An optimization numerical spiking neural P system for solving constrained optimization problems
An optimization spiking neural P (OSN P) system is a discrete optimization model without the aid of evolutionary operators of evolutionary algorithms or swarm intelligence algorithms. However, since the processing object of OSN P systems is a spike, where information is encoded by the timing of spik...
Saved in:
| Published in | Information sciences Vol. 626; pp. 428 - 456 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
01.05.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0020-0255 1872-6291 |
| DOI | 10.1016/j.ins.2023.01.026 |
Cover
| Abstract | An optimization spiking neural P (OSN P) system is a discrete optimization model without the aid of evolutionary operators of evolutionary algorithms or swarm intelligence algorithms. However, since the processing object of OSN P systems is a spike, where information is encoded by the timing of spikes or the number of spikes in neurons, OSN P systems are limited for solving continuous optimization problems. To break this limitation, an extended numerical spiking neural (ENSN P) system is proposed based on numerical spiking neural P (NSN P) systems and multiple (ENSN P) systems, called optimization numerical spiking neural P systems (ONSN P systems or ONSNPS), are designed to solve continuous constrained optimization problems. More specifically, in ENSN P systems, the production functions are selected by probability to achieve updated parameters. In OSN P systems, a guider algorithm is introduced to finish individuals’ crossover and selection. The extensively experimental results in five benchmarks, thirty-two optimization problems including five benchmark problems, seventeen manufacturing design optimization problems and ten benchmarks from CEC show that ONSN P systems in this paper outperform or are competitive to twenty-eight optimization algorithms. Finally, algorithm complexity and Holm-Bonferroni procedure based on statistical results is used to test the complexity changing when we use different dimensionality of the search space and the difference in terms of statistical performance. The testing results indicate that the time complexity of ONSN P systems grows linearly with problem dimensions and ONSN P systems are better performance than the most algorithms. |
|---|---|
| AbstractList | An optimization spiking neural P (OSN P) system is a discrete optimization model without the aid of evolutionary operators of evolutionary algorithms or swarm intelligence algorithms. However, since the processing object of OSN P systems is a spike, where information is encoded by the timing of spikes or the number of spikes in neurons, OSN P systems are limited for solving continuous optimization problems. To break this limitation, an extended numerical spiking neural (ENSN P) system is proposed based on numerical spiking neural P (NSN P) systems and multiple (ENSN P) systems, called optimization numerical spiking neural P systems (ONSN P systems or ONSNPS), are designed to solve continuous constrained optimization problems. More specifically, in ENSN P systems, the production functions are selected by probability to achieve updated parameters. In OSN P systems, a guider algorithm is introduced to finish individuals’ crossover and selection. The extensively experimental results in five benchmarks, thirty-two optimization problems including five benchmark problems, seventeen manufacturing design optimization problems and ten benchmarks from CEC show that ONSN P systems in this paper outperform or are competitive to twenty-eight optimization algorithms. Finally, algorithm complexity and Holm-Bonferroni procedure based on statistical results is used to test the complexity changing when we use different dimensionality of the search space and the difference in terms of statistical performance. The testing results indicate that the time complexity of ONSN P systems grows linearly with problem dimensions and ONSN P systems are better performance than the most algorithms. |
| Author | Rong, Haina Luo, Biao Dong, Jianping Zhang, Gexiang |
| Author_xml | – sequence: 1 givenname: Jianping surname: Dong fullname: Dong, Jianping email: djpswjtcdut@126.com organization: School of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China – sequence: 2 givenname: Gexiang surname: Zhang fullname: Zhang, Gexiang email: zhgxdylan@126.com organization: Research Center for Artificial Intelligence, Chengdu University of Technology, Chengdu 610059, China – sequence: 3 givenname: Biao surname: Luo fullname: Luo, Biao email: 15775960380@163.com organization: Research Center for Artificial Intelligence, Chengdu University of Technology, Chengdu 610059, China – sequence: 4 givenname: Haina surname: Rong fullname: Rong, Haina email: ronghaina@126.com organization: School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China |
| BookMark | eNp9kMtOwzAQRS1UJNrCB7DLDySM7cRuxKqqeEmVYAFry3EmyCWxIztUKl9PQtnAoqvRaHSu5p4FmTnvkJBrChkFKm52mXUxY8B4BjQDJs7InK4kSwUr6YzMARikwIrigixi3AFALoWYE7V2ie8H29kvPVjvEvfZYbBGt0ns7Yd174nDzzCuL0k8xAG7pPEhib7dTzfjXRyCtg7rvzF98FWLXbwk541uI179ziV5u7973Tym2-eHp816mxrG5JAylBoLWfGcllxwpPlKUJFDacqaS0BeyYoymWspKGgtDdVNkTcNWwHWRQl8Segx1wQfY8BG9cF2OhwUBTUZUjs1GlKTIQVUjYZGRv5jjB1-3p8qtSfJ2yOJY6W9xaCisegM1jagGVTt7Qn6G4BlhJY |
| CitedBy_id | crossref_primary_10_1016_j_ins_2023_119899 crossref_primary_10_1007_s41965_024_00140_5 crossref_primary_10_1007_s41965_024_00162_z crossref_primary_10_1016_j_knosys_2024_111914 crossref_primary_10_1142_S0129065724500308 crossref_primary_10_3390_en17225742 crossref_primary_10_1016_j_ipm_2024_104031 crossref_primary_10_1093_ijlct_ctae294 crossref_primary_10_1016_j_epsr_2025_111572 crossref_primary_10_1186_s13007_025_01362_z crossref_primary_10_1109_TPDS_2024_3399755 crossref_primary_10_1016_j_ijmecsci_2023_108712 crossref_primary_10_1007_s41965_023_00133_w crossref_primary_10_1016_j_neucom_2024_127351 crossref_primary_10_1142_S0129065724500369 crossref_primary_10_1016_j_ins_2024_120686 crossref_primary_10_1007_s11047_024_09995_0 crossref_primary_10_1142_S012906572450028X crossref_primary_10_3390_math11143054 crossref_primary_10_1142_S012906572450059X |
| Cites_doi | 10.1007/BF01195983 10.1007/s41965-019-00010-5 10.1016/j.neucom.2015.08.068 10.1016/j.ins.2022.05.016 10.1016/j.neunet.2020.04.014 10.1016/j.tcs.2017.02.026 10.1016/j.knosys.2022.109568 10.1016/j.asoc.2010.05.007 10.1016/j.eswa.2020.114446 10.1016/j.cma.2005.09.006 10.1016/j.ins.2021.12.058 10.3233/FI-2016-1324 10.1016/j.knosys.2019.105064 10.3233/FUN-2006-712-308 10.1016/j.cad.2010.12.015 10.1109/TEVC.2004.836819 10.1007/s41965-019-00008-z 10.1016/j.knosys.2020.106599 10.1142/S0129065714400061 10.1016/j.ins.2022.03.007 10.1016/j.engappai.2006.03.003 10.1016/j.ijepes.2021.107877 10.1016/j.neunet.2012.11.014 10.1080/03052150410001704845 10.1016/j.neuron.2010.02.003 10.1016/j.eswa.2021.116432 10.1109/TEVC.2006.872133 10.1016/j.asoc.2012.05.032 10.1007/s10462-011-9270-6 10.1016/j.ic.2021.104766 10.1142/S012906572250023X 10.1016/j.asoc.2009.08.031 10.1142/S0129065716500258 10.1016/j.jmatprotec.2008.06.028 10.1016/j.ins.2016.10.046 10.1007/s10845-010-0393-4 10.1142/S0129065720500549 10.1016/j.neunet.2019.09.005 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Inc. |
| Copyright_xml | – notice: 2023 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2023.01.026 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 456 |
| ExternalDocumentID | 10_1016_j_ins_2023_01_026 S0020025523000269 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c227t-2e7ae57b3419363e148616409c9d370e3b7b1274a7610aa7c1af54ff280ed5903 |
| IEDL.DBID | .~1 |
| ISSN | 0020-0255 |
| IngestDate | Thu Apr 24 23:09:55 EDT 2025 Wed Oct 01 05:15:40 EDT 2025 Fri Feb 23 02:36:14 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Numerical spiking neural P systems Membrane computing Constrained optimization problems Spiking neural P system Optimization numerical spiking neural P system |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c227t-2e7ae57b3419363e148616409c9d370e3b7b1274a7610aa7c1af54ff280ed5903 |
| PageCount | 29 |
| ParticipantIDs | crossref_primary_10_1016_j_ins_2023_01_026 crossref_citationtrail_10_1016_j_ins_2023_01_026 elsevier_sciencedirect_doi_10_1016_j_ins_2023_01_026 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 2023 2023-05-00 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Becerra, Coello (b0190) 2006; 195 G. Zhang, H. Rong, F. Neri, M.J. Pérez-Jiménez, An optimization spiking neural P system for approximately solving combinatorial problems, Int. J. Neural Syst. 24 (5) (2014) 1440006:01–16. doi:10.1142/S0129065714400061. Peng, Bao, Luo, Wang, Song, Riscos-Núñez, Pérez-Jiménez (b0045) 2020; 127 Zhong, Li (b0245) 2022; 192 Ortiz, Munilla, Górriz, Ramírez (b0005) 2016; 26 Fiete, Senn, Wang, Hahnloser (b0025) 2010; 65 Zhang, Cheng, Gheorghe, Meng (b0150) 2013; 13 Liu, Cai, Wang (b0205) 2010; 10 Landa, Coello (b0185) 2006; 195 B. Akay, D. Karaboga, Artificial bee colony algorithm for large-scale problems and engineering design optimization, J. Intell. Manuf. doi: 10.1007/s10845-010-0393-4. Zhang, Zhang, Rong, Paul, Zhu, Neri, Ong (b0020) 2022; 32 Gafar, El-Sehiemy, Sarhan (b0200) 2022; 12 Yoo (b0165) 1999; 18 A. Zavala, A.H. Aguirre, E. Diharce, Constrained optimization via particle evolutionary swarm optimization algorithm (peso), in: Genetic and Evolutionary Computation Conference, GECCO 2005, Proceedings, Washington DC, USA, June 25-29, 2005. Awad, Ali, Suganthan, Liang, Qu (b0230) 2016 Coello Coello, Cortés (b0160) 2004; 36 Abaeifar, Barati, Tavakoli (b0235) 2022; 137 Song, Zhang, Pan (b0060) 2017; 378 Pan, Păun, Zhang (b0040) 2019; 1 Orellana-Martín, Valencia-Cabrera, Riscos-Núñez, Pérez-Jiménez (b0050) 2019; 1 M. Zhu, Q. Yang, J. Dong, G. Zhang, F. Neri, An adaptive optimization spiking neural P system for binary problems, Int. J. Neural Syst. 31 (1) (2021) 2050054:1–17. doi:10.1142/S0129065720500549. Dong, Zhang, Luo, Yang, Guo, Rong, Zhu, Zhou (b0125) 2022; 596 He, Ling (b0215) 2007; 20 Li, Peng, Luo, Wang, Song, Pérez-Jiménez, Riscos-Núñez (b0135) 2022; 31 Ding, Li, Su, Yu, Jin (b0015) 2013; 39 Long, Lugu, Xiong, Liu, Peng, Wang, Orellana-Martín, Pérez-Jiménez (b0075) 2022; 253 Chen, Lu, Zou, Li (b0250) 2016; 173 Deng, Wu, Hu, Liang, Ding, Li, Zhao, Li, Xie (b0030) 2020; 121 Pan, Zhang, Wu, Xu (b0090) 2017; 673 Brest, Greiner, Boskovic, Mernik, Zumer (b0145) 2006; 10 Kasabov, Dhoble, Nuntalid, Indiveri (b0010) 2013; 41 Sánchez-Karhunen, Valencia-Cabrera (b0100) 2019; 1 D. Karaboga, B. Basturk, Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems, in: Foundations of Fuzzy Logic Soft Computing, International Fuzzy Systems Association World Congress, Ifsa, Cancun, Mexico, June 2007. Cabarle, Zeng, Murphy, Song, Rodríguez-Patón, Liu (b0085) 2021; 281 Deng, Dong, Wang, Luo, Feng, Zhang (b0220) 2022; 604 Yildiz (b0155) 2009; 209 Mezura-Montes, Coello (b0175) 2005; 9 Ma, Zhang, Song, Chen (b0240) 2021; 212 Rao, Savsani, Vakharia (b0170) 2011; 43 Ren, Cabarle, Macababayao, Adorna, Zeng (b0035) 2021; 3 Wu, Pan, Yu, Tan (b0080) 2020; 32 Song, Pan, Pérez-Jiménez (b0055) 2016; 144 Cai, Mi, Yan, Peng, Luo, Yang, Wang (b0140) 2022; 587 Liao (b0225) 2010; 10 Cai, Mi, Yan, Peng, Luo, Yang, Wang (b0065) 2022; 235 Zhang, Pérez-Jiménez, Gheorghe (b0095) 2017 Ionescu, Păun, Yokomori (b0110) 2006; 71 Xue, Wang, Kong, Wu, Yin, Qu, Liu (b0130) 2021; 168 Liu, Long, Peng, Wang, Yang, Song, Yang, Riscos-Núñez, Pérez-Jiménez (b0070) 2021 Peng, Li, Wang, Song, Wang, Valencia-Cabrera, Pérez-Hurtado, Riscos-Núñez, Pérez-Jiménez (b0105) 2020; 188 Brest (10.1016/j.ins.2023.01.026_b0145) 2006; 10 Fiete (10.1016/j.ins.2023.01.026_b0025) 2010; 65 Liu (10.1016/j.ins.2023.01.026_b0205) 2010; 10 Peng (10.1016/j.ins.2023.01.026_b0105) 2020; 188 Orellana-Martín (10.1016/j.ins.2023.01.026_b0050) 2019; 1 Xue (10.1016/j.ins.2023.01.026_b0130) 2021; 168 Cai (10.1016/j.ins.2023.01.026_b0065) 2022; 235 Zhang (10.1016/j.ins.2023.01.026_b0095) 2017 10.1016/j.ins.2023.01.026_b0120 Deng (10.1016/j.ins.2023.01.026_b0220) 2022; 604 Ionescu (10.1016/j.ins.2023.01.026_b0110) 2006; 71 Li (10.1016/j.ins.2023.01.026_b0135) 2022; 31 Kasabov (10.1016/j.ins.2023.01.026_b0010) 2013; 41 Wu (10.1016/j.ins.2023.01.026_b0080) 2020; 32 Ma (10.1016/j.ins.2023.01.026_b0240) 2021; 212 Pan (10.1016/j.ins.2023.01.026_b0040) 2019; 1 Ren (10.1016/j.ins.2023.01.026_b0035) 2021; 3 Peng (10.1016/j.ins.2023.01.026_b0045) 2020; 127 Rao (10.1016/j.ins.2023.01.026_b0170) 2011; 43 Long (10.1016/j.ins.2023.01.026_b0075) 2022; 253 Awad (10.1016/j.ins.2023.01.026_b0230) 2016 10.1016/j.ins.2023.01.026_b0210 Ding (10.1016/j.ins.2023.01.026_b0015) 2013; 39 Zhong (10.1016/j.ins.2023.01.026_b0245) 2022; 192 Yoo (10.1016/j.ins.2023.01.026_b0165) 1999; 18 Landa (10.1016/j.ins.2023.01.026_b0185) 2006; 195 Zhang (10.1016/j.ins.2023.01.026_b0150) 2013; 13 Mezura-Montes (10.1016/j.ins.2023.01.026_b0175) 2005; 9 Liu (10.1016/j.ins.2023.01.026_b0070) 2021 He (10.1016/j.ins.2023.01.026_b0215) 2007; 20 Yildiz (10.1016/j.ins.2023.01.026_b0155) 2009; 209 Gafar (10.1016/j.ins.2023.01.026_b0200) 2022; 12 Liao (10.1016/j.ins.2023.01.026_b0225) 2010; 10 Dong (10.1016/j.ins.2023.01.026_b0125) 2022; 596 Cai (10.1016/j.ins.2023.01.026_b0140) 2022; 587 10.1016/j.ins.2023.01.026_b0180 Song (10.1016/j.ins.2023.01.026_b0055) 2016; 144 Becerra (10.1016/j.ins.2023.01.026_b0190) 2006; 195 Abaeifar (10.1016/j.ins.2023.01.026_b0235) 2022; 137 Sánchez-Karhunen (10.1016/j.ins.2023.01.026_b0100) 2019; 1 Coello Coello (10.1016/j.ins.2023.01.026_b0160) 2004; 36 Pan (10.1016/j.ins.2023.01.026_b0090) 2017; 673 Ortiz (10.1016/j.ins.2023.01.026_b0005) 2016; 26 Cabarle (10.1016/j.ins.2023.01.026_b0085) 2021; 281 Chen (10.1016/j.ins.2023.01.026_b0250) 2016; 173 Song (10.1016/j.ins.2023.01.026_b0060) 2017; 378 10.1016/j.ins.2023.01.026_b0195 Zhang (10.1016/j.ins.2023.01.026_b0020) 2022; 32 Deng (10.1016/j.ins.2023.01.026_b0030) 2020; 121 10.1016/j.ins.2023.01.026_b0115 |
| References_xml | – volume: 121 start-page: 294 year: 2020 end-page: 307 ident: b0030 article-title: Rethinking the performance comparison between SNNS and ANNS publication-title: Neural Networks – volume: 253 year: 2022 ident: b0075 article-title: Echo spiking neural P systems publication-title: Knowl.-Based Syst. – volume: 673 start-page: 30 year: 2017 end-page: 41 ident: b0090 article-title: Numerical P systems with production thresholds publication-title: Theoret. Comput. Sci. – volume: 1 start-page: 1 year: 2019 end-page: 2 ident: b0040 article-title: Foreword: Starting JMC publication-title: J. Membr. Comput. – volume: 36 start-page: 607 year: 2004 end-page: 634 ident: b0160 article-title: Hybridizing a genetic algorithm with an artificial immune system for global optimization publication-title: Eng. Optimiz. – volume: 9 start-page: 1 year: 2005 end-page: 17 ident: b0175 article-title: A simple multimembered evolution strategy to solve constrained optimization problems publication-title: IEEE Trans. Evol. Comput. – volume: 39 start-page: 251 year: 2013 end-page: 260 ident: b0015 article-title: Evolutionary artificial neural networks: a review publication-title: Artif. Intell. Rev. – volume: 32 start-page: 1 year: 2022 end-page: 15 ident: b0020 article-title: A layered spiking neural system for classification problems publication-title: Int. J. Neural Syst. – year: 2016 ident: b0230 article-title: Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization, Nanyang Technological University, Jordan University of Science and Technology and Zhengzhou University – volume: 12 start-page: 1 year: 2022 end-page: 24 ident: b0200 article-title: A hybrid fuzzy-crow optimizer for unconstrained and constrained engineering design problems publication-title: Human-Centric Comput. Inform. Sci. – volume: 26 start-page: 1 year: 2016 end-page: 23 ident: b0005 article-title: Ensembles of deep learning architectures for the early diagnosis of the alzheimer’s disease publication-title: Int. J. Neural Syst. – volume: 168 year: 2021 ident: b0130 article-title: Deep hybrid neural-like P systems for multiorgan segmentation in head and neck CT/MR images publication-title: Expert Syst. Appl. – reference: A. Zavala, A.H. Aguirre, E. Diharce, Constrained optimization via particle evolutionary swarm optimization algorithm (peso), in: Genetic and Evolutionary Computation Conference, GECCO 2005, Proceedings, Washington DC, USA, June 25-29, 2005. – volume: 195 start-page: 4303 year: 2006 end-page: 4322 ident: b0190 article-title: Cultured differential evolution for constrained optimization publication-title: Comput. Methods Appl. Mech. Eng. – volume: 3 start-page: 1 year: 2021 end-page: 12 ident: b0035 article-title: Homogeneous spiking neural P systems with structural plasticity publication-title: J. Membr. Comput. – volume: 604 start-page: 28 year: 2022 end-page: 44 ident: b0220 article-title: Reducer lubrication optimization with an optimization spiking neural P systems publication-title: Inf. Sci. – volume: 144 start-page: 77 year: 2016 end-page: 107 ident: b0055 article-title: Tissue P systems with protein on cells publication-title: Fundamenta Informaticae – volume: 10 start-page: 629 year: 2010 end-page: 640 ident: b0205 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Appl. Soft Comput. – volume: 1 start-page: 1 year: 2019 end-page: 2 ident: b0050 article-title: Minimal cooperation as a way to achieve the efficiency in cell-like membrane systems publication-title: J. Membr. Comput. – volume: 65 start-page: 563 year: 2010 end-page: 576 ident: b0025 article-title: Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity publication-title: Neuron – reference: G. Zhang, H. Rong, F. Neri, M.J. Pérez-Jiménez, An optimization spiking neural P system for approximately solving combinatorial problems, Int. J. Neural Syst. 24 (5) (2014) 1440006:01–16. doi:10.1142/S0129065714400061. – reference: B. Akay, D. Karaboga, Artificial bee colony algorithm for large-scale problems and engineering design optimization, J. Intell. Manuf. doi: 10.1007/s10845-010-0393-4. – volume: 10 start-page: 646 year: 2006 end-page: 657 ident: b0145 article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems publication-title: IEEE Trans. Evol. Comput. – volume: 18 start-page: 85 year: 1999 end-page: 94 ident: b0165 article-title: Immune network modeling in design optimization publication-title: Struct. Multidisc. Optimiz. – volume: 235 year: 2022 ident: b0065 article-title: LSTM-SNP: A long short-term memory model inspired from spiking neural P systems publication-title: Knowl.-Based Syst. – volume: 13 start-page: 1528 year: 2013 end-page: 1542 ident: b0150 article-title: A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems publication-title: Appl. Soft Comput. – volume: 41 start-page: 188 year: 2013 end-page: 201 ident: b0010 article-title: Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition publication-title: Neural Networks – year: 2017 ident: b0095 article-title: Real-life Applications with Membrane Computing – volume: 596 start-page: 1 year: 2022 end-page: 14 ident: b0125 article-title: A distributed adaptive optimization spiking neural P system for approximately solving combinatorial optimization problems publication-title: Inf. Sci. – volume: 281 year: 2021 ident: b0085 article-title: Neural-like P systems with plasmids publication-title: Inf. Comput. – volume: 212 year: 2021 ident: b0240 article-title: A modified teaching-learning-based optimization algorithm for solving optimization problem publication-title: Knowl.-Based Syst. – volume: 71 start-page: 279 year: 2006 end-page: 308 ident: b0110 article-title: Spiking neural P systems publication-title: Fundamenta Informaticae – volume: 188 year: 2020 ident: b0105 article-title: Spiking neural P systems with inhibitory rules publication-title: Knowl.-Based Syst. – volume: 378 start-page: 177 year: 2017 end-page: 193 ident: b0060 article-title: Tissue-like P systems with evolutional symport/antiport rules publication-title: Inf. Sci. – volume: 32 start-page: 1 year: 2020 end-page: 15 ident: b0080 article-title: Numerical spiking neural P systems publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 127 start-page: 110 year: 2020 end-page: 120 ident: b0045 article-title: Dendrite P systems publication-title: Neural Networks – volume: 209 start-page: 2773 year: 2009 end-page: 2780 ident: b0155 article-title: An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry publication-title: J. Mater. Process. Technol. – volume: 192 year: 2022 ident: b0245 article-title: Comprehensive learning Harris hawks-equilibrium optimization with terminal replacement mechanism for constrained optimization problems publication-title: Expert Syst. Appl. – volume: 31 start-page: 1 year: 2022 ident: b0135 article-title: Medical Image Fusion Method Based on Coupled Neural P Systems in Nonsubsampled Shearlet Transform Domain publication-title: Int. J. Neural Syst. – start-page: 1 year: 2021 end-page: 10 ident: b0070 article-title: Gated Spiking Neural P Systems for Time Series Forecasting publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 10 start-page: 1188 year: 2010 end-page: 1199 ident: b0225 article-title: Two hybrid differential evolution algorithms for engineering design optimization publication-title: Appl. Soft Comput. – volume: 587 start-page: 473 year: 2022 end-page: 484 ident: b0140 article-title: An unsupervised segmentation method based on dynamic threshold neural P systems for color images publication-title: Inf. Sci. – volume: 20 start-page: 89 year: 2007 end-page: 99 ident: b0215 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Eng. Appl. Artif. Intell. – volume: 1 start-page: 40 year: 2019 end-page: 51 ident: b0100 article-title: Modelling complex market interactions using PDP systems publication-title: J. Membr. Comput. – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: b0170 article-title: Teaching learning based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. – volume: 173 start-page: 1096 year: 2016 end-page: 1111 ident: b0250 article-title: Teaching-learning-based optimization with variable-population scheme and its application for ANN and global optimization publication-title: Neurocomputing – volume: 137 year: 2022 ident: b0235 article-title: Inertia-weight local-search-based TLBO algorithm for energy management in isolated micro-grids with renewable resources publication-title: Int. J. Electr. Power Energy Syst. – volume: 195 start-page: 4303 year: 2006 end-page: 4322 ident: b0185 article-title: Cultured differential evolution for constrained optimization publication-title: Comput. Methods Appl. Mech. Eng. – reference: M. Zhu, Q. Yang, J. Dong, G. Zhang, F. Neri, An adaptive optimization spiking neural P system for binary problems, Int. J. Neural Syst. 31 (1) (2021) 2050054:1–17. doi:10.1142/S0129065720500549. – reference: D. Karaboga, B. Basturk, Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems, in: Foundations of Fuzzy Logic Soft Computing, International Fuzzy Systems Association World Congress, Ifsa, Cancun, Mexico, June 2007. – year: 2016 ident: 10.1016/j.ins.2023.01.026_b0230 – volume: 1 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.ins.2023.01.026_b0050 article-title: Minimal cooperation as a way to achieve the efficiency in cell-like membrane systems publication-title: J. Membr. Comput. – volume: 18 start-page: 85 issue: 2–3 year: 1999 ident: 10.1016/j.ins.2023.01.026_b0165 article-title: Immune network modeling in design optimization publication-title: Struct. Multidisc. Optimiz. doi: 10.1007/BF01195983 – volume: 1 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.ins.2023.01.026_b0040 article-title: Foreword: Starting JMC publication-title: J. Membr. Comput. doi: 10.1007/s41965-019-00010-5 – volume: 173 start-page: 1096 year: 2016 ident: 10.1016/j.ins.2023.01.026_b0250 article-title: Teaching-learning-based optimization with variable-population scheme and its application for ANN and global optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.068 – volume: 604 start-page: 28 issue: 1 year: 2022 ident: 10.1016/j.ins.2023.01.026_b0220 article-title: Reducer lubrication optimization with an optimization spiking neural P systems publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.05.016 – volume: 127 start-page: 110 year: 2020 ident: 10.1016/j.ins.2023.01.026_b0045 article-title: Dendrite P systems publication-title: Neural Networks doi: 10.1016/j.neunet.2020.04.014 – volume: 235 year: 2022 ident: 10.1016/j.ins.2023.01.026_b0065 article-title: LSTM-SNP: A long short-term memory model inspired from spiking neural P systems publication-title: Knowl.-Based Syst. – volume: 673 start-page: 30 year: 2017 ident: 10.1016/j.ins.2023.01.026_b0090 article-title: Numerical P systems with production thresholds publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2017.02.026 – ident: 10.1016/j.ins.2023.01.026_b0180 – volume: 253 year: 2022 ident: 10.1016/j.ins.2023.01.026_b0075 article-title: Echo spiking neural P systems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109568 – volume: 10 start-page: 1188 issue: 1 year: 2010 ident: 10.1016/j.ins.2023.01.026_b0225 article-title: Two hybrid differential evolution algorithms for engineering design optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.05.007 – volume: 168 year: 2021 ident: 10.1016/j.ins.2023.01.026_b0130 article-title: Deep hybrid neural-like P systems for multiorgan segmentation in head and neck CT/MR images publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114446 – volume: 195 start-page: 4303 issue: 33/36 year: 2006 ident: 10.1016/j.ins.2023.01.026_b0190 article-title: Cultured differential evolution for constrained optimization publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.09.006 – volume: 587 start-page: 473 year: 2022 ident: 10.1016/j.ins.2023.01.026_b0140 article-title: An unsupervised segmentation method based on dynamic threshold neural P systems for color images publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.12.058 – volume: 144 start-page: 77 issue: 1 year: 2016 ident: 10.1016/j.ins.2023.01.026_b0055 article-title: Tissue P systems with protein on cells publication-title: Fundamenta Informaticae doi: 10.3233/FI-2016-1324 – volume: 32 start-page: 1 issue: 6 year: 2020 ident: 10.1016/j.ins.2023.01.026_b0080 article-title: Numerical spiking neural P systems publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 188 year: 2020 ident: 10.1016/j.ins.2023.01.026_b0105 article-title: Spiking neural P systems with inhibitory rules publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105064 – volume: 71 start-page: 279 issue: 2 year: 2006 ident: 10.1016/j.ins.2023.01.026_b0110 article-title: Spiking neural P systems publication-title: Fundamenta Informaticae doi: 10.3233/FUN-2006-712-308 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 10.1016/j.ins.2023.01.026_b0170 article-title: Teaching learning based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 9 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.ins.2023.01.026_b0175 article-title: A simple multimembered evolution strategy to solve constrained optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.836819 – volume: 1 start-page: 40 issue: 1 year: 2019 ident: 10.1016/j.ins.2023.01.026_b0100 article-title: Modelling complex market interactions using PDP systems publication-title: J. Membr. Comput. doi: 10.1007/s41965-019-00008-z – volume: 212 year: 2021 ident: 10.1016/j.ins.2023.01.026_b0240 article-title: A modified teaching-learning-based optimization algorithm for solving optimization problem publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106599 – ident: 10.1016/j.ins.2023.01.026_b0115 doi: 10.1142/S0129065714400061 – volume: 596 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.ins.2023.01.026_b0125 article-title: A distributed adaptive optimization spiking neural P system for approximately solving combinatorial optimization problems publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.03.007 – year: 2017 ident: 10.1016/j.ins.2023.01.026_b0095 – volume: 20 start-page: 89 issue: 1 year: 2007 ident: 10.1016/j.ins.2023.01.026_b0215 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2006.03.003 – volume: 137 year: 2022 ident: 10.1016/j.ins.2023.01.026_b0235 article-title: Inertia-weight local-search-based TLBO algorithm for energy management in isolated micro-grids with renewable resources publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2021.107877 – volume: 41 start-page: 188 issue: 5 year: 2013 ident: 10.1016/j.ins.2023.01.026_b0010 article-title: Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition publication-title: Neural Networks doi: 10.1016/j.neunet.2012.11.014 – volume: 36 start-page: 607 issue: 5 year: 2004 ident: 10.1016/j.ins.2023.01.026_b0160 article-title: Hybridizing a genetic algorithm with an artificial immune system for global optimization publication-title: Eng. Optimiz. doi: 10.1080/03052150410001704845 – volume: 195 start-page: 4303 issue: 33 year: 2006 ident: 10.1016/j.ins.2023.01.026_b0185 article-title: Cultured differential evolution for constrained optimization publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.09.006 – ident: 10.1016/j.ins.2023.01.026_b0195 – volume: 65 start-page: 563 issue: 4 year: 2010 ident: 10.1016/j.ins.2023.01.026_b0025 article-title: Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity publication-title: Neuron doi: 10.1016/j.neuron.2010.02.003 – volume: 192 year: 2022 ident: 10.1016/j.ins.2023.01.026_b0245 article-title: Comprehensive learning Harris hawks-equilibrium optimization with terminal replacement mechanism for constrained optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116432 – volume: 10 start-page: 646 issue: 6 year: 2006 ident: 10.1016/j.ins.2023.01.026_b0145 article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2006.872133 – volume: 13 start-page: 1528 issue: 3 year: 2013 ident: 10.1016/j.ins.2023.01.026_b0150 article-title: A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.05.032 – volume: 3 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.ins.2023.01.026_b0035 article-title: Homogeneous spiking neural P systems with structural plasticity publication-title: J. Membr. Comput. – volume: 39 start-page: 251 issue: 3 year: 2013 ident: 10.1016/j.ins.2023.01.026_b0015 article-title: Evolutionary artificial neural networks: a review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-011-9270-6 – volume: 281 year: 2021 ident: 10.1016/j.ins.2023.01.026_b0085 article-title: Neural-like P systems with plasmids publication-title: Inf. Comput. doi: 10.1016/j.ic.2021.104766 – volume: 32 start-page: 1 issue: 8 year: 2022 ident: 10.1016/j.ins.2023.01.026_b0020 article-title: A layered spiking neural system for classification problems publication-title: Int. J. Neural Syst. doi: 10.1142/S012906572250023X – volume: 10 start-page: 629 year: 2010 ident: 10.1016/j.ins.2023.01.026_b0205 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.08.031 – volume: 26 start-page: 1 issue: 7 year: 2016 ident: 10.1016/j.ins.2023.01.026_b0005 article-title: Ensembles of deep learning architectures for the early diagnosis of the alzheimer’s disease publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500258 – volume: 209 start-page: 2773 issue: 6 year: 2009 ident: 10.1016/j.ins.2023.01.026_b0155 article-title: An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2008.06.028 – volume: 378 start-page: 177 year: 2017 ident: 10.1016/j.ins.2023.01.026_b0060 article-title: Tissue-like P systems with evolutional symport/antiport rules publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.10.046 – ident: 10.1016/j.ins.2023.01.026_b0210 doi: 10.1007/s10845-010-0393-4 – volume: 12 start-page: 1 year: 2022 ident: 10.1016/j.ins.2023.01.026_b0200 article-title: A hybrid fuzzy-crow optimizer for unconstrained and constrained engineering design problems publication-title: Human-Centric Comput. Inform. Sci. – volume: 31 start-page: 1 year: 2022 ident: 10.1016/j.ins.2023.01.026_b0135 article-title: Medical Image Fusion Method Based on Coupled Neural P Systems in Nonsubsampled Shearlet Transform Domain publication-title: Int. J. Neural Syst. – ident: 10.1016/j.ins.2023.01.026_b0120 doi: 10.1142/S0129065720500549 – volume: 121 start-page: 294 year: 2020 ident: 10.1016/j.ins.2023.01.026_b0030 article-title: Rethinking the performance comparison between SNNS and ANNS publication-title: Neural Networks doi: 10.1016/j.neunet.2019.09.005 – start-page: 1 year: 2021 ident: 10.1016/j.ins.2023.01.026_b0070 article-title: Gated Spiking Neural P Systems for Time Series Forecasting publication-title: IEEE Trans. Neural Networks Learn. Syst. |
| SSID | ssj0004766 |
| Score | 2.5143127 |
| Snippet | An optimization spiking neural P (OSN P) system is a discrete optimization model without the aid of evolutionary operators of evolutionary algorithms or swarm... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 428 |
| SubjectTerms | Constrained optimization problems Membrane computing Numerical spiking neural P systems Optimization numerical spiking neural P system Spiking neural P system |
| Title | An optimization numerical spiking neural P system for solving constrained optimization problems |
| URI | https://dx.doi.org/10.1016/j.ins.2023.01.026 |
| Volume | 626 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6291 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AKRWK dateStart: 19681201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQgOhV_beQgHoS6NkmT9jiGYyoODw52C22SwmR2w21X_3bzmlQ3UA8eU_pCeE2T70ve-x5CVwmwhFQnQRFxHTAhaJAkSgURZZqogmlVnXc8jfhwzB4m8aSB-nUuDIRV-rXfrenVau2fdL03u4vpFHJ8SYWILYgGJgFJfIwJqGJw-_Ed5sGEu68EmgRv1zebVYzXtATFbkKdcif_eW_a2G8GB2jfA0Xcc2M5RA1TttDehnxgC7V90gG-xj6rCLyM_e96hGSvxHO7JLz5XEtcrt39zAwvF1M4I8cgZ2mbz9gpOmPbC7azEU4ZsALoCBUkjN7uxhehWR6j8eDupT8MfEGFQBEiVgExIjOxyEHDjXJqLBXili6FqUo1FaGhucgjS1MzYUFVlgkVZUXMioIkodFxGtIT1CznpTlF2KTKiEKnPM0zi7jyxCInzjJLkCwDMYSfobB2pVRebRyGPJN1WNmrtN6X4H0ZRjIEk5svk4WT2vjrZVZ_H7k1X6TdCn43O_-f2QXahZYLdLxEzdX72rQtGFnlnWq2ddBO7_5xOPoEhZLeeA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD-rBKGr8hfZgPJhMtrZb1yMhElQgHiDh1mxdl8zgIAJX_3b7tk4hUQ8et_U1y1v3-n3te18RugmBJYgkdFIvSBzGOXXCUCnHoywhKmWJKtY7BsOgN2ZPE39SQ52qFgbSKm3sL2N6Ea3tnZb1ZmueZVDjSwpEbEA0MAmxhbaZTzgwsPuP7zwPxssNS-BJ0Lza2iySvLIcJLsJLaU7g58np7UJp3uA9i1SxO3yZQ5RTecNtLemH9hATVt1gG-xLSsCN2P7vx4h2c7xzMSEN1tsifNVuUEzxYt5BovkGPQszeULLiWdsekFm-EIywxYAXaEIyR0stmNPYVmcYzG3YdRp-fYExUcRQhfOkTzSPs8BhE3GlBtuFBg-JIrlEgodzWNeewZnhpxg6qiiCsvSn2WpiR0deILl56gej7L9SnCWijN00QEIo4M5IpDA50CFhmGZCiIJsEZcitXSmXlxuGVp7LKK3uVxvsSvC9dT7pgcvdlMi-1Nv5qzKrvIzcGjDRzwe9m5_8zu0Y7vdGgL_uPw-cLtAtPyqzHS1Rfvq900yCTZXxVjLxPx3rgDQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimization+numerical+spiking+neural+P+system+for+solving+constrained+optimization+problems&rft.jtitle=Information+sciences&rft.au=Dong%2C+Jianping&rft.au=Zhang%2C+Gexiang&rft.au=Luo%2C+Biao&rft.au=Rong%2C+Haina&rft.date=2023-05-01&rft.issn=0020-0255&rft.volume=626&rft.spage=428&rft.epage=456&rft_id=info:doi/10.1016%2Fj.ins.2023.01.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2023_01_026 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |