Interaction force control of industrial manipulators via neural network-based integral terminal sliding mode control algorithm

For the interaction force control problem of the industrial robots system, a novel impedance-based finite-time disturbance rejection interaction force control algorithm is designed. Firstly, based on the impedance control framework, the interaction force tracking control problem is transformed into...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 113; no. 19; pp. 26361 - 26375
Main Authors Zong, Like, Jiang, Cuiqing, Du, Haibo, Luo, Yueyue, Cong, Yongzheng
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Nature B.V 01.10.2025
Subjects
Online AccessGet full text
ISSN0924-090X
1573-269X
DOI10.1007/s11071-025-11483-8

Cover

Abstract For the interaction force control problem of the industrial robots system, a novel impedance-based finite-time disturbance rejection interaction force control algorithm is designed. Firstly, based on the impedance control framework, the interaction force tracking control problem is transformed into a trajectory tracking control problem. Secondly, in the absence of uncertain disturbances, a finite-time trajectory tracking control algorithm is developed using homogeneous system theory and the dynamic properties of the robot system. Then, considering the presence of uncertain disturbances, an online disturbance estimation method is constructed based on an RBF neural network. To address the disturbance estimation residual, an integral terminal sliding mode controller is designed via sliding mode control techniques, guaranteeing finite-time convergence of the closed-loop system. Finally, simulation and experimental results demonstrate the effectiveness of the proposed algorithm.
AbstractList For the interaction force control problem of the industrial robots system, a novel impedance-based finite-time disturbance rejection interaction force control algorithm is designed. Firstly, based on the impedance control framework, the interaction force tracking control problem is transformed into a trajectory tracking control problem. Secondly, in the absence of uncertain disturbances, a finite-time trajectory tracking control algorithm is developed using homogeneous system theory and the dynamic properties of the robot system. Then, considering the presence of uncertain disturbances, an online disturbance estimation method is constructed based on an RBF neural network. To address the disturbance estimation residual, an integral terminal sliding mode controller is designed via sliding mode control techniques, guaranteeing finite-time convergence of the closed-loop system. Finally, simulation and experimental results demonstrate the effectiveness of the proposed algorithm.
Author Du, Haibo
Cong, Yongzheng
Jiang, Cuiqing
Zong, Like
Luo, Yueyue
Author_xml – sequence: 1
  givenname: Like
  surname: Zong
  fullname: Zong, Like
– sequence: 2
  givenname: Cuiqing
  surname: Jiang
  fullname: Jiang, Cuiqing
– sequence: 3
  givenname: Haibo
  surname: Du
  fullname: Du, Haibo
– sequence: 4
  givenname: Yueyue
  surname: Luo
  fullname: Luo, Yueyue
– sequence: 5
  givenname: Yongzheng
  surname: Cong
  fullname: Cong, Yongzheng
BookMark eNpFkE1LAzEQhoNUsK3-AU8LnqOTz2aPUvwoFLwo9Bayu9maupvUJKt48be7tYKnGV7eeRieGZr44C1ClwSuCcDiJhECC4KBCkwIVwyrEzQlYsEwleVmgqZQUo6hhM0ZmqW0AwBGQU3R98pnG02dXfBFG2Jtizr4HENXhLZwvhlSjs50RW-82w-dySGm4sOZwtshjrm3-TPEN1yZZJvxINvtIR6hvfPjkjrXOL8t-tD8o023DdHl1_4cnbamS_bib87Ry_3d8_IRr58eVsvbNa4pVRnTWrSmrAxISYmRQtBm0VgqlapZZQ0HCSVvuARipaik4LTilbKl4rIy1Co2R1dH7j6G98GmrHdhiON_STMqWElAgRxb9NiqY0gp2lbvo-tN_NIE9MGzPnrWo2f961kr9gN7HHVZ
Cites_doi 10.1016/j.automatica.2024.111872
10.1109/JAS.2017.7510871
10.1109/TNNLS.2017.2743103
10.3390/e24081068
10.1002/rnc.4948
10.1002/asjc.2706
10.1109/TCYB.2015.2411285
10.1007/s11071-023-08795-y
10.1007/s11071-016-2689-1
10.1515/acsc-2017-0029
10.1080/00207721.2017.1381891
10.1177/0020294019836113
10.1109/TIE.2023.3310016
10.1016/j.asoc.2018.05.048
10.1371/journal.pone.0304448
10.1016/j.robot.2018.01.009
10.1007/s11370-025-00590-5
10.1007/s11071-023-09008-2
10.1016/j.ast.2018.05.005
10.1109/TAC.2016.2605043
10.1109/TIE.2017.2698416
10.1016/j.automatica.2021.109894
10.1002/rnc.5446
10.1109/TIE.2016.2538741
10.1109/TCSI.2022.3206102
10.3934/math.2024489
10.21629/JSEE.2018.03.14
10.1177/0142331219893799
10.1002/acs.2846
10.1016/j.isatra.2018.11.037
10.1016/j.ins.2015.08.042
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025.
DBID AAYXX
CITATION
DOI 10.1007/s11071-025-11483-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 26375
ExternalDocumentID 10_1007_s11071_025_11483_8
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
PUEGO
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z8Z
ZMTXR
~A9
~EX
ID FETCH-LOGICAL-c228t-2c5fa9ba06621a6552d7de2688c3bea406094d4601e65b6542b4b8e9846ba2e83
ISSN 0924-090X
IngestDate Fri Sep 26 03:12:47 EDT 2025
Thu Oct 02 04:33:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-2c5fa9ba06621a6552d7de2688c3bea406094d4601e65b6542b4b8e9846ba2e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3253910806
PQPubID 2043746
PageCount 15
ParticipantIDs proquest_journals_3253910806
crossref_primary_10_1007_s11071_025_11483_8
PublicationCentury 2000
PublicationDate 2025-10-00
20251001
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-00
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Nonlinear dynamics
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References W Zhu (11483_CR33) 2020; 42
11483_CR24
11483_CR23
AK Ravandi (11483_CR7) 2018; 70
E Cruz-Zavala (11483_CR16) 2021; 31
H Niu (11483_CR27) 2019; 52
S Ahmed (11483_CR22) 2024; 19
J Fu (11483_CR1) 2023; 111
Z Li (11483_CR2) 2017; 64
M Ou (11483_CR15) 2017; 48
S Ahmed (11483_CR21) 2024; 9
D Wu (11483_CR17) 2018; 78
J Guo (11483_CR26) 2018; 29
Y Cheng (11483_CR31) 2016; 328
JJ Craig (11483_CR29) 2018
H Navvabi (11483_CR4) 2019; 88
11483_CR11
J Duan (11483_CR13) 2018; 102
S Chen (11483_CR12) 2020; 30
GP Incremona (11483_CR18) 2017; 62
W He (11483_CR10) 2016; 46
J Li (11483_CR20) 2023; 70
CH Lee (11483_CR3) 2016; 85
B Zhou (11483_CR5) 2023; 111
C Sun (11483_CR14) 2018; 29
M Kaczmarek (11483_CR8) 2017; 27
P Yang (11483_CR25) 2022; 24
MW Spong (11483_CR28) 2006
Y Wei (11483_CR6) 2024; 463
SK Pradhan (11483_CR9) 2020; 7
PN Dao (11483_CR19) 2025; 18
K Zimenko (11483_CR32) 2025; 170
Y Cong (11483_CR34) 2024; 71
G Wen (11483_CR30) 2021; 134
References_xml – volume: 170
  year: 2025
  ident: 11483_CR32
  publication-title: Automatica
  doi: 10.1016/j.automatica.2024.111872
– volume-title: Introduction to robotics: mechanics and control
  year: 2018
  ident: 11483_CR29
– volume: 463
  year: 2024
  ident: 11483_CR6
  publication-title: Appl. Math. Comput.
– volume: 7
  start-page: 136
  issue: 1
  year: 2020
  ident: 11483_CR9
  publication-title: IEEE/CAA J. Automatica Sinica.
  doi: 10.1109/JAS.2017.7510871
– volume: 29
  start-page: 5214
  issue: 11
  year: 2018
  ident: 11483_CR14
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2743103
– volume: 24
  start-page: 1068
  issue: 8
  year: 2022
  ident: 11483_CR25
  publication-title: Entropy
  doi: 10.3390/e24081068
– volume: 30
  start-page: 3411
  issue: 8
  year: 2020
  ident: 11483_CR12
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.4948
– ident: 11483_CR23
  doi: 10.1002/asjc.2706
– volume: 46
  start-page: 620
  issue: 3
  year: 2016
  ident: 11483_CR10
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2411285
– volume: 111
  start-page: 18061
  issue: 19
  year: 2023
  ident: 11483_CR1
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08795-y
– volume: 85
  start-page: 343
  issue: 1
  year: 2016
  ident: 11483_CR3
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-016-2689-1
– volume: 27
  start-page: 487
  issue: 4
  year: 2017
  ident: 11483_CR8
  publication-title: Arch. Control Sci.
  doi: 10.1515/acsc-2017-0029
– volume: 48
  start-page: 3233
  issue: 15
  year: 2017
  ident: 11483_CR15
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2017.1381891
– volume: 52
  start-page: 720
  issue: 5–6
  year: 2019
  ident: 11483_CR27
  publication-title: Meas. Control.
  doi: 10.1177/0020294019836113
– volume: 71
  start-page: 7403
  issue: 7
  year: 2024
  ident: 11483_CR34
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2023.3310016
– volume-title: Robot modeling and control
  year: 2006
  ident: 11483_CR28
– volume: 70
  start-page: 864
  year: 2018
  ident: 11483_CR7
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.05.048
– volume: 19
  issue: 8
  year: 2024
  ident: 11483_CR22
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0304448
– volume: 102
  start-page: 54
  year: 2018
  ident: 11483_CR13
  publication-title: Robot. Autonomous Syst.
  doi: 10.1016/j.robot.2018.01.009
– volume: 18
  start-page: 363
  year: 2025
  ident: 11483_CR19
  publication-title: Intell. Service Robot.
  doi: 10.1007/s11370-025-00590-5
– volume: 111
  start-page: 22267
  issue: 24
  year: 2023
  ident: 11483_CR5
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-09008-2
– volume: 78
  start-page: 574
  year: 2018
  ident: 11483_CR17
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2018.05.005
– volume: 62
  start-page: 2965
  issue: 6
  year: 2017
  ident: 11483_CR18
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2016.2605043
– ident: 11483_CR24
  doi: 10.1109/TIE.2017.2698416
– volume: 134
  year: 2021
  ident: 11483_CR30
  publication-title: Automatica
  doi: 10.1016/j.automatica.2021.109894
– volume: 31
  start-page: 3090
  issue: 8
  year: 2021
  ident: 11483_CR16
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.5446
– volume: 64
  start-page: 1664
  issue: 2
  year: 2017
  ident: 11483_CR2
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2538741
– volume: 70
  start-page: 424
  issue: 1
  year: 2023
  ident: 11483_CR20
  publication-title: IEEE Trans. Circuits Syst. I, Reg. Papers.
  doi: 10.1109/TCSI.2022.3206102
– volume: 9
  start-page: 9989
  issue: 4
  year: 2024
  ident: 11483_CR21
  publication-title: AIMS Math.
  doi: 10.3934/math.2024489
– volume: 29
  start-page: 571
  issue: 3
  year: 2018
  ident: 11483_CR26
  publication-title: J. Syst. Eng. Electron.
  doi: 10.21629/JSEE.2018.03.14
– volume: 42
  start-page: 1632
  issue: 9
  year: 2020
  ident: 11483_CR33
  publication-title: Trans. Inst. Meas. Control.
  doi: 10.1177/0142331219893799
– ident: 11483_CR11
  doi: 10.1002/acs.2846
– volume: 88
  start-page: 280
  year: 2019
  ident: 11483_CR4
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.11.037
– volume: 328
  year: 2016
  ident: 11483_CR31
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2015.08.042
SSID ssj0003208
Score 2.442028
Snippet For the interaction force control problem of the industrial robots system, a novel impedance-based finite-time disturbance rejection interaction force control...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 26361
SubjectTerms Algorithms
Closed loop systems
Closed loops
Control algorithms
Control systems
Control theory
Controllers
Design
Disturbances
Dynamic characteristics
Feedback control
Friction
Impedance
Industrial robots
Neural networks
Robotics
Robots
Sliding mode control
System theory
Systems theory
Tracking control
Title Interaction force control of industrial manipulators via neural network-based integral terminal sliding mode control algorithm
URI https://www.proquest.com/docview/3253910806
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: AFBBN
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoEDjwKipaA9IC7WomQfjvdYVa2qKoRLIhku1tregEVI2tSuBAd-Ez-R2YfXNiAEXKxkHa0Tz5edb8cz8yH00vTEmhSFJGolGDGEl-Rqygl8nE01uFxpOzG9mcfnS36RinQ0-t7LWmrq_HXx9bd1Jf9jVRgDu5oq2X-wbJgUBuA12BeOYGE4_pWNbTjPi30D-Sy6zHPbCCKIcpgeF1anyyjr3FQqMl0sYXzjcsCJcWVl2zliHfkEmXUEHNTWvBi5nDC1Wn_Y7qr64-c-r527jhtqF5VO4j5Q9fc-53dWfQoYuqh8lPqkqa5a32nZtPWEqsq37dCssbHcd43-0uh-iIKKkOw2DFGa_GvzVCSU0Lg4JOUmWJQ6h-RX4SkjNJbpYJl2NastHmV_1Y2Z6-juXTi8d3Isv_iHsa-Xhk3vhNhvCttBRpLOG7YZAPO32dlyNssWp-ni1eUVMTpl5nm-F225hW5T8CNGLGRJj4PvZ9RqIIYf5cu0XLHmzxcdUqEhE7D0ZvEA3fP7EnzsQPYQjfRmH933exTsPcD1Prrba2D5CH3rIRBbBGIPE7xd4Q6BuI9ADAjEDoF4gEDcIhC3CMQegdggMEwdEPgYLc9OFyfnxCt6kILSpCa0ECslc2VkByYqFoKW01LTOEkKlmsF5HIsecnj8UTHIjdaajnPEy2BJOeK6oQ9QXub7UY_RVhyoZQ0hFlyvlKwpsRcMr4SvIATCTtAUXtzs0vXuCXrWnQbU2RgisyaIksO0FF7_zP_B7_OGBVMmhzc-PDPp5-hOx3sj9BevWv0c-Cqdf7CwuMHd5yZQg
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+force+control+of+industrial+manipulators+via+neural+network-based+integral+terminal+sliding+mode+control+algorithm&rft.jtitle=Nonlinear+dynamics&rft.au=Zong%2C+Like&rft.au=Jiang%2C+Cuiqing&rft.au=Du%2C+Haibo&rft.au=Luo%2C+Yueyue&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=113&rft.issue=19&rft.spage=26361&rft.epage=26375&rft_id=info:doi/10.1007%2Fs11071-025-11483-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon