Design of fully interpretable neural networks for digital coherent demodulation
In this paper, we propose a digital coherent demodulation architecture using fully interpretable deep neural networks (NNs). We show that all the conventional coherent digital signal processing (DSP) is deeply unfolded into a well-structured NN so that the established training algorithms in machine...
Saved in:
Published in | Optics express Vol. 30; no. 20; p. 35526 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
26.09.2022
|
Online Access | Get full text |
ISSN | 1094-4087 1094-4087 |
DOI | 10.1364/OE.472406 |
Cover
Abstract | In this paper, we propose a digital coherent demodulation architecture using fully interpretable deep neural networks (NNs). We show that all the conventional coherent digital signal processing (DSP) is deeply unfolded into a well-structured NN so that the established training algorithms in machine learning can be applied. In contrast to adding or replacing certain algorithms of existing DSP in coherent receivers, we replace all the coherent demodulation algorithms with a fully interpretable NN (FINN), making the whole NN interpretable. The FINN is modular and flexible to add or drop modules, including chromatic dispersion compensation (CDC), the digital back-propagation (DBP) algorithm for fiber nonlinearity compensation, carrier recovery and residual impairments. The resulted FINN can be quickly initialized by straightforwardly referring to the conventional DSP, and can also enjoy further performance enhancement in the nonlinear fiber transmissions by NN. We conduct a 132-Gb/s polarization multiplexed (PM)-16QAM transmission experiment over 600-km standard single mode fiber. The experimental results show that without fiber nonlinearity compensation, FINN-CDC obtains less than 0.06-dB SNR gain than chromatic dispersion compensation (CDC). However, with fiber nonlinearity compensation, 2-steps per span FINN-DBP (FINN-2sps-DBP) and FINN-1sps-DBP bring about 0.59-dB and 0.53-dB SNR improvement compared with the conventional 2sps-DBP and 1sps-DBP, respectively. |
---|---|
AbstractList | In this paper, we propose a digital coherent demodulation architecture using fully interpretable deep neural networks (NNs). We show that all the conventional coherent digital signal processing (DSP) is deeply unfolded into a well-structured NN so that the established training algorithms in machine learning can be applied. In contrast to adding or replacing certain algorithms of existing DSP in coherent receivers, we replace all the coherent demodulation algorithms with a fully interpretable NN (FINN), making the whole NN interpretable. The FINN is modular and flexible to add or drop modules, including chromatic dispersion compensation (CDC), the digital back-propagation (DBP) algorithm for fiber nonlinearity compensation, carrier recovery and residual impairments. The resulted FINN can be quickly initialized by straightforwardly referring to the conventional DSP, and can also enjoy further performance enhancement in the nonlinear fiber transmissions by NN. We conduct a 132-Gb/s polarization multiplexed (PM)-16QAM transmission experiment over 600-km standard single mode fiber. The experimental results show that without fiber nonlinearity compensation, FINN-CDC obtains less than 0.06-dB SNR gain than chromatic dispersion compensation (CDC). However, with fiber nonlinearity compensation, 2-steps per span FINN-DBP (FINN-2sps-DBP) and FINN-1sps-DBP bring about 0.59-dB and 0.53-dB SNR improvement compared with the conventional 2sps-DBP and 1sps-DBP, respectively.In this paper, we propose a digital coherent demodulation architecture using fully interpretable deep neural networks (NNs). We show that all the conventional coherent digital signal processing (DSP) is deeply unfolded into a well-structured NN so that the established training algorithms in machine learning can be applied. In contrast to adding or replacing certain algorithms of existing DSP in coherent receivers, we replace all the coherent demodulation algorithms with a fully interpretable NN (FINN), making the whole NN interpretable. The FINN is modular and flexible to add or drop modules, including chromatic dispersion compensation (CDC), the digital back-propagation (DBP) algorithm for fiber nonlinearity compensation, carrier recovery and residual impairments. The resulted FINN can be quickly initialized by straightforwardly referring to the conventional DSP, and can also enjoy further performance enhancement in the nonlinear fiber transmissions by NN. We conduct a 132-Gb/s polarization multiplexed (PM)-16QAM transmission experiment over 600-km standard single mode fiber. The experimental results show that without fiber nonlinearity compensation, FINN-CDC obtains less than 0.06-dB SNR gain than chromatic dispersion compensation (CDC). However, with fiber nonlinearity compensation, 2-steps per span FINN-DBP (FINN-2sps-DBP) and FINN-1sps-DBP bring about 0.59-dB and 0.53-dB SNR improvement compared with the conventional 2sps-DBP and 1sps-DBP, respectively. In this paper, we propose a digital coherent demodulation architecture using fully interpretable deep neural networks (NNs). We show that all the conventional coherent digital signal processing (DSP) is deeply unfolded into a well-structured NN so that the established training algorithms in machine learning can be applied. In contrast to adding or replacing certain algorithms of existing DSP in coherent receivers, we replace all the coherent demodulation algorithms with a fully interpretable NN (FINN), making the whole NN interpretable. The FINN is modular and flexible to add or drop modules, including chromatic dispersion compensation (CDC), the digital back-propagation (DBP) algorithm for fiber nonlinearity compensation, carrier recovery and residual impairments. The resulted FINN can be quickly initialized by straightforwardly referring to the conventional DSP, and can also enjoy further performance enhancement in the nonlinear fiber transmissions by NN. We conduct a 132-Gb/s polarization multiplexed (PM)-16QAM transmission experiment over 600-km standard single mode fiber. The experimental results show that without fiber nonlinearity compensation, FINN-CDC obtains less than 0.06-dB SNR gain than chromatic dispersion compensation (CDC). However, with fiber nonlinearity compensation, 2-steps per span FINN-DBP (FINN-2sps-DBP) and FINN-1sps-DBP bring about 0.59-dB and 0.53-dB SNR improvement compared with the conventional 2sps-DBP and 1sps-DBP, respectively. |
Author | Zhang, Qianwu Zhang, Jing Xu, Bo Qiu, Kun Huang, Xiatao Yi, Xingwen Jiang, Wenshan Jin, Taowei |
Author_xml | – sequence: 1 givenname: Xiatao orcidid: 0000-0002-9943-732X surname: Huang fullname: Huang, Xiatao – sequence: 2 givenname: Wenshan surname: Jiang fullname: Jiang, Wenshan – sequence: 3 givenname: Xingwen orcidid: 0000-0002-7440-3545 surname: Yi fullname: Yi, Xingwen – sequence: 4 givenname: Jing orcidid: 0000-0001-8135-8124 surname: Zhang fullname: Zhang, Jing – sequence: 5 givenname: Taowei surname: Jin fullname: Jin, Taowei – sequence: 6 givenname: Qianwu orcidid: 0000-0001-8614-5267 surname: Zhang fullname: Zhang, Qianwu – sequence: 7 givenname: Bo surname: Xu fullname: Xu, Bo – sequence: 8 givenname: Kun surname: Qiu fullname: Qiu, Kun |
BookMark | eNptkE9PAyEQxYmpiW314DfYox62BZaF9mhq_ZM02YueCcsOFaVQgY3pt3ebejDG05vM-80k703QyAcPCF0TPCMVZ_NmPWOCMszP0JjgJSsZXojRr_kCTVJ6x5gwsRRj1NxDsltfBFOY3rlDYX2GuI-QVeug8NBH5QbJXyF-pMKEWHR2a_Ow1OENIvhcdLALXe9UtsFfonOjXIKrH52i14f1y-qp3DSPz6u7TakpFblsKXQE60UFYBSljOG6hiWhbVth3eqaVIPFOdVc1EwrJsBgrWqhhSFKUFJN0c3p7z6Gzx5SljubNDinPIQ-SSooZ4RwXg_o7QnVMaQUwch9tDsVD5JgeSxNNmt5Km1g539YPWQ9BstRWffPxTdOW3ET |
CitedBy_id | crossref_primary_10_1016_j_rio_2024_100629 crossref_primary_10_1364_AOP_484119 crossref_primary_10_1364_JOCN_538632 crossref_primary_10_1364_JOCN_514981 crossref_primary_10_3390_photonics11020141 crossref_primary_10_1016_j_optcom_2025_131734 crossref_primary_10_1038_s41377_024_01556_5 |
Cites_doi | 10.1109/JLT.2007.912128 10.1109/JLT.2020.3033624 10.1364/OE.16.000804 10.1109/TCCN.2017.2758370 10.1364/OE.20.001360 10.3390/app9194192 10.1038/s41467-019-13993-7 10.1109/JLT.2021.3086301 10.1109/68.841262 10.1109/JLT.2008.927791 10.1364/OE.22.001209 10.1364/OE.25.004564 10.1038/nature14539 10.1109/JLT.2019.2897313 10.1109/JLT.2018.2865109 10.1021/ci00027a006 10.1038/ncomms12710 10.1364/OE.401667 10.1109/JLT.2009.2039464 10.1126/science.aab1781 10.1109/JLT.2002.806360 10.1109/JSAC.2020.3036950 10.1364/OE.24.030309 10.1038/s42005-019-0147-3 10.1364/OE.22.013454 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1364/OE.472406 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1094-4087 |
ExternalDocumentID | 10_1364_OE_472406 |
GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB 7X8 |
ID | FETCH-LOGICAL-c227t-b2ed10c83eefa2244055e912bb30cbc51383e662c6754ca47ef0ca57c7f1a7213 |
ISSN | 1094-4087 |
IngestDate | Fri Jul 11 01:44:29 EDT 2025 Thu Apr 24 22:58:27 EDT 2025 Tue Jul 01 01:41:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c227t-b2ed10c83eefa2244055e912bb30cbc51383e662c6754ca47ef0ca57c7f1a7213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9943-732X 0000-0001-8614-5267 0000-0002-7440-3545 0000-0001-8135-8124 |
OpenAccessLink | https://doi.org/10.1364/oe.472406 |
PQID | 2726411665 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2726411665 crossref_primary_10_1364_OE_472406 crossref_citationtrail_10_1364_OE_472406 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-26 20220926 |
PublicationDateYYYYMMDD | 2022-09-26 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | Optics express |
PublicationYear | 2022 |
References | Guiomar (oe-30-20-35526-R9) 2012; 20 Fludger (oe-30-20-35526-R27) 2008; 26 Stefano (oe-30-20-35526-R1) 2019; 2 O’Shea (oe-30-20-35526-R15) 2017; 3 Gao (oe-30-20-35526-R29) 2014; 22 Khan (oe-30-20-35526-R19) 2019; 37 Häger (oe-30-20-35526-R24) 2021; 39 Savory (oe-30-20-35526-R6) 2008; 16 Gaiarin (oe-30-20-35526-R31) 2021; 39 Essiambre (oe-30-20-35526-R2) 2010; 28 Temprana (oe-30-20-35526-R7) 2015; 348 Gonçalves (oe-30-20-35526-R14) 2016; 24 Xu (oe-30-20-35526-R10) 2003; 21 Derevyanko (oe-30-20-35526-R13) 2016; 7 Zhai (oe-30-20-35526-R22) 2021; 39 Yi (oe-30-20-35526-R12) 2014; 22 Tetko (oe-30-20-35526-R16) 1995; 35 Karanov (oe-30-20-35526-R18) 2018; 36 LeCun (oe-30-20-35526-R17) 2015; 521 Bosco (oe-30-20-35526-R30) 2000; 12 Galdino (oe-30-20-35526-R8) 2017; 25 Fan (oe-30-20-35526-R32) 2020; 11 Bitachon (oe-30-20-35526-R25) 2020; 28 Ip (oe-30-20-35526-R3) 2008; 26 Zhao (oe-30-20-35526-R28) 2019; 9 |
References_xml | – volume: 26 start-page: 64 year: 2008 ident: oe-30-20-35526-R27 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2007.912128 – volume: 39 start-page: 418 year: 2021 ident: oe-30-20-35526-R31 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2020.3033624 – volume: 16 start-page: 804 year: 2008 ident: oe-30-20-35526-R6 publication-title: Opt. Express doi: 10.1364/OE.16.000804 – volume: 3 start-page: 563 year: 2017 ident: oe-30-20-35526-R15 publication-title: IEEE Trans. Cogn. Commun. Netw. doi: 10.1109/TCCN.2017.2758370 – volume: 20 start-page: 1360 year: 2012 ident: oe-30-20-35526-R9 publication-title: Opt. Express doi: 10.1364/OE.20.001360 – volume: 9 start-page: 4192 year: 2019 ident: oe-30-20-35526-R28 publication-title: Appl. Sci. doi: 10.3390/app9194192 – volume: 11 start-page: 1 year: 2020 ident: oe-30-20-35526-R32 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13993-7 – volume: 39 start-page: 5449 year: 2021 ident: oe-30-20-35526-R22 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2021.3086301 – volume: 12 start-page: 489 year: 2000 ident: oe-30-20-35526-R30 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/68.841262 – volume: 26 start-page: 3416 year: 2008 ident: oe-30-20-35526-R3 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2008.927791 – volume: 22 start-page: 1209 year: 2014 ident: oe-30-20-35526-R29 publication-title: Opt. Express doi: 10.1364/OE.22.001209 – volume: 25 start-page: 4564 year: 2017 ident: oe-30-20-35526-R8 publication-title: Opt. Express doi: 10.1364/OE.25.004564 – volume: 521 start-page: 436 year: 2015 ident: oe-30-20-35526-R17 publication-title: Nature doi: 10.1038/nature14539 – volume: 37 start-page: 493 year: 2019 ident: oe-30-20-35526-R19 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2897313 – volume: 36 start-page: 4843 year: 2018 ident: oe-30-20-35526-R18 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2865109 – volume: 35 start-page: 826 year: 1995 ident: oe-30-20-35526-R16 publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci00027a006 – volume: 7 start-page: 12710 year: 2016 ident: oe-30-20-35526-R13 publication-title: Nat. Commun. doi: 10.1038/ncomms12710 – volume: 28 start-page: 29318 year: 2020 ident: oe-30-20-35526-R25 publication-title: Opt. Express doi: 10.1364/OE.401667 – volume: 28 start-page: 662 year: 2010 ident: oe-30-20-35526-R2 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2009.2039464 – volume: 348 start-page: 1445 year: 2015 ident: oe-30-20-35526-R7 publication-title: Science doi: 10.1126/science.aab1781 – volume: 21 start-page: 40 year: 2003 ident: oe-30-20-35526-R10 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2002.806360 – volume: 39 start-page: 280 year: 2021 ident: oe-30-20-35526-R24 publication-title: IEEE J. Select. Areas Commun. doi: 10.1109/JSAC.2020.3036950 – volume: 24 start-page: 30309 year: 2016 ident: oe-30-20-35526-R14 publication-title: Opt. Express doi: 10.1364/OE.24.030309 – volume: 2 start-page: 1 year: 2019 ident: oe-30-20-35526-R1 publication-title: Commun. Phys. doi: 10.1038/s42005-019-0147-3 – volume: 22 start-page: 13454 year: 2014 ident: oe-30-20-35526-R12 publication-title: Opt. Express doi: 10.1364/OE.22.013454 |
SSID | ssj0014797 |
Score | 2.4524345 |
Snippet | In this paper, we propose a digital coherent demodulation architecture using fully interpretable deep neural networks (NNs). We show that all the conventional... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 35526 |
Title | Design of fully interpretable neural networks for digital coherent demodulation |
URI | https://www.proquest.com/docview/2726411665 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCIkL4inKozKIA1KVkjiOzR4RpKqq0lx2xXKK7IndrlSSFd2Kx4HfzviRZFfsoXCxVo5lreazxt94XoS8zhvQQjKdKJ3rhANAokSjE8uMlaCsMj7k_9OpOJrx43kxHxtd-uySlT6AX1vzSv4HVZxDXF2W7D8gO2yKE_gb8cUREcbxWhh_9OEXju-5V_SfvvZDiCB0-VCuVCUC0IZAb193Yb9ZnLkuIfvQnRtfl6kxX7smtvBaJ6rV0tdvNj-WQ4yGBz8-L88RUdUN4TeLOP0ZjeLz8bx9WYS17dn3MeNseKI-7m_N-OiA9qrzw4g1PYlWIZqe8a40W-aico1Ol3CIWLqmKpHohB3_UuK54Cj5qjzg0vGN8abqvfOnVX04Ozmpp-V8epPcYhJpk4va_F0ODiQuQ1-d_j_FolK49dth400qsnkTe3oxvUfuRruAvg8g3yc3TPuA3PbxuXD5kFQBatpZ6qGmG1DTADXtoaYINY1Q0x5qug71IzI7LKcfjpLYCyMBxuQq0cw0WQrvcmOsQtqFPLswk4xpnaegochy_CQEAzQAOSgujU1BFRKkzRRa-fljstN2rXlCqC2aNJ_ggMyYc6X0ZCJRLlY0qS6EZrvkTS-WGmKheNev5KL23k_B66qsgwR3yath6TJUR9m26GUv2xp1l3NIqdZ0V5c1k0jHs0yI4uk11jwjd8aj-JzsrL5dmRfICFd6z7-k7PkT8AeWzGbZ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+fully+interpretable+neural+networks+for+digital+coherent+demodulation&rft.jtitle=Optics+express&rft.au=Huang%2C+Xiatao&rft.au=Jiang%2C+Wenshan&rft.au=Yi%2C+Xingwen&rft.au=Zhang%2C+Jing&rft.date=2022-09-26&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=30&rft.issue=20&rft.spage=35526&rft_id=info:doi/10.1364%2FOE.472406&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |