Design of fully interpretable neural networks for digital coherent demodulation

In this paper, we propose a digital coherent demodulation architecture using fully interpretable deep neural networks (NNs). We show that all the conventional coherent digital signal processing (DSP) is deeply unfolded into a well-structured NN so that the established training algorithms in machine...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 30; no. 20; p. 35526
Main Authors Huang, Xiatao, Jiang, Wenshan, Yi, Xingwen, Zhang, Jing, Jin, Taowei, Zhang, Qianwu, Xu, Bo, Qiu, Kun
Format Journal Article
LanguageEnglish
Published 26.09.2022
Online AccessGet full text
ISSN1094-4087
1094-4087
DOI10.1364/OE.472406

Cover

Abstract In this paper, we propose a digital coherent demodulation architecture using fully interpretable deep neural networks (NNs). We show that all the conventional coherent digital signal processing (DSP) is deeply unfolded into a well-structured NN so that the established training algorithms in machine learning can be applied. In contrast to adding or replacing certain algorithms of existing DSP in coherent receivers, we replace all the coherent demodulation algorithms with a fully interpretable NN (FINN), making the whole NN interpretable. The FINN is modular and flexible to add or drop modules, including chromatic dispersion compensation (CDC), the digital back-propagation (DBP) algorithm for fiber nonlinearity compensation, carrier recovery and residual impairments. The resulted FINN can be quickly initialized by straightforwardly referring to the conventional DSP, and can also enjoy further performance enhancement in the nonlinear fiber transmissions by NN. We conduct a 132-Gb/s polarization multiplexed (PM)-16QAM transmission experiment over 600-km standard single mode fiber. The experimental results show that without fiber nonlinearity compensation, FINN-CDC obtains less than 0.06-dB SNR gain than chromatic dispersion compensation (CDC). However, with fiber nonlinearity compensation, 2-steps per span FINN-DBP (FINN-2sps-DBP) and FINN-1sps-DBP bring about 0.59-dB and 0.53-dB SNR improvement compared with the conventional 2sps-DBP and 1sps-DBP, respectively.
AbstractList In this paper, we propose a digital coherent demodulation architecture using fully interpretable deep neural networks (NNs). We show that all the conventional coherent digital signal processing (DSP) is deeply unfolded into a well-structured NN so that the established training algorithms in machine learning can be applied. In contrast to adding or replacing certain algorithms of existing DSP in coherent receivers, we replace all the coherent demodulation algorithms with a fully interpretable NN (FINN), making the whole NN interpretable. The FINN is modular and flexible to add or drop modules, including chromatic dispersion compensation (CDC), the digital back-propagation (DBP) algorithm for fiber nonlinearity compensation, carrier recovery and residual impairments. The resulted FINN can be quickly initialized by straightforwardly referring to the conventional DSP, and can also enjoy further performance enhancement in the nonlinear fiber transmissions by NN. We conduct a 132-Gb/s polarization multiplexed (PM)-16QAM transmission experiment over 600-km standard single mode fiber. The experimental results show that without fiber nonlinearity compensation, FINN-CDC obtains less than 0.06-dB SNR gain than chromatic dispersion compensation (CDC). However, with fiber nonlinearity compensation, 2-steps per span FINN-DBP (FINN-2sps-DBP) and FINN-1sps-DBP bring about 0.59-dB and 0.53-dB SNR improvement compared with the conventional 2sps-DBP and 1sps-DBP, respectively.In this paper, we propose a digital coherent demodulation architecture using fully interpretable deep neural networks (NNs). We show that all the conventional coherent digital signal processing (DSP) is deeply unfolded into a well-structured NN so that the established training algorithms in machine learning can be applied. In contrast to adding or replacing certain algorithms of existing DSP in coherent receivers, we replace all the coherent demodulation algorithms with a fully interpretable NN (FINN), making the whole NN interpretable. The FINN is modular and flexible to add or drop modules, including chromatic dispersion compensation (CDC), the digital back-propagation (DBP) algorithm for fiber nonlinearity compensation, carrier recovery and residual impairments. The resulted FINN can be quickly initialized by straightforwardly referring to the conventional DSP, and can also enjoy further performance enhancement in the nonlinear fiber transmissions by NN. We conduct a 132-Gb/s polarization multiplexed (PM)-16QAM transmission experiment over 600-km standard single mode fiber. The experimental results show that without fiber nonlinearity compensation, FINN-CDC obtains less than 0.06-dB SNR gain than chromatic dispersion compensation (CDC). However, with fiber nonlinearity compensation, 2-steps per span FINN-DBP (FINN-2sps-DBP) and FINN-1sps-DBP bring about 0.59-dB and 0.53-dB SNR improvement compared with the conventional 2sps-DBP and 1sps-DBP, respectively.
In this paper, we propose a digital coherent demodulation architecture using fully interpretable deep neural networks (NNs). We show that all the conventional coherent digital signal processing (DSP) is deeply unfolded into a well-structured NN so that the established training algorithms in machine learning can be applied. In contrast to adding or replacing certain algorithms of existing DSP in coherent receivers, we replace all the coherent demodulation algorithms with a fully interpretable NN (FINN), making the whole NN interpretable. The FINN is modular and flexible to add or drop modules, including chromatic dispersion compensation (CDC), the digital back-propagation (DBP) algorithm for fiber nonlinearity compensation, carrier recovery and residual impairments. The resulted FINN can be quickly initialized by straightforwardly referring to the conventional DSP, and can also enjoy further performance enhancement in the nonlinear fiber transmissions by NN. We conduct a 132-Gb/s polarization multiplexed (PM)-16QAM transmission experiment over 600-km standard single mode fiber. The experimental results show that without fiber nonlinearity compensation, FINN-CDC obtains less than 0.06-dB SNR gain than chromatic dispersion compensation (CDC). However, with fiber nonlinearity compensation, 2-steps per span FINN-DBP (FINN-2sps-DBP) and FINN-1sps-DBP bring about 0.59-dB and 0.53-dB SNR improvement compared with the conventional 2sps-DBP and 1sps-DBP, respectively.
Author Zhang, Qianwu
Zhang, Jing
Xu, Bo
Qiu, Kun
Huang, Xiatao
Yi, Xingwen
Jiang, Wenshan
Jin, Taowei
Author_xml – sequence: 1
  givenname: Xiatao
  orcidid: 0000-0002-9943-732X
  surname: Huang
  fullname: Huang, Xiatao
– sequence: 2
  givenname: Wenshan
  surname: Jiang
  fullname: Jiang, Wenshan
– sequence: 3
  givenname: Xingwen
  orcidid: 0000-0002-7440-3545
  surname: Yi
  fullname: Yi, Xingwen
– sequence: 4
  givenname: Jing
  orcidid: 0000-0001-8135-8124
  surname: Zhang
  fullname: Zhang, Jing
– sequence: 5
  givenname: Taowei
  surname: Jin
  fullname: Jin, Taowei
– sequence: 6
  givenname: Qianwu
  orcidid: 0000-0001-8614-5267
  surname: Zhang
  fullname: Zhang, Qianwu
– sequence: 7
  givenname: Bo
  surname: Xu
  fullname: Xu, Bo
– sequence: 8
  givenname: Kun
  surname: Qiu
  fullname: Qiu, Kun
BookMark eNptkE9PAyEQxYmpiW314DfYox62BZaF9mhq_ZM02YueCcsOFaVQgY3pt3ebejDG05vM-80k703QyAcPCF0TPCMVZ_NmPWOCMszP0JjgJSsZXojRr_kCTVJ6x5gwsRRj1NxDsltfBFOY3rlDYX2GuI-QVeug8NBH5QbJXyF-pMKEWHR2a_Ow1OENIvhcdLALXe9UtsFfonOjXIKrH52i14f1y-qp3DSPz6u7TakpFblsKXQE60UFYBSljOG6hiWhbVth3eqaVIPFOdVc1EwrJsBgrWqhhSFKUFJN0c3p7z6Gzx5SljubNDinPIQ-SSooZ4RwXg_o7QnVMaQUwch9tDsVD5JgeSxNNmt5Km1g539YPWQ9BstRWffPxTdOW3ET
CitedBy_id crossref_primary_10_1016_j_rio_2024_100629
crossref_primary_10_1364_AOP_484119
crossref_primary_10_1364_JOCN_538632
crossref_primary_10_1364_JOCN_514981
crossref_primary_10_3390_photonics11020141
crossref_primary_10_1016_j_optcom_2025_131734
crossref_primary_10_1038_s41377_024_01556_5
Cites_doi 10.1109/JLT.2007.912128
10.1109/JLT.2020.3033624
10.1364/OE.16.000804
10.1109/TCCN.2017.2758370
10.1364/OE.20.001360
10.3390/app9194192
10.1038/s41467-019-13993-7
10.1109/JLT.2021.3086301
10.1109/68.841262
10.1109/JLT.2008.927791
10.1364/OE.22.001209
10.1364/OE.25.004564
10.1038/nature14539
10.1109/JLT.2019.2897313
10.1109/JLT.2018.2865109
10.1021/ci00027a006
10.1038/ncomms12710
10.1364/OE.401667
10.1109/JLT.2009.2039464
10.1126/science.aab1781
10.1109/JLT.2002.806360
10.1109/JSAC.2020.3036950
10.1364/OE.24.030309
10.1038/s42005-019-0147-3
10.1364/OE.22.013454
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1364/OE.472406
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 10_1364_OE_472406
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
7X8
ID FETCH-LOGICAL-c227t-b2ed10c83eefa2244055e912bb30cbc51383e662c6754ca47ef0ca57c7f1a7213
ISSN 1094-4087
IngestDate Fri Jul 11 01:44:29 EDT 2025
Thu Apr 24 22:58:27 EDT 2025
Tue Jul 01 01:41:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c227t-b2ed10c83eefa2244055e912bb30cbc51383e662c6754ca47ef0ca57c7f1a7213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9943-732X
0000-0001-8614-5267
0000-0002-7440-3545
0000-0001-8135-8124
OpenAccessLink https://doi.org/10.1364/oe.472406
PQID 2726411665
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2726411665
crossref_primary_10_1364_OE_472406
crossref_citationtrail_10_1364_OE_472406
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-26
20220926
PublicationDateYYYYMMDD 2022-09-26
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-26
  day: 26
PublicationDecade 2020
PublicationTitle Optics express
PublicationYear 2022
References Guiomar (oe-30-20-35526-R9) 2012; 20
Fludger (oe-30-20-35526-R27) 2008; 26
Stefano (oe-30-20-35526-R1) 2019; 2
O’Shea (oe-30-20-35526-R15) 2017; 3
Gao (oe-30-20-35526-R29) 2014; 22
Khan (oe-30-20-35526-R19) 2019; 37
Häger (oe-30-20-35526-R24) 2021; 39
Savory (oe-30-20-35526-R6) 2008; 16
Gaiarin (oe-30-20-35526-R31) 2021; 39
Essiambre (oe-30-20-35526-R2) 2010; 28
Temprana (oe-30-20-35526-R7) 2015; 348
Gonçalves (oe-30-20-35526-R14) 2016; 24
Xu (oe-30-20-35526-R10) 2003; 21
Derevyanko (oe-30-20-35526-R13) 2016; 7
Zhai (oe-30-20-35526-R22) 2021; 39
Yi (oe-30-20-35526-R12) 2014; 22
Tetko (oe-30-20-35526-R16) 1995; 35
Karanov (oe-30-20-35526-R18) 2018; 36
LeCun (oe-30-20-35526-R17) 2015; 521
Bosco (oe-30-20-35526-R30) 2000; 12
Galdino (oe-30-20-35526-R8) 2017; 25
Fan (oe-30-20-35526-R32) 2020; 11
Bitachon (oe-30-20-35526-R25) 2020; 28
Ip (oe-30-20-35526-R3) 2008; 26
Zhao (oe-30-20-35526-R28) 2019; 9
References_xml – volume: 26
  start-page: 64
  year: 2008
  ident: oe-30-20-35526-R27
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2007.912128
– volume: 39
  start-page: 418
  year: 2021
  ident: oe-30-20-35526-R31
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2020.3033624
– volume: 16
  start-page: 804
  year: 2008
  ident: oe-30-20-35526-R6
  publication-title: Opt. Express
  doi: 10.1364/OE.16.000804
– volume: 3
  start-page: 563
  year: 2017
  ident: oe-30-20-35526-R15
  publication-title: IEEE Trans. Cogn. Commun. Netw.
  doi: 10.1109/TCCN.2017.2758370
– volume: 20
  start-page: 1360
  year: 2012
  ident: oe-30-20-35526-R9
  publication-title: Opt. Express
  doi: 10.1364/OE.20.001360
– volume: 9
  start-page: 4192
  year: 2019
  ident: oe-30-20-35526-R28
  publication-title: Appl. Sci.
  doi: 10.3390/app9194192
– volume: 11
  start-page: 1
  year: 2020
  ident: oe-30-20-35526-R32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13993-7
– volume: 39
  start-page: 5449
  year: 2021
  ident: oe-30-20-35526-R22
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2021.3086301
– volume: 12
  start-page: 489
  year: 2000
  ident: oe-30-20-35526-R30
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/68.841262
– volume: 26
  start-page: 3416
  year: 2008
  ident: oe-30-20-35526-R3
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2008.927791
– volume: 22
  start-page: 1209
  year: 2014
  ident: oe-30-20-35526-R29
  publication-title: Opt. Express
  doi: 10.1364/OE.22.001209
– volume: 25
  start-page: 4564
  year: 2017
  ident: oe-30-20-35526-R8
  publication-title: Opt. Express
  doi: 10.1364/OE.25.004564
– volume: 521
  start-page: 436
  year: 2015
  ident: oe-30-20-35526-R17
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 37
  start-page: 493
  year: 2019
  ident: oe-30-20-35526-R19
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2019.2897313
– volume: 36
  start-page: 4843
  year: 2018
  ident: oe-30-20-35526-R18
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2865109
– volume: 35
  start-page: 826
  year: 1995
  ident: oe-30-20-35526-R16
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci00027a006
– volume: 7
  start-page: 12710
  year: 2016
  ident: oe-30-20-35526-R13
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12710
– volume: 28
  start-page: 29318
  year: 2020
  ident: oe-30-20-35526-R25
  publication-title: Opt. Express
  doi: 10.1364/OE.401667
– volume: 28
  start-page: 662
  year: 2010
  ident: oe-30-20-35526-R2
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2009.2039464
– volume: 348
  start-page: 1445
  year: 2015
  ident: oe-30-20-35526-R7
  publication-title: Science
  doi: 10.1126/science.aab1781
– volume: 21
  start-page: 40
  year: 2003
  ident: oe-30-20-35526-R10
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2002.806360
– volume: 39
  start-page: 280
  year: 2021
  ident: oe-30-20-35526-R24
  publication-title: IEEE J. Select. Areas Commun.
  doi: 10.1109/JSAC.2020.3036950
– volume: 24
  start-page: 30309
  year: 2016
  ident: oe-30-20-35526-R14
  publication-title: Opt. Express
  doi: 10.1364/OE.24.030309
– volume: 2
  start-page: 1
  year: 2019
  ident: oe-30-20-35526-R1
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-019-0147-3
– volume: 22
  start-page: 13454
  year: 2014
  ident: oe-30-20-35526-R12
  publication-title: Opt. Express
  doi: 10.1364/OE.22.013454
SSID ssj0014797
Score 2.4524345
Snippet In this paper, we propose a digital coherent demodulation architecture using fully interpretable deep neural networks (NNs). We show that all the conventional...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 35526
Title Design of fully interpretable neural networks for digital coherent demodulation
URI https://www.proquest.com/docview/2726411665
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIkL4inKozKIA1KVkjiOzR4RpKqq0lx2xXKK7IndrlSSFd2Kx4HfzviRZFfsoXCxVo5lreazxt94XoS8zhvQQjKdKJ3rhANAokSjE8uMlaCsMj7k_9OpOJrx43kxHxtd-uySlT6AX1vzSv4HVZxDXF2W7D8gO2yKE_gb8cUREcbxWhh_9OEXju-5V_SfvvZDiCB0-VCuVCUC0IZAb193Yb9ZnLkuIfvQnRtfl6kxX7smtvBaJ6rV0tdvNj-WQ4yGBz8-L88RUdUN4TeLOP0ZjeLz8bx9WYS17dn3MeNseKI-7m_N-OiA9qrzw4g1PYlWIZqe8a40W-aico1Ol3CIWLqmKpHohB3_UuK54Cj5qjzg0vGN8abqvfOnVX04Ozmpp-V8epPcYhJpk4va_F0ODiQuQ1-d_j_FolK49dth400qsnkTe3oxvUfuRruAvg8g3yc3TPuA3PbxuXD5kFQBatpZ6qGmG1DTADXtoaYINY1Q0x5qug71IzI7LKcfjpLYCyMBxuQq0cw0WQrvcmOsQtqFPLswk4xpnaegochy_CQEAzQAOSgujU1BFRKkzRRa-fljstN2rXlCqC2aNJ_ggMyYc6X0ZCJRLlY0qS6EZrvkTS-WGmKheNev5KL23k_B66qsgwR3yath6TJUR9m26GUv2xp1l3NIqdZ0V5c1k0jHs0yI4uk11jwjd8aj-JzsrL5dmRfICFd6z7-k7PkT8AeWzGbZ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+fully+interpretable+neural+networks+for+digital+coherent+demodulation&rft.jtitle=Optics+express&rft.au=Huang%2C+Xiatao&rft.au=Jiang%2C+Wenshan&rft.au=Yi%2C+Xingwen&rft.au=Zhang%2C+Jing&rft.date=2022-09-26&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=30&rft.issue=20&rft.spage=35526&rft_id=info:doi/10.1364%2FOE.472406&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon