Regulating lithium nucleation and deposition on carbon cloth decorated with vertically aligned Ag-doped MnO2 nanosheet arrays for dendrite-free lithium metal anode
Metallic Li with high specific capacity and low electrode potential is considered as the most promising anode material. The main obstacles to its application are uncontrollable Li dendrites growth and infinite volume changes. Herein, we design a modified carbon cloth (CC) by vertically aligned MnO2...
Saved in:
| Published in | Journal of power sources Vol. 603; p. 234426 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
30.05.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0378-7753 1873-2755 |
| DOI | 10.1016/j.jpowsour.2024.234426 |
Cover
| Abstract | Metallic Li with high specific capacity and low electrode potential is considered as the most promising anode material. The main obstacles to its application are uncontrollable Li dendrites growth and infinite volume changes. Herein, we design a modified carbon cloth (CC) by vertically aligned MnO2 nanosheet arrays embedded with tiny Ag (Ag/MnO2@CC) through hydrothermal approach. Density functional theory (DFT) calculations indicate that MnO2 and Ag show a more negative adsorption energy (−4.31 and −2.34 eV) than C (−1.65 eV), implying their better lithiophilicity. Finite element simulations demonstrate that the Ag-doped MnO2 nanosheet arrays reduce local current density and redistribute Li-ion flux. Moreover, the channels assembled by vertical-aligned MnO2 nanosheets and 3D CC can offer sufficient spaces to buffer volume fluctuation during cycling. Accordingly, the Ag/MnO2@CC is employed as a lithiophilic host to supervise homogenous Li nucleation and deposition. The Ag/MnO2@CC electrodeposited with Li exhibits dendrite-free feature and a high Coulombic efficiency of 99.9% during 300 cycles. The symmetric cell shows an ultra-low polarization voltage of 14 mV over 1300 h at 1 mA cm−2 with the capacity of 1 mAh cm−1. The full cell paired with LiFePO4 exhibits excellent capacity of 105.5 mAh g−1 after 400 cycles at 1 C.
The carbon cloth decorated with vertically aligned Ag-doped MnO2 nanosheet arrays can effectively regulate Li ion flux, which suppresses the dendrites generation and relieves volume changes. In contrast, the uneven surface of the Li foil contains a mass of protrusions, forming Li dendrites and “dead Li”, as well as the huge volume changes. [Display omitted]
•The CC was modified by Ag-doped MnO2 nanosheet arrays as a 3D host for LMA.•Ag/MnO2@CC structure endows homogenized Li+ flux and reduced local current density.•The Li–Ag/MnO2@CC displays superior Li stripping/plating behavior.•The Li–Ag/MnO2@CC displays excellent electrochemical performance in cycling tests. |
|---|---|
| AbstractList | Metallic Li with high specific capacity and low electrode potential is considered as the most promising anode material. The main obstacles to its application are uncontrollable Li dendrites growth and infinite volume changes. Herein, we design a modified carbon cloth (CC) by vertically aligned MnO2 nanosheet arrays embedded with tiny Ag (Ag/MnO2@CC) through hydrothermal approach. Density functional theory (DFT) calculations indicate that MnO2 and Ag show a more negative adsorption energy (−4.31 and −2.34 eV) than C (−1.65 eV), implying their better lithiophilicity. Finite element simulations demonstrate that the Ag-doped MnO2 nanosheet arrays reduce local current density and redistribute Li-ion flux. Moreover, the channels assembled by vertical-aligned MnO2 nanosheets and 3D CC can offer sufficient spaces to buffer volume fluctuation during cycling. Accordingly, the Ag/MnO2@CC is employed as a lithiophilic host to supervise homogenous Li nucleation and deposition. The Ag/MnO2@CC electrodeposited with Li exhibits dendrite-free feature and a high Coulombic efficiency of 99.9% during 300 cycles. The symmetric cell shows an ultra-low polarization voltage of 14 mV over 1300 h at 1 mA cm−2 with the capacity of 1 mAh cm−1. The full cell paired with LiFePO4 exhibits excellent capacity of 105.5 mAh g−1 after 400 cycles at 1 C.
The carbon cloth decorated with vertically aligned Ag-doped MnO2 nanosheet arrays can effectively regulate Li ion flux, which suppresses the dendrites generation and relieves volume changes. In contrast, the uneven surface of the Li foil contains a mass of protrusions, forming Li dendrites and “dead Li”, as well as the huge volume changes. [Display omitted]
•The CC was modified by Ag-doped MnO2 nanosheet arrays as a 3D host for LMA.•Ag/MnO2@CC structure endows homogenized Li+ flux and reduced local current density.•The Li–Ag/MnO2@CC displays superior Li stripping/plating behavior.•The Li–Ag/MnO2@CC displays excellent electrochemical performance in cycling tests. |
| ArticleNumber | 234426 |
| Author | Li, Hongmei Liu, Derong Gao, Meng Tao, Yuanyuan Li, Dongwei Jiang, Xiaoping Li, Chenglong |
| Author_xml | – sequence: 1 givenname: Derong surname: Liu fullname: Liu, Derong organization: Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, PR China – sequence: 2 givenname: Hongmei surname: Li fullname: Li, Hongmei organization: Zaozhuang Zhenxing Carbon Material Technology Co., Ltd, Zaozhuang, 277012, PR China – sequence: 3 givenname: Xiaoping surname: Jiang fullname: Jiang, Xiaoping organization: Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, PR China – sequence: 4 givenname: Yuanyuan surname: Tao fullname: Tao, Yuanyuan organization: Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, PR China – sequence: 5 givenname: Chenglong surname: Li fullname: Li, Chenglong organization: Zaozhuang Zhenxing Carbon Material Technology Co., Ltd, Zaozhuang, 277012, PR China – sequence: 6 givenname: Meng surname: Gao fullname: Gao, Meng organization: Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, PR China – sequence: 7 givenname: Dongwei orcidid: 0009-0005-7691-1059 surname: Li fullname: Li, Dongwei email: dwli@qlu.edu.cn organization: Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, PR China |
| BookMark | eNqFkF9rmyEUh2V0sDTbVxh-gTfzz2tMYBctpdsKLYWyXct59byJwWhQ05LPsy8607S76E1BOHrk-R19zslZTBEJ-crZjDM-_7aZbXbpqaR9ngkm-pmQfS_mH8iEL7TshFbqjEyY1ItOayU_kfNSNowxzjWbkL8PuNoHqD6uaPB17fdbGvc2YGulSCE66nCXin8-tmUhD8cSUl23K5syVHT0qbH0EXP1FkI4UAh-FVv_ctW5tGubu3gvaISYyhqxUsgZDoWOKbeQ6LKv2I0Z8f8jtlghtPnJ4WfycYRQ8MtLnZI_P65_X_3qbu9_3lxd3nZWCF07J7h2WgquYJSM9YMdFgz0yNSS2fkSlJWgegYCmh-9XNjB9gOopZVMCUArp-T7KdfmVErG0Vhfnz3UDD4YzsxRuNmYV-HmKNychDd8_gbfZb-FfHgfvDiB2D736DGbYj1Gi85ntNW45N-L-AcrEaZx |
| CitedBy_id | crossref_primary_10_1007_s11581_024_05913_7 crossref_primary_10_1002_ange_202413065 crossref_primary_10_1002_anie_202413065 |
| Cites_doi | 10.1002/cey2.423 10.1016/j.mseb.2021.115150 10.1103/PhysRevB.54.11169 10.1016/j.inoche.2022.110247 10.1002/aenm.202203791 10.1016/j.cej.2019.02.084 10.1016/j.jelechem.2020.114569 10.1021/acsaem.1c00477 10.1016/j.nanoen.2020.105068 10.1002/adfm.201803023 10.1021/acssuschemeng.2c02652 10.1016/j.ensm.2022.03.014 10.1016/j.cej.2023.146884 10.1016/j.jpowsour.2022.232474 10.1021/acssuschemeng.2c06146 10.1021/jacs.0c01811 10.1016/j.ensm.2020.07.008 10.1002/jcc.20495 10.1021/acsaem.3c00335 10.1016/j.ensm.2022.05.043 10.1016/j.electacta.2023.142896 10.1016/j.pmatsci.2022.100996 10.1016/j.jpowsour.2020.228425 10.1016/j.ensm.2019.05.014 10.1016/j.jallcom.2019.02.171 10.1021/acsami.9b08153 10.1016/j.joule.2018.02.001 10.1016/j.nanoen.2023.109093 10.1002/cey2.147 10.1002/aenm.202201493 10.1016/j.jallcom.2020.157672 10.1016/j.mattod.2019.09.018 10.1103/PhysRevLett.77.3865 10.1002/adfm.202009605 10.1039/D2QI02380F 10.1039/D2CC05051J 10.1016/j.jallcom.2023.169386 10.1016/j.est.2022.106440 10.1016/j.electacta.2020.137130 10.1039/C8TA04343D 10.1002/cjoc.202200816 10.1016/j.jechem.2021.12.046 10.1016/j.jcis.2023.06.145 10.1016/j.electacta.2023.143380 10.1039/C5RA22176E |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jpowsour.2024.234426 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2755 |
| ExternalDocumentID | 10_1016_j_jpowsour_2024_234426 S037877532400377X |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABMAC ABXRA ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- SAC SCB SCE T9H VH1 VOH WUQ ~HD |
| ID | FETCH-LOGICAL-c227t-d217d73215af3004bcb80a7f0590c69a5c3a540a2a442798cbc4ba59c3052aec3 |
| IEDL.DBID | .~1 |
| ISSN | 0378-7753 |
| IngestDate | Wed Oct 01 04:33:43 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Tue Jul 16 14:15:01 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Li metal anode Carbon cloth MnO2 nanosheet arrays Finite element simulations Lithiophilic sites |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c227t-d217d73215af3004bcb80a7f0590c69a5c3a540a2a442798cbc4ba59c3052aec3 |
| ORCID | 0009-0005-7691-1059 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jpowsour_2024_234426 crossref_primary_10_1016_j_jpowsour_2024_234426 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2024_234426 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-30 |
| PublicationDateYYYYMMDD | 2024-05-30 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of power sources |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Liu, Zhang, Ma, Chi, Yin, Liu, Huang, Guo, Wang (bib14) 2022; 69 Grimme (bib25) 2006; 27 Fan, Li, Luo, Luo, Huang, Liu, Sun (bib45) 2023; 464 Ni, Zhang, Zhao, Li, Sun, Qian, Xu, Gao, Wu, Kato, Yamauchi, Sun (bib19) 2019; 366 Guo, Hou, Li, Sun, Ai, Si, Min, Lou, Feng, Ci (bib53) 2019; 11 Zhu, Yang, Li, Bai, Rong, Wu (bib2) 2023; 6 Zhang, Xiao, Li, Liao, Ji, Liu, Ci (bib11) 2022; 48 Xu, Pan, Yu, Li, Gong, Lu, Pan (bib15) 2023; 6 Zhao, Vrajitoarea, Jiang, Han, Chaudhary, Welch, Jackman (bib32) 2015; 5 Zhang, Chen, Shen, Zhang, Chen, Cheng, Yan, Zhao, Zhang (bib22) 2018; 2 Shao, Qin, Song, Xu, Wang, Shen, Chen, Lyu, Liu, Guo (bib51) 2022; 10 Wang, Wang, Song, Zhang, Jia, Yang, Shao, Li, Liao, Song (bib42) 2022; 50 Chen, Meng, Zhang, Liang, Hu, Kong, Zhang, Jin (bib52) 2020; 76 Li, Jiang, Liao, Ding, Gao, Jiang, Zhang, Chen, He (bib20) 2021; 858 Yu, Tao, Mateti, Lu, Chen (bib37) 2018; 28 Sivakumar, Nelson Prabu (bib17) 2023; 147 Liu, Qu, Zhang, Fan, Huang, Zhang (bib35) 2023; 59 Lan, Huang, Ye, Qin, Yan, Wu (bib33) 2019; 788 Li, Luo, Li, Hu, Zou, Hou, Ji (bib5) 2020; 32 Xie, Liu, Fu, Zeng, Zhou, Zuo, Wu (bib46) 2023; 6 Li, Hu, Ma, Chen, Mu, Zhang (bib55) 2019; 31 Cheng, Jin, Liu, Cai, Gao, Zhang, Wang (bib44) 2020; 878 Wang, Liu, Wang, Fan (bib10) 2021; 31 Zhou, Bonakdarpour, Stoševski, Fang, Wilkinson (bib8) 2022; 130 Peng, Zheng, Luo, Zheng, Feng, Khan, Akbar, Luo, Liu (bib26) 2023; 19 Hu, Yuan, Guo, Pan, Long (bib48) 2018; 6 Liu, Li, Wang, Gong, Xu, Li (bib54) 2023; 471 Liang, Peng, Shen, Yang, Yao, Xue, Zhu, Liu (bib40) 2023; 556 Yu, Su, Li, Liu, Zhang, Ding, Du, Xu (bib47) 2020; 362 Huang, Yi, Chen, Wu, Hu, Luo, Chen (bib18) 2023; 946 Wei, Lu, Wang, Sun, Zhang, Wang, Zhou, Chen, Lan (bib9) 2023; 41 Liu, Xiaoxiao, Zhang, Fan, Huang, Zhang (bib28) 2023; 59 Wang, Liu, Wang, Guo, Liu, Ye, Wang, Zou (bib7) 2023; 477 Gu, Wen, Wu (bib34) 2020; 469 Jiang, Xie (bib29) 2016; 6 Lu, Jie, Meng, Omar, Mikhailova, Cao, Jiao, Lu, Xu (bib13) 2021; 3 Wang, Yang, Huang, Kang (bib36) 2012; 22 Hong, Jung, Kim, Lee, Cho, Joo, Lee, Lee, Lee (bib39) 2020; 30 Lu, Wang, Chen, Zheng, Yao, Mathur, Hong (bib31) 2020; 31 Ding, Xin, Wang, Wang, Song, Gao (bib6) 2023; 11 Wang, Ye, Wang, Chen, Qian, Yang, Song, Bi, Xie, He, Yu, Wei, Song, Liao, Wang, Chen (bib27) 2024; 119 Chen, Jianjian, Xing, Liu, Wang, Xiao, Liu, Chen, Sun, Li (bib41) 2021; 4 Jin, Ye, Niu, Xu, Jin, Wang, Sun, Cao, Wu, Luo, Ji, Wan (bib21) 2020; 142 Kresse (bib23) 1996; 54 Li, Lin, Yang, Li, Zhang, Komarneni (bib16) 2023; 649 Jiang, Jiang, Zheng, Chen, Mao, Ding, Li, Sun, Li (bib43) 2019; 23 Cao, Qian, Lu, Lu (bib1) 2022; 19 Perdew (bib24) 1996; 77 Lyu, Luo, Wang, Bu, Tao, Zheng (bib12) 2022; 12 Zhang, Zuo, Popovic, Lim, Yin, Maier, Guo (bib3) 2020; 33 Rahman, Zarshad, Wu, Faiz, Raziq, Ali, Li, Ni (bib30) 2021; 269 Chen, Sun, Li, Liu, Yao, Peng (bib38) 2022; 58 Chae, Lucht (bib4) 2023; 13 Yu (10.1016/j.jpowsour.2024.234426_bib37) 2018; 28 Zhao (10.1016/j.jpowsour.2024.234426_bib32) 2015; 5 Ding (10.1016/j.jpowsour.2024.234426_bib6) 2023; 11 Chen (10.1016/j.jpowsour.2024.234426_bib41) 2021; 4 Zhang (10.1016/j.jpowsour.2024.234426_bib3) 2020; 33 Xie (10.1016/j.jpowsour.2024.234426_bib46) 2023; 6 Yu (10.1016/j.jpowsour.2024.234426_bib47) 2020; 362 Li (10.1016/j.jpowsour.2024.234426_bib20) 2021; 858 Gu (10.1016/j.jpowsour.2024.234426_bib34) 2020; 469 Kresse (10.1016/j.jpowsour.2024.234426_bib23) 1996; 54 Wang (10.1016/j.jpowsour.2024.234426_bib42) 2022; 50 Li (10.1016/j.jpowsour.2024.234426_bib55) 2019; 31 Chae (10.1016/j.jpowsour.2024.234426_bib4) 2023; 13 Lu (10.1016/j.jpowsour.2024.234426_bib13) 2021; 3 Jiang (10.1016/j.jpowsour.2024.234426_bib43) 2019; 23 Liu (10.1016/j.jpowsour.2024.234426_bib35) 2023; 59 Hong (10.1016/j.jpowsour.2024.234426_bib39) 2020; 30 Hu (10.1016/j.jpowsour.2024.234426_bib48) 2018; 6 Jiang (10.1016/j.jpowsour.2024.234426_bib29) 2016; 6 Huang (10.1016/j.jpowsour.2024.234426_bib18) 2023; 946 Wang (10.1016/j.jpowsour.2024.234426_bib27) 2024; 119 Zhang (10.1016/j.jpowsour.2024.234426_bib22) 2018; 2 Lan (10.1016/j.jpowsour.2024.234426_bib33) 2019; 788 Zhou (10.1016/j.jpowsour.2024.234426_bib8) 2022; 130 Rahman (10.1016/j.jpowsour.2024.234426_bib30) 2021; 269 Liu (10.1016/j.jpowsour.2024.234426_bib54) 2023; 471 Wang (10.1016/j.jpowsour.2024.234426_bib7) 2023; 477 Zhang (10.1016/j.jpowsour.2024.234426_bib11) 2022; 48 Guo (10.1016/j.jpowsour.2024.234426_bib53) 2019; 11 Lu (10.1016/j.jpowsour.2024.234426_bib31) 2020; 31 Wang (10.1016/j.jpowsour.2024.234426_bib10) 2021; 31 Cheng (10.1016/j.jpowsour.2024.234426_bib44) 2020; 878 Chen (10.1016/j.jpowsour.2024.234426_bib52) 2020; 76 Grimme (10.1016/j.jpowsour.2024.234426_bib25) 2006; 27 Fan (10.1016/j.jpowsour.2024.234426_bib45) 2023; 464 Li (10.1016/j.jpowsour.2024.234426_bib5) 2020; 32 Jin (10.1016/j.jpowsour.2024.234426_bib21) 2020; 142 Liang (10.1016/j.jpowsour.2024.234426_bib40) 2023; 556 Ni (10.1016/j.jpowsour.2024.234426_bib19) 2019; 366 Peng (10.1016/j.jpowsour.2024.234426_bib26) 2023; 19 Wang (10.1016/j.jpowsour.2024.234426_bib36) 2012; 22 Liu (10.1016/j.jpowsour.2024.234426_bib14) 2022; 69 Perdew (10.1016/j.jpowsour.2024.234426_bib24) 1996; 77 Shao (10.1016/j.jpowsour.2024.234426_bib51) 2022; 10 Cao (10.1016/j.jpowsour.2024.234426_bib1) 2022; 19 Lyu (10.1016/j.jpowsour.2024.234426_bib12) 2022; 12 Xu (10.1016/j.jpowsour.2024.234426_bib15) 2023; 6 Wei (10.1016/j.jpowsour.2024.234426_bib9) 2023; 41 Li (10.1016/j.jpowsour.2024.234426_bib16) 2023; 649 Liu (10.1016/j.jpowsour.2024.234426_bib28) 2023; 59 Zhu (10.1016/j.jpowsour.2024.234426_bib2) 2023; 6 Sivakumar (10.1016/j.jpowsour.2024.234426_bib17) 2023; 147 Chen (10.1016/j.jpowsour.2024.234426_bib38) 2022; 58 |
| References_xml | – volume: 11 start-page: 6879 year: 2023 end-page: 6889 ident: bib6 article-title: Artificial solid electrolyte interphase engineering toward dendrite-free lithium anodes publication-title: ACS Sustain. Chem. Eng. – volume: 119 year: 2024 ident: bib27 article-title: Promoting homogeneous lithium deposition by facet-specific absorption of CoIn publication-title: Nano Energy – volume: 31 year: 2021 ident: bib10 article-title: High areal capacity dendrite‐free Li anode enabled by metal–organic framework‐derived nanorod array modified carbon cloth for solid state Li metal batteries publication-title: Adv. Funct. Mater. – volume: 13 year: 2023 ident: bib4 article-title: Interfacial issues and modification of solid electrolyte interphase for Li metal anode in liquid and solid electrolytes publication-title: Adv. Energy Mater. – volume: 59 year: 2023 ident: bib28 article-title: MnO publication-title: J. Energy Storage – volume: 33 start-page: 56 year: 2020 end-page: 74 ident: bib3 article-title: Towards better Li metal anodes: challenges and strategies publication-title: Mater. Today – volume: 269 year: 2021 ident: bib30 article-title: Fabrication of Ag-doped MnO publication-title: Mater. Sci. Eng., B – volume: 41 start-page: 1861 year: 2023 end-page: 1874 ident: bib9 article-title: MOF‐derived materials enabled lithiophilic 3D hosts for lithium metal anode — a Review publication-title: Chin. J. Chem. – volume: 69 start-page: 270 year: 2022 end-page: 281 ident: bib14 article-title: MnO publication-title: J. Energy Chem. – volume: 556 year: 2023 ident: bib40 article-title: Lithiophilic single-atom Co on carbon nanosheets synergistically modulates Li deposition enable dendrite-free lithium metal batteries publication-title: J. Power Sources – volume: 23 start-page: 181 year: 2019 end-page: 189 ident: bib43 article-title: MOF-derived porous Co publication-title: Energy Storage Mater. – volume: 6 start-page: e423 year: 2023 ident: bib2 article-title: Carbon‐based interface engineering and architecture design for high‐performance lithium metal anodes publication-title: Carbon Energy – volume: 19 year: 2022 ident: bib1 article-title: Advanced composite lithium metal anodes with 3D frameworks: preloading strategies, interfacial optimization, and perspectives publication-title: Small – volume: 59 year: 2023 ident: bib35 article-title: MnO publication-title: J. Energy Storage – volume: 471 year: 2023 ident: bib54 article-title: Dealloying-derived TiC hierarchical porous frameworks as stable host for advanced Li metal electrode publication-title: Electrochim. Acta – volume: 477 year: 2023 ident: bib7 article-title: AgCuInCdZn high-entropy alloy nanoparticles-embedded in porous carbon fibers for long-cycling lithium metal anodes publication-title: Chem. Eng. J. – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: bib23 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B – volume: 31 year: 2020 ident: bib31 article-title: Spatially controlled lithium deposition on silver‐nanocrystals‐decorated TiO publication-title: Adv. Funct. Mater. – volume: 6 start-page: 14910 year: 2018 end-page: 14918 ident: bib48 article-title: A substrate-influenced three-dimensional unoriented dispersion pathway for dendrite-free lithium metal anodes publication-title: J. Mater. Chem. A – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: bib25 article-title: Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction publication-title: J. Comput. Chem. – volume: 788 start-page: 302 year: 2019 end-page: 310 ident: bib33 article-title: Enhanced electrochemical performance of Sn-doped MnO publication-title: J. Alloys Compd. – volume: 946 year: 2023 ident: bib18 article-title: Enhanced electrochemical performance of MnO publication-title: J. Alloys Compd. – volume: 6 start-page: 3186 year: 2016 end-page: 3197 ident: bib29 article-title: In situ growth of Ag/Ag publication-title: RSC Adv. – volume: 31 year: 2019 ident: bib55 article-title: A 3D and stable lithium anode for high‐performance lithium–iodine batteries publication-title: Adv. Mater. – volume: 130 year: 2022 ident: bib8 article-title: Modification of Cu current collectors for lithium metal batteries – a review publication-title: Prog. Mater. Sci. – volume: 366 start-page: 631 year: 2019 end-page: 638 ident: bib19 article-title: Single atomic Ag enhances the bifunctional activity and cycling stability of MnO publication-title: Chem. Eng. J. – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: bib24 article-title: Ernzerhof, generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 3 start-page: 957 year: 2021 end-page: 975 ident: bib13 article-title: Carbon materials for stable Li metal anodes: challenges, solutions, and outlook publication-title: Carbon Energy – volume: 50 start-page: 505 year: 2022 end-page: 513 ident: bib42 article-title: Synergistic regulating of dynamic trajectory and lithiophilic nucleation by Heusler alloy for dendrite-free Li deposition publication-title: Energy Storage Mater. – volume: 28 year: 2018 ident: bib37 article-title: Nanoflake arrays of lithiophilic metal oxides for the ultra‐stable anodes of lithium‐metal batteries publication-title: Adv. Funct. Mater. – volume: 4 start-page: 4879 year: 2021 end-page: 4886 ident: bib41 article-title: Self-formed lithiophilic alloy buffer layer on copper foam framework for advanced lithium metal anodes publication-title: ACS Appl. Energy Mater. – volume: 142 start-page: 8818 year: 2020 end-page: 8826 ident: bib21 article-title: Solid–solution-based metal alloy phase for highly reversible lithium metal anode publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 13455 year: 2022 end-page: 13458 ident: bib38 article-title: Highly reversible Li metal anode using a binary alloy interface publication-title: Chem. Commun. – volume: 30 year: 2020 ident: bib39 article-title: Electrical conductivity gradient based on heterofibrous scaffolds for stable lithium-metal batteries publication-title: Adv. Funct. Mater. – volume: 469 year: 2020 ident: bib34 article-title: Wide potential window TiO publication-title: J. Power Sources – volume: 147 year: 2023 ident: bib17 article-title: Enhancement in electrochemical behavior of cobalt doped α-MnO publication-title: Inorg. Chem. Commun. – volume: 48 start-page: 172 year: 2022 end-page: 190 ident: bib11 article-title: Commercial carbon cloth: an emerging substrate for practical lithium metal batteries publication-title: Energy Storage Mater. – volume: 858 year: 2021 ident: bib20 article-title: Directly anchoring Ag single atoms on α-MnO publication-title: J. Alloys Compd. – volume: 649 start-page: 731 year: 2023 end-page: 740 ident: bib16 article-title: Different metal cation-doped MnO publication-title: J. Colloid Interface Sci. – volume: 2 start-page: 764 year: 2018 end-page: 777 ident: bib22 article-title: Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries publication-title: Joule – volume: 6 start-page: 4825 year: 2023 end-page: 4832 ident: bib46 article-title: ZnO/carbon shell/carbon cloth as a stable host for high Li-content anodes publication-title: ACS Appl. Energy Mater. – volume: 6 start-page: 1748 year: 2023 end-page: 1757 ident: bib15 article-title: Co-doped MnO publication-title: Inorg. Chem. Front. – volume: 22 year: 2012 ident: bib36 article-title: Rational synthesis of MnO publication-title: J. Mater. Chem. A – volume: 12 year: 2022 ident: bib12 article-title: Carbon/Lithium composite anode for advanced lithium metal batteries: design, progress, in situ characterization, and perspectives publication-title: Adv. Energy Mater. – volume: 878 year: 2020 ident: bib44 article-title: An interconnected silver coated carbon cloth framework as a host to reduce lithium nucleation over-potential for dendrite-free lithium metal anodes publication-title: J. Electroanal. Chem. – volume: 464 year: 2023 ident: bib45 article-title: Vertically aligned MnO publication-title: Electrochim. Acta – volume: 10 start-page: 11493 year: 2022 end-page: 11500 ident: bib51 article-title: Bismuth-contained lithiophilic protective layer on lithium metal anode in situ generated via electrochemical method publication-title: ACS Sustain. Chem. Eng. – volume: 76 year: 2020 ident: bib52 article-title: Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film publication-title: Nano Energy – volume: 11 start-page: 30793 year: 2019 end-page: 30800 ident: bib53 article-title: High current enabled stable lithium anode for ultralong cycling life of lithium–oxygen batteries publication-title: ACS Appl. Mater. Interfaces – volume: 5 year: 2015 ident: bib32 article-title: Graphene-nanodiamond heterostructures and their application to high current devices publication-title: Sci. Rep. – volume: 362 year: 2020 ident: bib47 article-title: Bio-inspired lotus root-like 3D multichannel carbon hosts for stable lithium metal anodes publication-title: Electrochim. Acta – volume: 19 year: 2023 ident: bib26 article-title: A gradient lithiophilic structure for stable lithium metal anodes with ultrahigh rate and ultradeep capacity publication-title: Small – volume: 32 start-page: 306 year: 2020 end-page: 319 ident: bib5 article-title: Recent progress on electrolyte additives for stable lithium metal anode publication-title: Energy Storage Mater. – volume: 6 start-page: e423 year: 2023 ident: 10.1016/j.jpowsour.2024.234426_bib2 article-title: Carbon‐based interface engineering and architecture design for high‐performance lithium metal anodes publication-title: Carbon Energy doi: 10.1002/cey2.423 – volume: 269 year: 2021 ident: 10.1016/j.jpowsour.2024.234426_bib30 article-title: Fabrication of Ag-doped MnO2 nanosheets@carbon cloth for energy storage device publication-title: Mater. Sci. Eng., B doi: 10.1016/j.mseb.2021.115150 – volume: 54 start-page: 11169 year: 1996 ident: 10.1016/j.jpowsour.2024.234426_bib23 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 147 year: 2023 ident: 10.1016/j.jpowsour.2024.234426_bib17 article-title: Enhancement in electrochemical behavior of cobalt doped α-MnO2 nanoparticles publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2022.110247 – volume: 13 year: 2023 ident: 10.1016/j.jpowsour.2024.234426_bib4 article-title: Interfacial issues and modification of solid electrolyte interphase for Li metal anode in liquid and solid electrolytes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203791 – volume: 31 year: 2021 ident: 10.1016/j.jpowsour.2024.234426_bib10 article-title: High areal capacity dendrite‐free Li anode enabled by metal–organic framework‐derived nanorod array modified carbon cloth for solid state Li metal batteries publication-title: Adv. Funct. Mater. – volume: 366 start-page: 631 year: 2019 ident: 10.1016/j.jpowsour.2024.234426_bib19 article-title: Single atomic Ag enhances the bifunctional activity and cycling stability of MnO2 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.084 – volume: 878 year: 2020 ident: 10.1016/j.jpowsour.2024.234426_bib44 article-title: An interconnected silver coated carbon cloth framework as a host to reduce lithium nucleation over-potential for dendrite-free lithium metal anodes publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2020.114569 – volume: 4 start-page: 4879 year: 2021 ident: 10.1016/j.jpowsour.2024.234426_bib41 article-title: Self-formed lithiophilic alloy buffer layer on copper foam framework for advanced lithium metal anodes publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c00477 – volume: 76 year: 2020 ident: 10.1016/j.jpowsour.2024.234426_bib52 article-title: Stabilizing lithium metal anode by molecular beam epitaxy grown uniform and ultrathin bismuth film publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105068 – volume: 28 year: 2018 ident: 10.1016/j.jpowsour.2024.234426_bib37 article-title: Nanoflake arrays of lithiophilic metal oxides for the ultra‐stable anodes of lithium‐metal batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803023 – volume: 10 start-page: 11493 year: 2022 ident: 10.1016/j.jpowsour.2024.234426_bib51 article-title: Bismuth-contained lithiophilic protective layer on lithium metal anode in situ generated via electrochemical method publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.2c02652 – volume: 48 start-page: 172 year: 2022 ident: 10.1016/j.jpowsour.2024.234426_bib11 article-title: Commercial carbon cloth: an emerging substrate for practical lithium metal batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.03.014 – volume: 30 year: 2020 ident: 10.1016/j.jpowsour.2024.234426_bib39 article-title: Electrical conductivity gradient based on heterofibrous scaffolds for stable lithium-metal batteries publication-title: Adv. Funct. Mater. – volume: 22 issue: 33 year: 2012 ident: 10.1016/j.jpowsour.2024.234426_bib36 article-title: Rational synthesis of MnO2/conducting polypyrrole@carbon nanofiber triaxial nano-cables for high-performance supercapacitors publication-title: J. Mater. Chem. A – volume: 477 year: 2023 ident: 10.1016/j.jpowsour.2024.234426_bib7 article-title: AgCuInCdZn high-entropy alloy nanoparticles-embedded in porous carbon fibers for long-cycling lithium metal anodes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.146884 – volume: 556 year: 2023 ident: 10.1016/j.jpowsour.2024.234426_bib40 article-title: Lithiophilic single-atom Co on carbon nanosheets synergistically modulates Li deposition enable dendrite-free lithium metal batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.232474 – volume: 11 start-page: 6879 year: 2023 ident: 10.1016/j.jpowsour.2024.234426_bib6 article-title: Artificial solid electrolyte interphase engineering toward dendrite-free lithium anodes publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.2c06146 – volume: 142 start-page: 8818 year: 2020 ident: 10.1016/j.jpowsour.2024.234426_bib21 article-title: Solid–solution-based metal alloy phase for highly reversible lithium metal anode publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01811 – volume: 5 year: 2015 ident: 10.1016/j.jpowsour.2024.234426_bib32 article-title: Graphene-nanodiamond heterostructures and their application to high current devices publication-title: Sci. Rep. – volume: 19 year: 2023 ident: 10.1016/j.jpowsour.2024.234426_bib26 article-title: A gradient lithiophilic structure for stable lithium metal anodes with ultrahigh rate and ultradeep capacity publication-title: Small – volume: 32 start-page: 306 year: 2020 ident: 10.1016/j.jpowsour.2024.234426_bib5 article-title: Recent progress on electrolyte additives for stable lithium metal anode publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.07.008 – volume: 27 start-page: 1787 year: 2006 ident: 10.1016/j.jpowsour.2024.234426_bib25 article-title: Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 6 start-page: 4825 year: 2023 ident: 10.1016/j.jpowsour.2024.234426_bib46 article-title: ZnO/carbon shell/carbon cloth as a stable host for high Li-content anodes publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.3c00335 – volume: 50 start-page: 505 year: 2022 ident: 10.1016/j.jpowsour.2024.234426_bib42 article-title: Synergistic regulating of dynamic trajectory and lithiophilic nucleation by Heusler alloy for dendrite-free Li deposition publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.05.043 – volume: 464 year: 2023 ident: 10.1016/j.jpowsour.2024.234426_bib45 article-title: Vertically aligned MnO2 nanosheets on carbon fiber cloth as lithiophilic host enables dendrite-free lithium metal anode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2023.142896 – volume: 130 year: 2022 ident: 10.1016/j.jpowsour.2024.234426_bib8 article-title: Modification of Cu current collectors for lithium metal batteries – a review publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2022.100996 – volume: 469 year: 2020 ident: 10.1016/j.jpowsour.2024.234426_bib34 article-title: Wide potential window TiO2@carbon cloth and high capacitance MnO2@carbon cloth for the construction of a 2.6 V high-performance aqueous asymmetric supercapacitor publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228425 – volume: 23 start-page: 181 year: 2019 ident: 10.1016/j.jpowsour.2024.234426_bib43 article-title: MOF-derived porous Co3O4-NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.05.014 – volume: 788 start-page: 302 year: 2019 ident: 10.1016/j.jpowsour.2024.234426_bib33 article-title: Enhanced electrochemical performance of Sn-doped MnO2 and study on morphology evolution publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.02.171 – volume: 11 start-page: 30793 year: 2019 ident: 10.1016/j.jpowsour.2024.234426_bib53 article-title: High current enabled stable lithium anode for ultralong cycling life of lithium–oxygen batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b08153 – volume: 2 start-page: 764 year: 2018 ident: 10.1016/j.jpowsour.2024.234426_bib22 article-title: Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries publication-title: Joule doi: 10.1016/j.joule.2018.02.001 – volume: 119 year: 2024 ident: 10.1016/j.jpowsour.2024.234426_bib27 article-title: Promoting homogeneous lithium deposition by facet-specific absorption of CoIn3 for dendrite-free lithium metal anodes publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.109093 – volume: 3 start-page: 957 year: 2021 ident: 10.1016/j.jpowsour.2024.234426_bib13 article-title: Carbon materials for stable Li metal anodes: challenges, solutions, and outlook publication-title: Carbon Energy doi: 10.1002/cey2.147 – volume: 12 year: 2022 ident: 10.1016/j.jpowsour.2024.234426_bib12 article-title: Carbon/Lithium composite anode for advanced lithium metal batteries: design, progress, in situ characterization, and perspectives publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201493 – volume: 858 year: 2021 ident: 10.1016/j.jpowsour.2024.234426_bib20 article-title: Directly anchoring Ag single atoms on α-MnO2 nanorods as efficient oxygen reduction catalysts for Mg-air fuel cell publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.157672 – volume: 33 start-page: 56 year: 2020 ident: 10.1016/j.jpowsour.2024.234426_bib3 article-title: Towards better Li metal anodes: challenges and strategies publication-title: Mater. Today doi: 10.1016/j.mattod.2019.09.018 – volume: 19 year: 2022 ident: 10.1016/j.jpowsour.2024.234426_bib1 article-title: Advanced composite lithium metal anodes with 3D frameworks: preloading strategies, interfacial optimization, and perspectives publication-title: Small – volume: 77 start-page: 3865 year: 1996 ident: 10.1016/j.jpowsour.2024.234426_bib24 article-title: Ernzerhof, generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 31 issue: 9 year: 2020 ident: 10.1016/j.jpowsour.2024.234426_bib31 article-title: Spatially controlled lithium deposition on silver‐nanocrystals‐decorated TiO2 nanotube arrays enabling ultrastable lithium metal anode publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009605 – volume: 6 start-page: 1748 year: 2023 ident: 10.1016/j.jpowsour.2024.234426_bib15 article-title: Co-doped MnO2 with abundant oxygen vacancies as a cathode for superior aqueous magnesium ion storage publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI02380F – volume: 58 start-page: 13455 year: 2022 ident: 10.1016/j.jpowsour.2024.234426_bib38 article-title: Highly reversible Li metal anode using a binary alloy interface publication-title: Chem. Commun. doi: 10.1039/D2CC05051J – volume: 946 year: 2023 ident: 10.1016/j.jpowsour.2024.234426_bib18 article-title: Enhanced electrochemical performance of MnO2 by high oxidation state vanadium(Ⅴ) doping publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.169386 – volume: 59 year: 2023 ident: 10.1016/j.jpowsour.2024.234426_bib28 article-title: MnO2 nanospheres integrated into hierarchical porous carbon as electrode for high performance asymmetrical supercapacitors publication-title: J. Energy Storage doi: 10.1016/j.est.2022.106440 – volume: 31 year: 2019 ident: 10.1016/j.jpowsour.2024.234426_bib55 article-title: A 3D and stable lithium anode for high‐performance lithium–iodine batteries publication-title: Adv. Mater. – volume: 362 year: 2020 ident: 10.1016/j.jpowsour.2024.234426_bib47 article-title: Bio-inspired lotus root-like 3D multichannel carbon hosts for stable lithium metal anodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.137130 – volume: 6 start-page: 14910 year: 2018 ident: 10.1016/j.jpowsour.2024.234426_bib48 article-title: A substrate-influenced three-dimensional unoriented dispersion pathway for dendrite-free lithium metal anodes publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04343D – volume: 59 year: 2023 ident: 10.1016/j.jpowsour.2024.234426_bib35 article-title: MnO2 nanospheres integrated into hierarchical porous carbon as electrode for high performance asymmetrical supercapacitors publication-title: J. Energy Storage doi: 10.1016/j.est.2022.106440 – volume: 41 start-page: 1861 year: 2023 ident: 10.1016/j.jpowsour.2024.234426_bib9 article-title: MOF‐derived materials enabled lithiophilic 3D hosts for lithium metal anode — a Review publication-title: Chin. J. Chem. doi: 10.1002/cjoc.202200816 – volume: 69 start-page: 270 year: 2022 ident: 10.1016/j.jpowsour.2024.234426_bib14 article-title: MnO2 nanosheet modified N, P co-doping carbon nanofibers on carbon cloth as lithiophilic host to construct high-performance anodes for Li metal batteries publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.12.046 – volume: 649 start-page: 731 year: 2023 ident: 10.1016/j.jpowsour.2024.234426_bib16 article-title: Different metal cation-doped MnO2/carbon cloth for wide voltage energy storage publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.06.145 – volume: 471 year: 2023 ident: 10.1016/j.jpowsour.2024.234426_bib54 article-title: Dealloying-derived TiC hierarchical porous frameworks as stable host for advanced Li metal electrode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2023.143380 – volume: 6 start-page: 3186 year: 2016 ident: 10.1016/j.jpowsour.2024.234426_bib29 article-title: In situ growth of Ag/Ag2O nanoparticles on g-C3N4 by a natural carbon nanodot-assisted green method for synergistic photocatalytic activity publication-title: RSC Adv. doi: 10.1039/C5RA22176E |
| SSID | ssj0001170 |
| Score | 2.4536974 |
| Snippet | Metallic Li with high specific capacity and low electrode potential is considered as the most promising anode material. The main obstacles to its application... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 234426 |
| SubjectTerms | Carbon cloth Finite element simulations Li metal anode Lithiophilic sites MnO2 nanosheet arrays |
| Title | Regulating lithium nucleation and deposition on carbon cloth decorated with vertically aligned Ag-doped MnO2 nanosheet arrays for dendrite-free lithium metal anode |
| URI | https://dx.doi.org/10.1016/j.jpowsour.2024.234426 |
| Volume | 603 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001170 issn: 0378-7753 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001170 issn: 0378-7753 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ customDbUrl: eissn: 1873-2755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001170 issn: 0378-7753 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001170 issn: 0378-7753 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001170 issn: 0378-7753 databaseCode: AKRWK dateStart: 19761201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG5EL-tBdFfxsUof9pqZmHTSk-MwOIyKLviAuYV-VOsMY2eII-LFP-Mf3ao8dATBw0Ig6SSVhKqi6utOPRj7g040tlU2jpYuEEqGgU5TCDT6YnMcO6ErSV9cpqNbcTZOxits0ObCUFhlY_trm15Z6-ZMt-Fmdz6ZdK_DGJUN0TZFQcZSjimDXUjqYtB5_QjzoM4q1Z8EnC3R3UtZwtPOdF480yI5zhMj0YliIajIwlcOasnpDDfZRoMWeb_-oC22Av4nW1-qIfiLvV3V3eRxwBFS30-eHrinIsUVy7nylltoQ7M4bkaVmnYzlBFeMqQDYDktyPKqOTNKbfbCEZ_foQnm_bvAFnM8uPB_I-6VLx7vARZclaV6eeSIefEh3pYIXQNXArx_xAMgrsf3Fxa22e3w5GYwCprOC4GJIrkILE5UrIwRDihHJbm00b1QSUeZqibNVGJihVBPRQo5JrOe0UZolWQGrUekwMQ7bNUXHnYZD8FqINDnnBbgEp0IF5necZo5baEX7rGkZXdumrLk1B1jlrfxZ9O8FVNOYsprMe2x7jvdvC7M8S1F1koz_6RiOXqPb2j3_4P2gP2gURVyEP5mq4vyCQ4RySz0UaWqR2ytf3o-uvwH5vb45w |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF5Remh7QC20gtKWPfTqxKzX3viIUFF4BCQeUm7WPmYhUVhHJqji0j_DH2XGDxqkShwqWfJz7NXMauab9TwY-4lGNHF1No5RPpJaxZHJMogM2mK7m3hpakmPTrPhlTwap-MVtt_lwlBYZav7G51ea-v2Sr_lZn8-mfQv4gQnG6JtioJMlBq_YW9lKhR5YL0_f-M8qLVK_SsB3SV6fClNeNqbzsvftEqOjqKQPZFISVUW_mWhlqzOwUe21sJFvteM6BNbgbDOPiwVEdxgj-dNO3k84Yipbyb3tzxQleKa51wHxx10sVkcN6srQ7sZCglvWZoE4DityPK6OzOKbfbAEaBfow7me9eRK-d4MApnggcdyrsbgAXXVaUf7jiCXnxJcBVi18hXAM-DuAUE9vj90sFndnXw63J_GLWtFyIrhFpEDj0VpxLEA9pTTS5jzSDWylOqqs1yndpEI9bTQiPHVD6wxkqj09yi-hAabPKFrYYywCbjMTgDhPq8NxJ8alLphR3sZrk3DgbxFks7dhe2rUtO7TFmRReANi06MRUkpqIR0xbrP9PNm8ocr1LknTSLF3OsQPPxCu3X_6DdYe-Gl6OT4uTw9Hibvac7dfxB_I2tLqp7-I6wZmF-1NP2CaBG-nw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+lithium+nucleation+and+deposition+on+carbon+cloth+decorated+with+vertically+aligned+Ag-doped+MnO2+nanosheet+arrays+for+dendrite-free+lithium+metal+anode&rft.jtitle=Journal+of+power+sources&rft.au=Liu%2C+Derong&rft.au=Li%2C+Hongmei&rft.au=Jiang%2C+Xiaoping&rft.au=Tao%2C+Yuanyuan&rft.date=2024-05-30&rft.issn=0378-7753&rft.volume=603&rft.spage=234426&rft_id=info:doi/10.1016%2Fj.jpowsour.2024.234426&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2024_234426 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |