An optimization numerical spiking neural P system for solving constrained optimization problems

An optimization spiking neural P (OSN P) system is a discrete optimization model without the aid of evolutionary operators of evolutionary algorithms or swarm intelligence algorithms. However, since the processing object of OSN P systems is a spike, where information is encoded by the timing of spik...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 626; pp. 428 - 456
Main Authors Dong, Jianping, Zhang, Gexiang, Luo, Biao, Rong, Haina
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.05.2023
Subjects
Online AccessGet full text
ISSN0020-0255
1872-6291
DOI10.1016/j.ins.2023.01.026

Cover

Abstract An optimization spiking neural P (OSN P) system is a discrete optimization model without the aid of evolutionary operators of evolutionary algorithms or swarm intelligence algorithms. However, since the processing object of OSN P systems is a spike, where information is encoded by the timing of spikes or the number of spikes in neurons, OSN P systems are limited for solving continuous optimization problems. To break this limitation, an extended numerical spiking neural (ENSN P) system is proposed based on numerical spiking neural P (NSN P) systems and multiple (ENSN P) systems, called optimization numerical spiking neural P systems (ONSN P systems or ONSNPS), are designed to solve continuous constrained optimization problems. More specifically, in ENSN P systems, the production functions are selected by probability to achieve updated parameters. In OSN P systems, a guider algorithm is introduced to finish individuals’ crossover and selection. The extensively experimental results in five benchmarks, thirty-two optimization problems including five benchmark problems, seventeen manufacturing design optimization problems and ten benchmarks from CEC show that ONSN P systems in this paper outperform or are competitive to twenty-eight optimization algorithms. Finally, algorithm complexity and Holm-Bonferroni procedure based on statistical results is used to test the complexity changing when we use different dimensionality of the search space and the difference in terms of statistical performance. The testing results indicate that the time complexity of ONSN P systems grows linearly with problem dimensions and ONSN P systems are better performance than the most algorithms.
AbstractList An optimization spiking neural P (OSN P) system is a discrete optimization model without the aid of evolutionary operators of evolutionary algorithms or swarm intelligence algorithms. However, since the processing object of OSN P systems is a spike, where information is encoded by the timing of spikes or the number of spikes in neurons, OSN P systems are limited for solving continuous optimization problems. To break this limitation, an extended numerical spiking neural (ENSN P) system is proposed based on numerical spiking neural P (NSN P) systems and multiple (ENSN P) systems, called optimization numerical spiking neural P systems (ONSN P systems or ONSNPS), are designed to solve continuous constrained optimization problems. More specifically, in ENSN P systems, the production functions are selected by probability to achieve updated parameters. In OSN P systems, a guider algorithm is introduced to finish individuals’ crossover and selection. The extensively experimental results in five benchmarks, thirty-two optimization problems including five benchmark problems, seventeen manufacturing design optimization problems and ten benchmarks from CEC show that ONSN P systems in this paper outperform or are competitive to twenty-eight optimization algorithms. Finally, algorithm complexity and Holm-Bonferroni procedure based on statistical results is used to test the complexity changing when we use different dimensionality of the search space and the difference in terms of statistical performance. The testing results indicate that the time complexity of ONSN P systems grows linearly with problem dimensions and ONSN P systems are better performance than the most algorithms.
Author Rong, Haina
Luo, Biao
Dong, Jianping
Zhang, Gexiang
Author_xml – sequence: 1
  givenname: Jianping
  surname: Dong
  fullname: Dong, Jianping
  email: djpswjtcdut@126.com
  organization: School of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
– sequence: 2
  givenname: Gexiang
  surname: Zhang
  fullname: Zhang, Gexiang
  email: zhgxdylan@126.com
  organization: Research Center for Artificial Intelligence, Chengdu University of Technology, Chengdu 610059, China
– sequence: 3
  givenname: Biao
  surname: Luo
  fullname: Luo, Biao
  email: 15775960380@163.com
  organization: Research Center for Artificial Intelligence, Chengdu University of Technology, Chengdu 610059, China
– sequence: 4
  givenname: Haina
  surname: Rong
  fullname: Rong, Haina
  email: ronghaina@126.com
  organization: School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China
BookMark eNp9kMtOwzAQRS1UJNrCB7DLDySM7cRuxKqqeEmVYAFry3EmyCWxIztUKl9PQtnAoqvRaHSu5p4FmTnvkJBrChkFKm52mXUxY8B4BjQDJs7InK4kSwUr6YzMARikwIrigixi3AFALoWYE7V2ie8H29kvPVjvEvfZYbBGt0ns7Yd174nDzzCuL0k8xAG7pPEhib7dTzfjXRyCtg7rvzF98FWLXbwk541uI179ziV5u7973Tym2-eHp816mxrG5JAylBoLWfGcllxwpPlKUJFDacqaS0BeyYoymWspKGgtDdVNkTcNWwHWRQl8Segx1wQfY8BG9cF2OhwUBTUZUjs1GlKTIQVUjYZGRv5jjB1-3p8qtSfJ2yOJY6W9xaCisegM1jagGVTt7Qn6G4BlhJY
CitedBy_id crossref_primary_10_1016_j_ins_2023_119899
crossref_primary_10_1007_s41965_024_00140_5
crossref_primary_10_1007_s41965_024_00162_z
crossref_primary_10_1016_j_knosys_2024_111914
crossref_primary_10_1142_S0129065724500308
crossref_primary_10_3390_en17225742
crossref_primary_10_1016_j_ipm_2024_104031
crossref_primary_10_1093_ijlct_ctae294
crossref_primary_10_1016_j_epsr_2025_111572
crossref_primary_10_1186_s13007_025_01362_z
crossref_primary_10_1109_TPDS_2024_3399755
crossref_primary_10_1016_j_ijmecsci_2023_108712
crossref_primary_10_1007_s41965_023_00133_w
crossref_primary_10_1016_j_neucom_2024_127351
crossref_primary_10_1142_S0129065724500369
crossref_primary_10_1016_j_ins_2024_120686
crossref_primary_10_1007_s11047_024_09995_0
crossref_primary_10_1142_S012906572450028X
crossref_primary_10_3390_math11143054
crossref_primary_10_1142_S012906572450059X
Cites_doi 10.1007/BF01195983
10.1007/s41965-019-00010-5
10.1016/j.neucom.2015.08.068
10.1016/j.ins.2022.05.016
10.1016/j.neunet.2020.04.014
10.1016/j.tcs.2017.02.026
10.1016/j.knosys.2022.109568
10.1016/j.asoc.2010.05.007
10.1016/j.eswa.2020.114446
10.1016/j.cma.2005.09.006
10.1016/j.ins.2021.12.058
10.3233/FI-2016-1324
10.1016/j.knosys.2019.105064
10.3233/FUN-2006-712-308
10.1016/j.cad.2010.12.015
10.1109/TEVC.2004.836819
10.1007/s41965-019-00008-z
10.1016/j.knosys.2020.106599
10.1142/S0129065714400061
10.1016/j.ins.2022.03.007
10.1016/j.engappai.2006.03.003
10.1016/j.ijepes.2021.107877
10.1016/j.neunet.2012.11.014
10.1080/03052150410001704845
10.1016/j.neuron.2010.02.003
10.1016/j.eswa.2021.116432
10.1109/TEVC.2006.872133
10.1016/j.asoc.2012.05.032
10.1007/s10462-011-9270-6
10.1016/j.ic.2021.104766
10.1142/S012906572250023X
10.1016/j.asoc.2009.08.031
10.1142/S0129065716500258
10.1016/j.jmatprotec.2008.06.028
10.1016/j.ins.2016.10.046
10.1007/s10845-010-0393-4
10.1142/S0129065720500549
10.1016/j.neunet.2019.09.005
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright_xml – notice: 2023 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2023.01.026
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 456
ExternalDocumentID 10_1016_j_ins_2023_01_026
S0020025523000269
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c227t-2e7ae57b3419363e148616409c9d370e3b7b1274a7610aa7c1af54ff280ed5903
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Thu Apr 24 23:09:55 EDT 2025
Wed Oct 01 05:15:40 EDT 2025
Fri Feb 23 02:36:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Numerical spiking neural P systems
Membrane computing
Constrained optimization problems
Spiking neural P system
Optimization numerical spiking neural P system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c227t-2e7ae57b3419363e148616409c9d370e3b7b1274a7610aa7c1af54ff280ed5903
PageCount 29
ParticipantIDs crossref_primary_10_1016_j_ins_2023_01_026
crossref_citationtrail_10_1016_j_ins_2023_01_026
elsevier_sciencedirect_doi_10_1016_j_ins_2023_01_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Becerra, Coello (b0190) 2006; 195
G. Zhang, H. Rong, F. Neri, M.J. Pérez-Jiménez, An optimization spiking neural P system for approximately solving combinatorial problems, Int. J. Neural Syst. 24 (5) (2014) 1440006:01–16. doi:10.1142/S0129065714400061.
Peng, Bao, Luo, Wang, Song, Riscos-Núñez, Pérez-Jiménez (b0045) 2020; 127
Zhong, Li (b0245) 2022; 192
Ortiz, Munilla, Górriz, Ramírez (b0005) 2016; 26
Fiete, Senn, Wang, Hahnloser (b0025) 2010; 65
Zhang, Cheng, Gheorghe, Meng (b0150) 2013; 13
Liu, Cai, Wang (b0205) 2010; 10
Landa, Coello (b0185) 2006; 195
B. Akay, D. Karaboga, Artificial bee colony algorithm for large-scale problems and engineering design optimization, J. Intell. Manuf. doi: 10.1007/s10845-010-0393-4.
Zhang, Zhang, Rong, Paul, Zhu, Neri, Ong (b0020) 2022; 32
Gafar, El-Sehiemy, Sarhan (b0200) 2022; 12
Yoo (b0165) 1999; 18
A. Zavala, A.H. Aguirre, E. Diharce, Constrained optimization via particle evolutionary swarm optimization algorithm (peso), in: Genetic and Evolutionary Computation Conference, GECCO 2005, Proceedings, Washington DC, USA, June 25-29, 2005.
Awad, Ali, Suganthan, Liang, Qu (b0230) 2016
Coello Coello, Cortés (b0160) 2004; 36
Abaeifar, Barati, Tavakoli (b0235) 2022; 137
Song, Zhang, Pan (b0060) 2017; 378
Pan, Păun, Zhang (b0040) 2019; 1
Orellana-Martín, Valencia-Cabrera, Riscos-Núñez, Pérez-Jiménez (b0050) 2019; 1
M. Zhu, Q. Yang, J. Dong, G. Zhang, F. Neri, An adaptive optimization spiking neural P system for binary problems, Int. J. Neural Syst. 31 (1) (2021) 2050054:1–17. doi:10.1142/S0129065720500549.
Dong, Zhang, Luo, Yang, Guo, Rong, Zhu, Zhou (b0125) 2022; 596
He, Ling (b0215) 2007; 20
Li, Peng, Luo, Wang, Song, Pérez-Jiménez, Riscos-Núñez (b0135) 2022; 31
Ding, Li, Su, Yu, Jin (b0015) 2013; 39
Long, Lugu, Xiong, Liu, Peng, Wang, Orellana-Martín, Pérez-Jiménez (b0075) 2022; 253
Chen, Lu, Zou, Li (b0250) 2016; 173
Deng, Wu, Hu, Liang, Ding, Li, Zhao, Li, Xie (b0030) 2020; 121
Pan, Zhang, Wu, Xu (b0090) 2017; 673
Brest, Greiner, Boskovic, Mernik, Zumer (b0145) 2006; 10
Kasabov, Dhoble, Nuntalid, Indiveri (b0010) 2013; 41
Sánchez-Karhunen, Valencia-Cabrera (b0100) 2019; 1
D. Karaboga, B. Basturk, Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems, in: Foundations of Fuzzy Logic Soft Computing, International Fuzzy Systems Association World Congress, Ifsa, Cancun, Mexico, June 2007.
Cabarle, Zeng, Murphy, Song, Rodríguez-Patón, Liu (b0085) 2021; 281
Deng, Dong, Wang, Luo, Feng, Zhang (b0220) 2022; 604
Yildiz (b0155) 2009; 209
Mezura-Montes, Coello (b0175) 2005; 9
Ma, Zhang, Song, Chen (b0240) 2021; 212
Rao, Savsani, Vakharia (b0170) 2011; 43
Ren, Cabarle, Macababayao, Adorna, Zeng (b0035) 2021; 3
Wu, Pan, Yu, Tan (b0080) 2020; 32
Song, Pan, Pérez-Jiménez (b0055) 2016; 144
Cai, Mi, Yan, Peng, Luo, Yang, Wang (b0140) 2022; 587
Liao (b0225) 2010; 10
Cai, Mi, Yan, Peng, Luo, Yang, Wang (b0065) 2022; 235
Zhang, Pérez-Jiménez, Gheorghe (b0095) 2017
Ionescu, Păun, Yokomori (b0110) 2006; 71
Xue, Wang, Kong, Wu, Yin, Qu, Liu (b0130) 2021; 168
Liu, Long, Peng, Wang, Yang, Song, Yang, Riscos-Núñez, Pérez-Jiménez (b0070) 2021
Peng, Li, Wang, Song, Wang, Valencia-Cabrera, Pérez-Hurtado, Riscos-Núñez, Pérez-Jiménez (b0105) 2020; 188
Brest (10.1016/j.ins.2023.01.026_b0145) 2006; 10
Fiete (10.1016/j.ins.2023.01.026_b0025) 2010; 65
Liu (10.1016/j.ins.2023.01.026_b0205) 2010; 10
Peng (10.1016/j.ins.2023.01.026_b0105) 2020; 188
Orellana-Martín (10.1016/j.ins.2023.01.026_b0050) 2019; 1
Xue (10.1016/j.ins.2023.01.026_b0130) 2021; 168
Cai (10.1016/j.ins.2023.01.026_b0065) 2022; 235
Zhang (10.1016/j.ins.2023.01.026_b0095) 2017
10.1016/j.ins.2023.01.026_b0120
Deng (10.1016/j.ins.2023.01.026_b0220) 2022; 604
Ionescu (10.1016/j.ins.2023.01.026_b0110) 2006; 71
Li (10.1016/j.ins.2023.01.026_b0135) 2022; 31
Kasabov (10.1016/j.ins.2023.01.026_b0010) 2013; 41
Wu (10.1016/j.ins.2023.01.026_b0080) 2020; 32
Ma (10.1016/j.ins.2023.01.026_b0240) 2021; 212
Pan (10.1016/j.ins.2023.01.026_b0040) 2019; 1
Ren (10.1016/j.ins.2023.01.026_b0035) 2021; 3
Peng (10.1016/j.ins.2023.01.026_b0045) 2020; 127
Rao (10.1016/j.ins.2023.01.026_b0170) 2011; 43
Long (10.1016/j.ins.2023.01.026_b0075) 2022; 253
Awad (10.1016/j.ins.2023.01.026_b0230) 2016
10.1016/j.ins.2023.01.026_b0210
Ding (10.1016/j.ins.2023.01.026_b0015) 2013; 39
Zhong (10.1016/j.ins.2023.01.026_b0245) 2022; 192
Yoo (10.1016/j.ins.2023.01.026_b0165) 1999; 18
Landa (10.1016/j.ins.2023.01.026_b0185) 2006; 195
Zhang (10.1016/j.ins.2023.01.026_b0150) 2013; 13
Mezura-Montes (10.1016/j.ins.2023.01.026_b0175) 2005; 9
Liu (10.1016/j.ins.2023.01.026_b0070) 2021
He (10.1016/j.ins.2023.01.026_b0215) 2007; 20
Yildiz (10.1016/j.ins.2023.01.026_b0155) 2009; 209
Gafar (10.1016/j.ins.2023.01.026_b0200) 2022; 12
Liao (10.1016/j.ins.2023.01.026_b0225) 2010; 10
Dong (10.1016/j.ins.2023.01.026_b0125) 2022; 596
Cai (10.1016/j.ins.2023.01.026_b0140) 2022; 587
10.1016/j.ins.2023.01.026_b0180
Song (10.1016/j.ins.2023.01.026_b0055) 2016; 144
Becerra (10.1016/j.ins.2023.01.026_b0190) 2006; 195
Abaeifar (10.1016/j.ins.2023.01.026_b0235) 2022; 137
Sánchez-Karhunen (10.1016/j.ins.2023.01.026_b0100) 2019; 1
Coello Coello (10.1016/j.ins.2023.01.026_b0160) 2004; 36
Pan (10.1016/j.ins.2023.01.026_b0090) 2017; 673
Ortiz (10.1016/j.ins.2023.01.026_b0005) 2016; 26
Cabarle (10.1016/j.ins.2023.01.026_b0085) 2021; 281
Chen (10.1016/j.ins.2023.01.026_b0250) 2016; 173
Song (10.1016/j.ins.2023.01.026_b0060) 2017; 378
10.1016/j.ins.2023.01.026_b0195
Zhang (10.1016/j.ins.2023.01.026_b0020) 2022; 32
Deng (10.1016/j.ins.2023.01.026_b0030) 2020; 121
10.1016/j.ins.2023.01.026_b0115
References_xml – volume: 121
  start-page: 294
  year: 2020
  end-page: 307
  ident: b0030
  article-title: Rethinking the performance comparison between SNNS and ANNS
  publication-title: Neural Networks
– volume: 253
  year: 2022
  ident: b0075
  article-title: Echo spiking neural P systems
  publication-title: Knowl.-Based Syst.
– volume: 673
  start-page: 30
  year: 2017
  end-page: 41
  ident: b0090
  article-title: Numerical P systems with production thresholds
  publication-title: Theoret. Comput. Sci.
– volume: 1
  start-page: 1
  year: 2019
  end-page: 2
  ident: b0040
  article-title: Foreword: Starting JMC
  publication-title: J. Membr. Comput.
– volume: 36
  start-page: 607
  year: 2004
  end-page: 634
  ident: b0160
  article-title: Hybridizing a genetic algorithm with an artificial immune system for global optimization
  publication-title: Eng. Optimiz.
– volume: 9
  start-page: 1
  year: 2005
  end-page: 17
  ident: b0175
  article-title: A simple multimembered evolution strategy to solve constrained optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 39
  start-page: 251
  year: 2013
  end-page: 260
  ident: b0015
  article-title: Evolutionary artificial neural networks: a review
  publication-title: Artif. Intell. Rev.
– volume: 32
  start-page: 1
  year: 2022
  end-page: 15
  ident: b0020
  article-title: A layered spiking neural system for classification problems
  publication-title: Int. J. Neural Syst.
– year: 2016
  ident: b0230
  article-title: Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization, Nanyang Technological University, Jordan University of Science and Technology and Zhengzhou University
– volume: 12
  start-page: 1
  year: 2022
  end-page: 24
  ident: b0200
  article-title: A hybrid fuzzy-crow optimizer for unconstrained and constrained engineering design problems
  publication-title: Human-Centric Comput. Inform. Sci.
– volume: 26
  start-page: 1
  year: 2016
  end-page: 23
  ident: b0005
  article-title: Ensembles of deep learning architectures for the early diagnosis of the alzheimer’s disease
  publication-title: Int. J. Neural Syst.
– volume: 168
  year: 2021
  ident: b0130
  article-title: Deep hybrid neural-like P systems for multiorgan segmentation in head and neck CT/MR images
  publication-title: Expert Syst. Appl.
– reference: A. Zavala, A.H. Aguirre, E. Diharce, Constrained optimization via particle evolutionary swarm optimization algorithm (peso), in: Genetic and Evolutionary Computation Conference, GECCO 2005, Proceedings, Washington DC, USA, June 25-29, 2005.
– volume: 195
  start-page: 4303
  year: 2006
  end-page: 4322
  ident: b0190
  article-title: Cultured differential evolution for constrained optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 3
  start-page: 1
  year: 2021
  end-page: 12
  ident: b0035
  article-title: Homogeneous spiking neural P systems with structural plasticity
  publication-title: J. Membr. Comput.
– volume: 604
  start-page: 28
  year: 2022
  end-page: 44
  ident: b0220
  article-title: Reducer lubrication optimization with an optimization spiking neural P systems
  publication-title: Inf. Sci.
– volume: 144
  start-page: 77
  year: 2016
  end-page: 107
  ident: b0055
  article-title: Tissue P systems with protein on cells
  publication-title: Fundamenta Informaticae
– volume: 10
  start-page: 629
  year: 2010
  end-page: 640
  ident: b0205
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 1
  year: 2019
  end-page: 2
  ident: b0050
  article-title: Minimal cooperation as a way to achieve the efficiency in cell-like membrane systems
  publication-title: J. Membr. Comput.
– volume: 65
  start-page: 563
  year: 2010
  end-page: 576
  ident: b0025
  article-title: Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity
  publication-title: Neuron
– reference: G. Zhang, H. Rong, F. Neri, M.J. Pérez-Jiménez, An optimization spiking neural P system for approximately solving combinatorial problems, Int. J. Neural Syst. 24 (5) (2014) 1440006:01–16. doi:10.1142/S0129065714400061.
– reference: B. Akay, D. Karaboga, Artificial bee colony algorithm for large-scale problems and engineering design optimization, J. Intell. Manuf. doi: 10.1007/s10845-010-0393-4.
– volume: 10
  start-page: 646
  year: 2006
  end-page: 657
  ident: b0145
  article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 18
  start-page: 85
  year: 1999
  end-page: 94
  ident: b0165
  article-title: Immune network modeling in design optimization
  publication-title: Struct. Multidisc. Optimiz.
– volume: 235
  year: 2022
  ident: b0065
  article-title: LSTM-SNP: A long short-term memory model inspired from spiking neural P systems
  publication-title: Knowl.-Based Syst.
– volume: 13
  start-page: 1528
  year: 2013
  end-page: 1542
  ident: b0150
  article-title: A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems
  publication-title: Appl. Soft Comput.
– volume: 41
  start-page: 188
  year: 2013
  end-page: 201
  ident: b0010
  article-title: Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition
  publication-title: Neural Networks
– year: 2017
  ident: b0095
  article-title: Real-life Applications with Membrane Computing
– volume: 596
  start-page: 1
  year: 2022
  end-page: 14
  ident: b0125
  article-title: A distributed adaptive optimization spiking neural P system for approximately solving combinatorial optimization problems
  publication-title: Inf. Sci.
– volume: 281
  year: 2021
  ident: b0085
  article-title: Neural-like P systems with plasmids
  publication-title: Inf. Comput.
– volume: 212
  year: 2021
  ident: b0240
  article-title: A modified teaching-learning-based optimization algorithm for solving optimization problem
  publication-title: Knowl.-Based Syst.
– volume: 71
  start-page: 279
  year: 2006
  end-page: 308
  ident: b0110
  article-title: Spiking neural P systems
  publication-title: Fundamenta Informaticae
– volume: 188
  year: 2020
  ident: b0105
  article-title: Spiking neural P systems with inhibitory rules
  publication-title: Knowl.-Based Syst.
– volume: 378
  start-page: 177
  year: 2017
  end-page: 193
  ident: b0060
  article-title: Tissue-like P systems with evolutional symport/antiport rules
  publication-title: Inf. Sci.
– volume: 32
  start-page: 1
  year: 2020
  end-page: 15
  ident: b0080
  article-title: Numerical spiking neural P systems
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 127
  start-page: 110
  year: 2020
  end-page: 120
  ident: b0045
  article-title: Dendrite P systems
  publication-title: Neural Networks
– volume: 209
  start-page: 2773
  year: 2009
  end-page: 2780
  ident: b0155
  article-title: An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry
  publication-title: J. Mater. Process. Technol.
– volume: 192
  year: 2022
  ident: b0245
  article-title: Comprehensive learning Harris hawks-equilibrium optimization with terminal replacement mechanism for constrained optimization problems
  publication-title: Expert Syst. Appl.
– volume: 31
  start-page: 1
  year: 2022
  ident: b0135
  article-title: Medical Image Fusion Method Based on Coupled Neural P Systems in Nonsubsampled Shearlet Transform Domain
  publication-title: Int. J. Neural Syst.
– start-page: 1
  year: 2021
  end-page: 10
  ident: b0070
  article-title: Gated Spiking Neural P Systems for Time Series Forecasting
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 10
  start-page: 1188
  year: 2010
  end-page: 1199
  ident: b0225
  article-title: Two hybrid differential evolution algorithms for engineering design optimization
  publication-title: Appl. Soft Comput.
– volume: 587
  start-page: 473
  year: 2022
  end-page: 484
  ident: b0140
  article-title: An unsupervised segmentation method based on dynamic threshold neural P systems for color images
  publication-title: Inf. Sci.
– volume: 20
  start-page: 89
  year: 2007
  end-page: 99
  ident: b0215
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 1
  start-page: 40
  year: 2019
  end-page: 51
  ident: b0100
  article-title: Modelling complex market interactions using PDP systems
  publication-title: J. Membr. Comput.
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: b0170
  article-title: Teaching learning based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
– volume: 173
  start-page: 1096
  year: 2016
  end-page: 1111
  ident: b0250
  article-title: Teaching-learning-based optimization with variable-population scheme and its application for ANN and global optimization
  publication-title: Neurocomputing
– volume: 137
  year: 2022
  ident: b0235
  article-title: Inertia-weight local-search-based TLBO algorithm for energy management in isolated micro-grids with renewable resources
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 195
  start-page: 4303
  year: 2006
  end-page: 4322
  ident: b0185
  article-title: Cultured differential evolution for constrained optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
– reference: M. Zhu, Q. Yang, J. Dong, G. Zhang, F. Neri, An adaptive optimization spiking neural P system for binary problems, Int. J. Neural Syst. 31 (1) (2021) 2050054:1–17. doi:10.1142/S0129065720500549.
– reference: D. Karaboga, B. Basturk, Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems, in: Foundations of Fuzzy Logic Soft Computing, International Fuzzy Systems Association World Congress, Ifsa, Cancun, Mexico, June 2007.
– year: 2016
  ident: 10.1016/j.ins.2023.01.026_b0230
– volume: 1
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.ins.2023.01.026_b0050
  article-title: Minimal cooperation as a way to achieve the efficiency in cell-like membrane systems
  publication-title: J. Membr. Comput.
– volume: 18
  start-page: 85
  issue: 2–3
  year: 1999
  ident: 10.1016/j.ins.2023.01.026_b0165
  article-title: Immune network modeling in design optimization
  publication-title: Struct. Multidisc. Optimiz.
  doi: 10.1007/BF01195983
– volume: 1
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.ins.2023.01.026_b0040
  article-title: Foreword: Starting JMC
  publication-title: J. Membr. Comput.
  doi: 10.1007/s41965-019-00010-5
– volume: 173
  start-page: 1096
  year: 2016
  ident: 10.1016/j.ins.2023.01.026_b0250
  article-title: Teaching-learning-based optimization with variable-population scheme and its application for ANN and global optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.068
– volume: 604
  start-page: 28
  issue: 1
  year: 2022
  ident: 10.1016/j.ins.2023.01.026_b0220
  article-title: Reducer lubrication optimization with an optimization spiking neural P systems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.05.016
– volume: 127
  start-page: 110
  year: 2020
  ident: 10.1016/j.ins.2023.01.026_b0045
  article-title: Dendrite P systems
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.04.014
– volume: 235
  year: 2022
  ident: 10.1016/j.ins.2023.01.026_b0065
  article-title: LSTM-SNP: A long short-term memory model inspired from spiking neural P systems
  publication-title: Knowl.-Based Syst.
– volume: 673
  start-page: 30
  year: 2017
  ident: 10.1016/j.ins.2023.01.026_b0090
  article-title: Numerical P systems with production thresholds
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2017.02.026
– ident: 10.1016/j.ins.2023.01.026_b0180
– volume: 253
  year: 2022
  ident: 10.1016/j.ins.2023.01.026_b0075
  article-title: Echo spiking neural P systems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.109568
– volume: 10
  start-page: 1188
  issue: 1
  year: 2010
  ident: 10.1016/j.ins.2023.01.026_b0225
  article-title: Two hybrid differential evolution algorithms for engineering design optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.05.007
– volume: 168
  year: 2021
  ident: 10.1016/j.ins.2023.01.026_b0130
  article-title: Deep hybrid neural-like P systems for multiorgan segmentation in head and neck CT/MR images
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114446
– volume: 195
  start-page: 4303
  issue: 33/36
  year: 2006
  ident: 10.1016/j.ins.2023.01.026_b0190
  article-title: Cultured differential evolution for constrained optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.09.006
– volume: 587
  start-page: 473
  year: 2022
  ident: 10.1016/j.ins.2023.01.026_b0140
  article-title: An unsupervised segmentation method based on dynamic threshold neural P systems for color images
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.12.058
– volume: 144
  start-page: 77
  issue: 1
  year: 2016
  ident: 10.1016/j.ins.2023.01.026_b0055
  article-title: Tissue P systems with protein on cells
  publication-title: Fundamenta Informaticae
  doi: 10.3233/FI-2016-1324
– volume: 32
  start-page: 1
  issue: 6
  year: 2020
  ident: 10.1016/j.ins.2023.01.026_b0080
  article-title: Numerical spiking neural P systems
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 188
  year: 2020
  ident: 10.1016/j.ins.2023.01.026_b0105
  article-title: Spiking neural P systems with inhibitory rules
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105064
– volume: 71
  start-page: 279
  issue: 2
  year: 2006
  ident: 10.1016/j.ins.2023.01.026_b0110
  article-title: Spiking neural P systems
  publication-title: Fundamenta Informaticae
  doi: 10.3233/FUN-2006-712-308
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.1016/j.ins.2023.01.026_b0170
  article-title: Teaching learning based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 9
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.ins.2023.01.026_b0175
  article-title: A simple multimembered evolution strategy to solve constrained optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.836819
– volume: 1
  start-page: 40
  issue: 1
  year: 2019
  ident: 10.1016/j.ins.2023.01.026_b0100
  article-title: Modelling complex market interactions using PDP systems
  publication-title: J. Membr. Comput.
  doi: 10.1007/s41965-019-00008-z
– volume: 212
  year: 2021
  ident: 10.1016/j.ins.2023.01.026_b0240
  article-title: A modified teaching-learning-based optimization algorithm for solving optimization problem
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106599
– ident: 10.1016/j.ins.2023.01.026_b0115
  doi: 10.1142/S0129065714400061
– volume: 596
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.ins.2023.01.026_b0125
  article-title: A distributed adaptive optimization spiking neural P system for approximately solving combinatorial optimization problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.03.007
– year: 2017
  ident: 10.1016/j.ins.2023.01.026_b0095
– volume: 20
  start-page: 89
  issue: 1
  year: 2007
  ident: 10.1016/j.ins.2023.01.026_b0215
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2006.03.003
– volume: 137
  year: 2022
  ident: 10.1016/j.ins.2023.01.026_b0235
  article-title: Inertia-weight local-search-based TLBO algorithm for energy management in isolated micro-grids with renewable resources
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107877
– volume: 41
  start-page: 188
  issue: 5
  year: 2013
  ident: 10.1016/j.ins.2023.01.026_b0010
  article-title: Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.11.014
– volume: 36
  start-page: 607
  issue: 5
  year: 2004
  ident: 10.1016/j.ins.2023.01.026_b0160
  article-title: Hybridizing a genetic algorithm with an artificial immune system for global optimization
  publication-title: Eng. Optimiz.
  doi: 10.1080/03052150410001704845
– volume: 195
  start-page: 4303
  issue: 33
  year: 2006
  ident: 10.1016/j.ins.2023.01.026_b0185
  article-title: Cultured differential evolution for constrained optimization
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.09.006
– ident: 10.1016/j.ins.2023.01.026_b0195
– volume: 65
  start-page: 563
  issue: 4
  year: 2010
  ident: 10.1016/j.ins.2023.01.026_b0025
  article-title: Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.02.003
– volume: 192
  year: 2022
  ident: 10.1016/j.ins.2023.01.026_b0245
  article-title: Comprehensive learning Harris hawks-equilibrium optimization with terminal replacement mechanism for constrained optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116432
– volume: 10
  start-page: 646
  issue: 6
  year: 2006
  ident: 10.1016/j.ins.2023.01.026_b0145
  article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.872133
– volume: 13
  start-page: 1528
  issue: 3
  year: 2013
  ident: 10.1016/j.ins.2023.01.026_b0150
  article-title: A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.05.032
– volume: 3
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2023.01.026_b0035
  article-title: Homogeneous spiking neural P systems with structural plasticity
  publication-title: J. Membr. Comput.
– volume: 39
  start-page: 251
  issue: 3
  year: 2013
  ident: 10.1016/j.ins.2023.01.026_b0015
  article-title: Evolutionary artificial neural networks: a review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-011-9270-6
– volume: 281
  year: 2021
  ident: 10.1016/j.ins.2023.01.026_b0085
  article-title: Neural-like P systems with plasmids
  publication-title: Inf. Comput.
  doi: 10.1016/j.ic.2021.104766
– volume: 32
  start-page: 1
  issue: 8
  year: 2022
  ident: 10.1016/j.ins.2023.01.026_b0020
  article-title: A layered spiking neural system for classification problems
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S012906572250023X
– volume: 10
  start-page: 629
  year: 2010
  ident: 10.1016/j.ins.2023.01.026_b0205
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.08.031
– volume: 26
  start-page: 1
  issue: 7
  year: 2016
  ident: 10.1016/j.ins.2023.01.026_b0005
  article-title: Ensembles of deep learning architectures for the early diagnosis of the alzheimer’s disease
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500258
– volume: 209
  start-page: 2773
  issue: 6
  year: 2009
  ident: 10.1016/j.ins.2023.01.026_b0155
  article-title: An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2008.06.028
– volume: 378
  start-page: 177
  year: 2017
  ident: 10.1016/j.ins.2023.01.026_b0060
  article-title: Tissue-like P systems with evolutional symport/antiport rules
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.10.046
– ident: 10.1016/j.ins.2023.01.026_b0210
  doi: 10.1007/s10845-010-0393-4
– volume: 12
  start-page: 1
  year: 2022
  ident: 10.1016/j.ins.2023.01.026_b0200
  article-title: A hybrid fuzzy-crow optimizer for unconstrained and constrained engineering design problems
  publication-title: Human-Centric Comput. Inform. Sci.
– volume: 31
  start-page: 1
  year: 2022
  ident: 10.1016/j.ins.2023.01.026_b0135
  article-title: Medical Image Fusion Method Based on Coupled Neural P Systems in Nonsubsampled Shearlet Transform Domain
  publication-title: Int. J. Neural Syst.
– ident: 10.1016/j.ins.2023.01.026_b0120
  doi: 10.1142/S0129065720500549
– volume: 121
  start-page: 294
  year: 2020
  ident: 10.1016/j.ins.2023.01.026_b0030
  article-title: Rethinking the performance comparison between SNNS and ANNS
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.09.005
– start-page: 1
  year: 2021
  ident: 10.1016/j.ins.2023.01.026_b0070
  article-title: Gated Spiking Neural P Systems for Time Series Forecasting
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
SSID ssj0004766
Score 2.5143127
Snippet An optimization spiking neural P (OSN P) system is a discrete optimization model without the aid of evolutionary operators of evolutionary algorithms or swarm...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 428
SubjectTerms Constrained optimization problems
Membrane computing
Numerical spiking neural P systems
Optimization numerical spiking neural P system
Spiking neural P system
Title An optimization numerical spiking neural P system for solving constrained optimization problems
URI https://dx.doi.org/10.1016/j.ins.2023.01.026
Volume 626
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AKRWK
  dateStart: 19681201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQgOhV_beQgHoS6NkmT9jiGYyoODw52C22SwmR2w21X_3bzmlQ3UA8eU_pCeE2T70ve-x5CVwmwhFQnQRFxHTAhaJAkSgURZZqogmlVnXc8jfhwzB4m8aSB-nUuDIRV-rXfrenVau2fdL03u4vpFHJ8SYWILYgGJgFJfIwJqGJw-_Ed5sGEu68EmgRv1zebVYzXtATFbkKdcif_eW_a2G8GB2jfA0Xcc2M5RA1TttDehnxgC7V90gG-xj6rCLyM_e96hGSvxHO7JLz5XEtcrt39zAwvF1M4I8cgZ2mbz9gpOmPbC7azEU4ZsALoCBUkjN7uxhehWR6j8eDupT8MfEGFQBEiVgExIjOxyEHDjXJqLBXili6FqUo1FaGhucgjS1MzYUFVlgkVZUXMioIkodFxGtIT1CznpTlF2KTKiEKnPM0zi7jyxCInzjJLkCwDMYSfobB2pVRebRyGPJN1WNmrtN6X4H0ZRjIEk5svk4WT2vjrZVZ_H7k1X6TdCn43O_-f2QXahZYLdLxEzdX72rQtGFnlnWq2ddBO7_5xOPoEhZLeeA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD-rBKGr8hfZgPJhMtrZb1yMhElQgHiDh1mxdl8zgIAJX_3b7tk4hUQ8et_U1y1v3-n3te18RugmBJYgkdFIvSBzGOXXCUCnHoywhKmWJKtY7BsOgN2ZPE39SQ52qFgbSKm3sL2N6Ea3tnZb1ZmueZVDjSwpEbEA0MAmxhbaZTzgwsPuP7zwPxssNS-BJ0Lza2iySvLIcJLsJLaU7g58np7UJp3uA9i1SxO3yZQ5RTecNtLemH9hATVt1gG-xLSsCN2P7vx4h2c7xzMSEN1tsifNVuUEzxYt5BovkGPQszeULLiWdsekFm-EIywxYAXaEIyR0stmNPYVmcYzG3YdRp-fYExUcRQhfOkTzSPs8BhE3GlBtuFBg-JIrlEgodzWNeewZnhpxg6qiiCsvSn2WpiR0deILl56gej7L9SnCWijN00QEIo4M5IpDA50CFhmGZCiIJsEZcitXSmXlxuGVp7LKK3uVxvsSvC9dT7pgcvdlMi-1Nv5qzKrvIzcGjDRzwe9m5_8zu0Y7vdGgL_uPw-cLtAtPyqzHS1Rfvq900yCTZXxVjLxPx3rgDQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimization+numerical+spiking+neural+P+system+for+solving+constrained+optimization+problems&rft.jtitle=Information+sciences&rft.au=Dong%2C+Jianping&rft.au=Zhang%2C+Gexiang&rft.au=Luo%2C+Biao&rft.au=Rong%2C+Haina&rft.date=2023-05-01&rft.issn=0020-0255&rft.volume=626&rft.spage=428&rft.epage=456&rft_id=info:doi/10.1016%2Fj.ins.2023.01.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2023_01_026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon