzPnrWo2f961kr9gN7HHVZ |
| Cites_doi | 10.1016/j.automatica.2024.111872 10.1109/JAS.2017.7510871 10.1109/TNNLS.2017.2743103 10.3390/e24081068 10.1002/rnc.4948 10.1002/asjc.2706 10.1109/TCYB.2015.2411285 10.1007/s11071-023-08795-y 10.1007/s11071-016-2689-1 10.1515/acsc-2017-0029 10.1080/00207721.2017.1381891 10.1177/0020294019836113 10.1109/TIE.2023.3310016 10.1016/j.asoc.2018.05.048 10.1371/journal.pone.0304448 10.1016/j.robot.2018.01.009 10.1007/s11370-025-00590-5 10.1007/s11071-023-09008-2 10.1016/j.ast.2018.05.005 10.1109/TAC.2016.2605043 10.1109/TIE.2017.2698416 10.1016/j.automatica.2021.109894 10.1002/rnc.5446 10.1109/TIE.2016.2538741 10.1109/TCSI.2022.3206102 10.3934/math.2024489 10.21629/JSEE.2018.03.14 10.1177/0142331219893799 10.1002/acs.2846 10.1016/j.isatra.2018.11.037 10.1016/j.ins.2015.08.042 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11071-025-11483-8 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1573-269X |
| EndPage | 26375 |
| ExternalDocumentID | 10_1007_s11071_025_11483_8 |
| GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PHGZM PHGZT PQGLB PT4 PT5 PTHSS PUEGO QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z8Z ZMTXR ~A9 ~EX |
| ID | FETCH-LOGICAL-c228t-2c5fa9ba06621a6552d7de2688c3bea406094d4601e65b6542b4b8e9846ba2e83 |
| ISSN | 0924-090X |
| IngestDate | Fri Sep 26 03:12:47 EDT 2025 Thu Oct 02 04:33:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c228t-2c5fa9ba06621a6552d7de2688c3bea406094d4601e65b6542b4b8e9846ba2e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3253910806 |
| PQPubID | 2043746 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3253910806 crossref_primary_10_1007_s11071_025_11483_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-00 20251001 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Nonlinear dynamics |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | W Zhu (11483_CR33) 2020; 42 11483_CR24 11483_CR23 AK Ravandi (11483_CR7) 2018; 70 E Cruz-Zavala (11483_CR16) 2021; 31 H Niu (11483_CR27) 2019; 52 S Ahmed (11483_CR22) 2024; 19 J Fu (11483_CR1) 2023; 111 Z Li (11483_CR2) 2017; 64 M Ou (11483_CR15) 2017; 48 S Ahmed (11483_CR21) 2024; 9 D Wu (11483_CR17) 2018; 78 J Guo (11483_CR26) 2018; 29 Y Cheng (11483_CR31) 2016; 328 JJ Craig (11483_CR29) 2018 H Navvabi (11483_CR4) 2019; 88 11483_CR11 J Duan (11483_CR13) 2018; 102 S Chen (11483_CR12) 2020; 30 GP Incremona (11483_CR18) 2017; 62 W He (11483_CR10) 2016; 46 J Li (11483_CR20) 2023; 70 CH Lee (11483_CR3) 2016; 85 B Zhou (11483_CR5) 2023; 111 C Sun (11483_CR14) 2018; 29 M Kaczmarek (11483_CR8) 2017; 27 P Yang (11483_CR25) 2022; 24 MW Spong (11483_CR28) 2006 Y Wei (11483_CR6) 2024; 463 SK Pradhan (11483_CR9) 2020; 7 PN Dao (11483_CR19) 2025; 18 K Zimenko (11483_CR32) 2025; 170 Y Cong (11483_CR34) 2024; 71 G Wen (11483_CR30) 2021; 134 |
| References_xml | – volume: 170 year: 2025 ident: 11483_CR32 publication-title: Automatica doi: 10.1016/j.automatica.2024.111872 – volume-title: Introduction to robotics: mechanics and control year: 2018 ident: 11483_CR29 – volume: 463 year: 2024 ident: 11483_CR6 publication-title: Appl. Math. Comput. – volume: 7 start-page: 136 issue: 1 year: 2020 ident: 11483_CR9 publication-title: IEEE/CAA J. Automatica Sinica. doi: 10.1109/JAS.2017.7510871 – volume: 29 start-page: 5214 issue: 11 year: 2018 ident: 11483_CR14 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2743103 – volume: 24 start-page: 1068 issue: 8 year: 2022 ident: 11483_CR25 publication-title: Entropy doi: 10.3390/e24081068 – volume: 30 start-page: 3411 issue: 8 year: 2020 ident: 11483_CR12 publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.4948 – ident: 11483_CR23 doi: 10.1002/asjc.2706 – volume: 46 start-page: 620 issue: 3 year: 2016 ident: 11483_CR10 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2411285 – volume: 111 start-page: 18061 issue: 19 year: 2023 ident: 11483_CR1 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-023-08795-y – volume: 85 start-page: 343 issue: 1 year: 2016 ident: 11483_CR3 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-016-2689-1 – volume: 27 start-page: 487 issue: 4 year: 2017 ident: 11483_CR8 publication-title: Arch. Control Sci. doi: 10.1515/acsc-2017-0029 – volume: 48 start-page: 3233 issue: 15 year: 2017 ident: 11483_CR15 publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2017.1381891 – volume: 52 start-page: 720 issue: 5–6 year: 2019 ident: 11483_CR27 publication-title: Meas. Control. doi: 10.1177/0020294019836113 – volume: 71 start-page: 7403 issue: 7 year: 2024 ident: 11483_CR34 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2023.3310016 – volume-title: Robot modeling and control year: 2006 ident: 11483_CR28 – volume: 70 start-page: 864 year: 2018 ident: 11483_CR7 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.05.048 – volume: 19 issue: 8 year: 2024 ident: 11483_CR22 publication-title: PLoS ONE doi: 10.1371/journal.pone.0304448 – volume: 102 start-page: 54 year: 2018 ident: 11483_CR13 publication-title: Robot. Autonomous Syst. doi: 10.1016/j.robot.2018.01.009 – volume: 18 start-page: 363 year: 2025 ident: 11483_CR19 publication-title: Intell. Service Robot. doi: 10.1007/s11370-025-00590-5 – volume: 111 start-page: 22267 issue: 24 year: 2023 ident: 11483_CR5 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-023-09008-2 – volume: 78 start-page: 574 year: 2018 ident: 11483_CR17 publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.05.005 – volume: 62 start-page: 2965 issue: 6 year: 2017 ident: 11483_CR18 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2016.2605043 – ident: 11483_CR24 doi: 10.1109/TIE.2017.2698416 – volume: 134 year: 2021 ident: 11483_CR30 publication-title: Automatica doi: 10.1016/j.automatica.2021.109894 – volume: 31 start-page: 3090 issue: 8 year: 2021 ident: 11483_CR16 publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.5446 – volume: 64 start-page: 1664 issue: 2 year: 2017 ident: 11483_CR2 publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2538741 – volume: 70 start-page: 424 issue: 1 year: 2023 ident: 11483_CR20 publication-title: IEEE Trans. Circuits Syst. I, Reg. Papers. doi: 10.1109/TCSI.2022.3206102 – volume: 9 start-page: 9989 issue: 4 year: 2024 ident: 11483_CR21 publication-title: AIMS Math. doi: 10.3934/math.2024489 – volume: 29 start-page: 571 issue: 3 year: 2018 ident: 11483_CR26 publication-title: J. Syst. Eng. Electron. doi: 10.21629/JSEE.2018.03.14 – volume: 42 start-page: 1632 issue: 9 year: 2020 ident: 11483_CR33 publication-title: Trans. Inst. Meas. Control. doi: 10.1177/0142331219893799 – ident: 11483_CR11 doi: 10.1002/acs.2846 – volume: 88 start-page: 280 year: 2019 ident: 11483_CR4 publication-title: ISA Trans. doi: 10.1016/j.isatra.2018.11.037 – volume: 328 year: 2016 ident: 11483_CR31 publication-title: Inf. Sci. doi: 10.1016/j.ins.2015.08.042 |
| SSID | ssj0003208 |
| Score | 2.442028 |
| Snippet | For the interaction force control problem of the industrial robots system, a novel impedance-based finite-time disturbance rejection interaction force control... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 26361 |
| SubjectTerms | Algorithms Closed loop systems Closed loops Control algorithms Control systems Control theory Controllers Design Disturbances Dynamic characteristics Feedback control Friction Impedance Industrial robots Neural networks Robotics Robots Sliding mode control System theory Systems theory Tracking control |
| Title | Interaction force control of industrial manipulators via neural network-based integral terminal sliding mode control algorithm |
| URI | https://www.proquest.com/docview/3253910806 |
| Volume | 113 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: AFBBN dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoEDjwKipaA9IC7WomQfjvdYVa2qKoRLIhku1tregEVI2tSuBAd-Ez-R2YfXNiAEXKxkHa0Tz5edb8cz8yH00vTEmhSFJGolGDGEl-Rqygl8nE01uFxpOzG9mcfnS36RinQ0-t7LWmrq_HXx9bd1Jf9jVRgDu5oq2X-wbJgUBuA12BeOYGE4_pWNbTjPi30D-Sy6zHPbCCKIcpgeF1anyyjr3FQqMl0sYXzjcsCJcWVl2zliHfkEmXUEHNTWvBi5nDC1Wn_Y7qr64-c-r527jhtqF5VO4j5Q9fc-53dWfQoYuqh8lPqkqa5a32nZtPWEqsq37dCssbHcd43-0uh-iIKKkOw2DFGa_GvzVCSU0Lg4JOUmWJQ6h-RX4SkjNJbpYJl2NastHmV_1Y2Z6-juXTi8d3Isv_iHsa-Xhk3vhNhvCttBRpLOG7YZAPO32dlyNssWp-ni1eUVMTpl5nm-F225hW5T8CNGLGRJj4PvZ9RqIIYf5cu0XLHmzxcdUqEhE7D0ZvEA3fP7EnzsQPYQjfRmH933exTsPcD1Prrba2D5CH3rIRBbBGIPE7xd4Q6BuI9ADAjEDoF4gEDcIhC3CMQegdggMEwdEPgYLc9OFyfnxCt6kILSpCa0ECslc2VkByYqFoKW01LTOEkKlmsF5HIsecnj8UTHIjdaajnPEy2BJOeK6oQ9QXub7UY_RVhyoZQ0hFlyvlKwpsRcMr4SvIATCTtAUXtzs0vXuCXrWnQbU2RgisyaIksO0FF7_zP_B7_OGBVMmhzc-PDPp5-hOx3sj9BevWv0c-Cqdf7CwuMHd5yZQg |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+force+control+of+industrial+manipulators+via+neural+network-based+integral+terminal+sliding+mode+control+algorithm&rft.jtitle=Nonlinear+dynamics&rft.au=Zong%2C+Like&rft.au=Jiang%2C+Cuiqing&rft.au=Du%2C+Haibo&rft.au=Luo%2C+Yueyue&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=113&rft.issue=19&rft.spage=26361&rft.epage=26375&rft_id=info:doi/10.1007%2Fs11071-025-11483-8&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |