Enhancing wind power forecasting and ramp detection using long short‐term memory networks and the swinging door algorithm
Accurate prediction of short‐term wind power ramps is essential for effective smart grid management. This study introduces the swinging door algorithm for ramp detection, which outperforms traditional methods by precisely identifying ramp events. Additionally, a long short‐term memory (LSTM) network...
Saved in:
| Published in | IET renewable power generation Vol. 19; no. 1 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
01.01.2025
|
| Online Access | Get full text |
| ISSN | 1752-1416 1752-1424 1752-1424 |
| DOI | 10.1049/rpg2.70002 |
Cover
| Abstract | Accurate prediction of short‐term wind power ramps is essential for effective smart grid management. This study introduces the swinging door algorithm for ramp detection, which outperforms traditional methods by precisely identifying ramp events. Additionally, a long short‐term memory (LSTM) network is evaluated against established models such as support vector machines, artificial neural networks, convex multi‐task feature learning, and random forest for wind power ramp forecasting. The LSTM model demonstrates superior performance, achieving the lowest weighted mean absolute percentage error of 8.36% and normalized root mean squared error of 0.60, alongside the highest R ‐squared ( R 2 ) value of 0.73, indicating strong predictive accuracy and correlation with observed data. Furthermore, the combined swinging door algorithm‐LSTM framework improved ramp event detection by 15% compared to traditional methods, showcasing its robustness in capturing both mild and extreme ramp events. This research underlines LSTM's effectiveness in wind power forecasting, marking a notable advancement in prediction methodologies. By illustrating the strengths of LSTM and swinging door algorithm, the study contributes to the refinement of prediction models for smart grid applications, highlighting their potential to transform wind power ramp prediction and detection. |
|---|---|
| AbstractList | Accurate prediction of short‐term wind power ramps is essential for effective smart grid management. This study introduces the swinging door algorithm for ramp detection, which outperforms traditional methods by precisely identifying ramp events. Additionally, a long short‐term memory (LSTM) network is evaluated against established models such as support vector machines, artificial neural networks, convex multi‐task feature learning, and random forest for wind power ramp forecasting. The LSTM model demonstrates superior performance, achieving the lowest weighted mean absolute percentage error of 8.36% and normalized root mean squared error of 0.60, alongside the highest R ‐squared ( R 2 ) value of 0.73, indicating strong predictive accuracy and correlation with observed data. Furthermore, the combined swinging door algorithm‐LSTM framework improved ramp event detection by 15% compared to traditional methods, showcasing its robustness in capturing both mild and extreme ramp events. This research underlines LSTM's effectiveness in wind power forecasting, marking a notable advancement in prediction methodologies. By illustrating the strengths of LSTM and swinging door algorithm, the study contributes to the refinement of prediction models for smart grid applications, highlighting their potential to transform wind power ramp prediction and detection. |
| Author | Pandit, Ravi Mu, Shikun Astolfi, Davide |
| Author_xml | – sequence: 1 givenname: Ravi orcidid: 0000-0001-6850-7922 surname: Pandit fullname: Pandit, Ravi organization: School of Aerospace, Transport and Manufacturing (SATM) Cranfield University Cranfield UK – sequence: 2 givenname: Shikun surname: Mu fullname: Mu, Shikun organization: Department of Computer Science University of Exeter Exeter UK – sequence: 3 givenname: Davide orcidid: 0000-0002-8409-0298 surname: Astolfi fullname: Astolfi, Davide organization: Department of Information Engineering Università degli Studi di Brescia Brescia Italy |
| BookMark | eNp9kMtOwzAQRS1UJNrChi_wGpQyfiROlqgqD6kSG1hHjuM8ILEj21VVseET-Ea-hIQilmxmRnfuvYuzQDNjjUboksCKAM9u3FDTlQAAeoLmRMQ0Ipzy2d9NkjO08P4VIM4gTebofWMaaVRrarxvTYkHu9cOV9ZpJX2YZDmqTvYDLnXQKrTW4J2fHp0dh2-sC18fn0G7Hve6t-6AjQ576978TzQ0Gvuxup4ipbUOy662rg1Nf45OK9l5ffG7l-jlbvO8foi2T_eP69ttpChNQqREQnScCs2KkmlRZjzNQCSCMVlwxjkBzRlNU8YKCsChqBQoInScAKiEErZE18fenRnkYS-7Lh9c20t3yAnkE7d84pb_cBvdV0e3ctZ7p6v_zN-faHNI |
| Cites_doi | 10.3390/en13236449 10.3390/en15197233 10.1109/REPE48501.2019.9025143 10.1109/SGES51519.2020.00169 10.1260/030952409789685681 10.1109/IREC48820.2020.9310449 10.3390/en15218165 10.1016/j.renene.2021.02.123 10.1109/GreenTech.2013.30 10.1088/1742-6596/555/1/012040 10.1016/j.egyr.2021.08.137 10.1007/s10994-007-5040-8 10.1016/j.segan.2023.101071 10.1007/s40565-015-0138-7 10.1201/9781315139470 10.1109/UPEC.2018.8542057 10.1016/j.energy.2023.128075 10.3390/en16031166 10.1002/we.235 10.1049/iet-rpg.2019.0941 10.1002/we.2760 10.1016/j.renene.2023.03.131 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1049/rpg2.70002 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1752-1424 |
| ExternalDocumentID | 10.1049/rpg2.70002 10_1049_rpg2_70002 |
| GroupedDBID | .DC 0R~ 1OC 24P 29I 4.4 5GY 6IK 7XC 8FE 8FG 8FH AAHJG AAJGR AAMMB AAYXX ABJCF ABMDY ABQXS ACCMX ACESK ACGFS ACIWK ACXQS AEFGJ AENEX AEUYN AFFHD AFKRA AFRAH AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ATCPS AVUZU BENPR BGLVJ BHPHI CCPQU CITATION CS3 DU5 EBS EJD GROUPED_DOAJ HCIFZ HZ~ IAO IDLOA IEP IPLJI ITC L6V LAI M43 M7S MCNEO O9- OK1 P2P P62 PATMY PHGZM PHGZT PQGLB PTHSS PYCSY RNS ROL RUI S0W WIN ADTOC PUEGO UNPAY |
| ID | FETCH-LOGICAL-c226t-c761e587e3bd3e7d9489076733ab434410e4328833b20040bfc0c17e5600c6213 |
| IEDL.DBID | UNPAY |
| ISSN | 1752-1416 1752-1424 |
| IngestDate | Sun Sep 07 11:05:57 EDT 2025 Wed Oct 29 21:31:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c226t-c761e587e3bd3e7d9489076733ab434410e4328833b20040bfc0c17e5600c6213 |
| ORCID | 0000-0002-8409-0298 0000-0001-6850-7922 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1049/rpg2.70002 |
| ParticipantIDs | unpaywall_primary_10_1049_rpg2_70002 crossref_primary_10_1049_rpg2_70002 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-00 |
| PublicationDecade | 2020 |
| PublicationTitle | IET renewable power generation |
| PublicationYear | 2025 |
| References | e_1_2_13_25_1 e_1_2_13_24_1 e_1_2_13_27_1 e_1_2_13_26_1 e_1_2_13_21_1 e_1_2_13_20_1 e_1_2_13_23_1 e_1_2_13_22_1 e_1_2_13_9_1 e_1_2_13_8_1 e_1_2_13_7_1 e_1_2_13_6_1 e_1_2_13_17_1 e_1_2_13_18_1 e_1_2_13_19_1 e_1_2_13_13_1 e_1_2_13_14_1 e_1_2_13_15_1 e_1_2_13_16_1 e_1_2_13_10_1 e_1_2_13_11_1 e_1_2_13_5_1 e_1_2_13_4_1 e_1_2_13_3_1 e_1_2_13_2_1 Ouyang T. (e_1_2_13_12_1) 2017; 37 e_1_2_13_29_1 e_1_2_13_28_1 |
| References_xml | – ident: e_1_2_13_23_1 doi: 10.3390/en13236449 – ident: e_1_2_13_9_1 doi: 10.3390/en15197233 – ident: e_1_2_13_2_1 – ident: e_1_2_13_10_1 doi: 10.1109/REPE48501.2019.9025143 – ident: e_1_2_13_19_1 – ident: e_1_2_13_11_1 doi: 10.1109/SGES51519.2020.00169 – ident: e_1_2_13_4_1 – ident: e_1_2_13_18_1 doi: 10.1260/030952409789685681 – ident: e_1_2_13_22_1 doi: 10.1109/IREC48820.2020.9310449 – ident: e_1_2_13_28_1 doi: 10.3390/en15218165 – ident: e_1_2_13_16_1 doi: 10.1016/j.renene.2021.02.123 – ident: e_1_2_13_20_1 – ident: e_1_2_13_17_1 doi: 10.1109/GreenTech.2013.30 – ident: e_1_2_13_13_1 doi: 10.1088/1742-6596/555/1/012040 – ident: e_1_2_13_5_1 doi: 10.1016/j.egyr.2021.08.137 – ident: e_1_2_13_27_1 doi: 10.1007/s10994-007-5040-8 – ident: e_1_2_13_29_1 doi: 10.1016/j.segan.2023.101071 – ident: e_1_2_13_26_1 doi: 10.1007/s40565-015-0138-7 – ident: e_1_2_13_25_1 doi: 10.1201/9781315139470 – ident: e_1_2_13_24_1 doi: 10.1109/UPEC.2018.8542057 – ident: e_1_2_13_6_1 doi: 10.1016/j.energy.2023.128075 – ident: e_1_2_13_15_1 doi: 10.3390/en16031166 – ident: e_1_2_13_21_1 doi: 10.1002/we.235 – ident: e_1_2_13_8_1 doi: 10.1049/iet-rpg.2019.0941 – volume: 37 start-page: 572 issue: 2 year: 2017 ident: e_1_2_13_12_1 article-title: Wind power ramps prediction method based on amendment of similar events publication-title: Proc. CSEE – ident: e_1_2_13_3_1 – ident: e_1_2_13_7_1 doi: 10.1002/we.2760 – ident: e_1_2_13_14_1 doi: 10.1016/j.renene.2023.03.131 |
| SSID | ssj0059086 |
| Score | 2.3885312 |
| Snippet | Accurate prediction of short‐term wind power ramps is essential for effective smart grid management. This study introduces the swinging door algorithm for ramp... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Index Database |
| Title | Enhancing wind power forecasting and ramp detection using long short‐term memory networks and the swinging door algorithm |
| URI | https://doi.org/10.1049/rpg2.70002 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1752-1424 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059086 issn: 1752-1424 databaseCode: IDLOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1752-1424 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059086 issn: 1752-1424 databaseCode: AVUZU dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1752-1424 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059086 issn: 1752-1424 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QDsaD30aMkka5Dre1a7cjIRBiIuEgCZ6WtitghG0ZIwS9-BP8jf4S2zIMeDBelmV5mzR9u_V516fPA0CdSIQJk8KiLlcFSmBLixOfWzaPmC98EQjzv-OxR7oD_DD0hiVwuzkLs7N_j4P7LB27DWobvcgK8RTeLoPKoNdvPpuTjp5rOdj4mxb3Lt5okO403ll19hdxylZLNp1uLSWdI9DadGLNIHltLHLeEG-_9Bn_7uUxOCyQJGyuU38CSjI-BQdb-oJn4L0dT7SeRjyGS1V7w1RbokEFU6Vgc813hkw9zdgshZHMDSkrhpoJP4bTRF3mEwXOvz4-9ecbzjQndwXjNW98bpoq9AjnS-15pKKjJMkgm46T7CWfzM7BoNN-anWtwm3BEgqC5ZagxJGeTyXiEZI0CrCvCmdCEWIcI4WabImR8Sbm-s2y-UjYwqFSQyZBXAddgHKcxPISQOb6nCARcSpGCqC4jOJIFUZMjAhznJFXBXebbITpWlQjNJvhOAj1UIZmKKug_pOoP8Ku_hd2Dcp5tpA3CkLkvAb2XNyvFTPpGzOIyCE |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5jO4gHv8WJStBdO9smTdrjGBtDcHhwME8lSbNN3NrSdozpxZ_gb_SXmGSrbB6Gl1LKGwh50-Z5myfPA0CDSIQJk8KiLlcFSmBLixOfWzaPmC98EQjzv-OxT3oD_DD0hhVwW56F2dq_x8F9lo7dJrWNXmSNeApvV0Ft0H9qvZiTjp5rOdj4m67vXVxqkG413lp19uZxypYLNp1uLCXdQ9AuO7FikLw15wVvivc_-oy7e3kEDtZIErZWqT8GFRmfgP0NfcFT8NGJJ1pPIx7Dhaq9Yaot0aCCqVKwXPOdIVNPMzZLYSQLQ8qKoWbCj-E0UZd8osD59-eX_nzDmebkLmG84o3npqlCjzBfaM8jFR0lSQbZdJxkr8VkdgYG3c5zu2et3RYsoSBYYQlKHOn5VCIeIUmjAPuqcCYUIcYxUqjJlhgZb2Ku3yybj4QtHCo1ZBLEddA5qMZJLC8AZK7PCRIRp2KkAIrLKI5UYcTEiDDHGXl1cFdmI0xXohqh2QzHQaiHMjRDWQeN30TtCLv8X9gVqBbZXF4rCFHwm_Uc-gGI28dK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+wind+power+forecasting+and+ramp+detection+using+long+short%E2%80%90term+memory+networks+and+the+swinging+door+algorithm&rft.jtitle=IET+renewable+power+generation&rft.au=Pandit%2C+Ravi&rft.au=Mu%2C+Shikun&rft.au=Astolfi%2C+Davide&rft.date=2025-01-01&rft.issn=1752-1416&rft.eissn=1752-1424&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1049%2Frpg2.70002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_rpg2_70002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-1416&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-1416&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-1416&client=summon |