Enhancing wind power forecasting and ramp detection using long short‐term memory networks and the swinging door algorithm

Accurate prediction of short‐term wind power ramps is essential for effective smart grid management. This study introduces the swinging door algorithm for ramp detection, which outperforms traditional methods by precisely identifying ramp events. Additionally, a long short‐term memory (LSTM) network...

Full description

Saved in:
Bibliographic Details
Published inIET renewable power generation Vol. 19; no. 1
Main Authors Pandit, Ravi, Mu, Shikun, Astolfi, Davide
Format Journal Article
LanguageEnglish
Published 01.01.2025
Online AccessGet full text
ISSN1752-1416
1752-1424
1752-1424
DOI10.1049/rpg2.70002

Cover

Abstract Accurate prediction of short‐term wind power ramps is essential for effective smart grid management. This study introduces the swinging door algorithm for ramp detection, which outperforms traditional methods by precisely identifying ramp events. Additionally, a long short‐term memory (LSTM) network is evaluated against established models such as support vector machines, artificial neural networks, convex multi‐task feature learning, and random forest for wind power ramp forecasting. The LSTM model demonstrates superior performance, achieving the lowest weighted mean absolute percentage error of 8.36% and normalized root mean squared error of 0.60, alongside the highest R ‐squared ( R 2 ) value of 0.73, indicating strong predictive accuracy and correlation with observed data. Furthermore, the combined swinging door algorithm‐LSTM framework improved ramp event detection by 15% compared to traditional methods, showcasing its robustness in capturing both mild and extreme ramp events. This research underlines LSTM's effectiveness in wind power forecasting, marking a notable advancement in prediction methodologies. By illustrating the strengths of LSTM and swinging door algorithm, the study contributes to the refinement of prediction models for smart grid applications, highlighting their potential to transform wind power ramp prediction and detection.
AbstractList Accurate prediction of short‐term wind power ramps is essential for effective smart grid management. This study introduces the swinging door algorithm for ramp detection, which outperforms traditional methods by precisely identifying ramp events. Additionally, a long short‐term memory (LSTM) network is evaluated against established models such as support vector machines, artificial neural networks, convex multi‐task feature learning, and random forest for wind power ramp forecasting. The LSTM model demonstrates superior performance, achieving the lowest weighted mean absolute percentage error of 8.36% and normalized root mean squared error of 0.60, alongside the highest R ‐squared ( R 2 ) value of 0.73, indicating strong predictive accuracy and correlation with observed data. Furthermore, the combined swinging door algorithm‐LSTM framework improved ramp event detection by 15% compared to traditional methods, showcasing its robustness in capturing both mild and extreme ramp events. This research underlines LSTM's effectiveness in wind power forecasting, marking a notable advancement in prediction methodologies. By illustrating the strengths of LSTM and swinging door algorithm, the study contributes to the refinement of prediction models for smart grid applications, highlighting their potential to transform wind power ramp prediction and detection.
Author Pandit, Ravi
Mu, Shikun
Astolfi, Davide
Author_xml – sequence: 1
  givenname: Ravi
  orcidid: 0000-0001-6850-7922
  surname: Pandit
  fullname: Pandit, Ravi
  organization: School of Aerospace, Transport and Manufacturing (SATM) Cranfield University Cranfield UK
– sequence: 2
  givenname: Shikun
  surname: Mu
  fullname: Mu, Shikun
  organization: Department of Computer Science University of Exeter Exeter UK
– sequence: 3
  givenname: Davide
  orcidid: 0000-0002-8409-0298
  surname: Astolfi
  fullname: Astolfi, Davide
  organization: Department of Information Engineering Università degli Studi di Brescia Brescia Italy
BookMark eNp9kMtOwzAQRS1UJNrChi_wGpQyfiROlqgqD6kSG1hHjuM8ILEj21VVseET-Ea-hIQilmxmRnfuvYuzQDNjjUboksCKAM9u3FDTlQAAeoLmRMQ0Ipzy2d9NkjO08P4VIM4gTebofWMaaVRrarxvTYkHu9cOV9ZpJX2YZDmqTvYDLnXQKrTW4J2fHp0dh2-sC18fn0G7Hve6t-6AjQ576978TzQ0Gvuxup4ipbUOy662rg1Nf45OK9l5ffG7l-jlbvO8foi2T_eP69ttpChNQqREQnScCs2KkmlRZjzNQCSCMVlwxjkBzRlNU8YKCsChqBQoInScAKiEErZE18fenRnkYS-7Lh9c20t3yAnkE7d84pb_cBvdV0e3ctZ7p6v_zN-faHNI
Cites_doi 10.3390/en13236449
10.3390/en15197233
10.1109/REPE48501.2019.9025143
10.1109/SGES51519.2020.00169
10.1260/030952409789685681
10.1109/IREC48820.2020.9310449
10.3390/en15218165
10.1016/j.renene.2021.02.123
10.1109/GreenTech.2013.30
10.1088/1742-6596/555/1/012040
10.1016/j.egyr.2021.08.137
10.1007/s10994-007-5040-8
10.1016/j.segan.2023.101071
10.1007/s40565-015-0138-7
10.1201/9781315139470
10.1109/UPEC.2018.8542057
10.1016/j.energy.2023.128075
10.3390/en16031166
10.1002/we.235
10.1049/iet-rpg.2019.0941
10.1002/we.2760
10.1016/j.renene.2023.03.131
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1049/rpg2.70002
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1752-1424
ExternalDocumentID 10.1049/rpg2.70002
10_1049_rpg2_70002
GroupedDBID .DC
0R~
1OC
24P
29I
4.4
5GY
6IK
7XC
8FE
8FG
8FH
AAHJG
AAJGR
AAMMB
AAYXX
ABJCF
ABMDY
ABQXS
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
AEFGJ
AENEX
AEUYN
AFFHD
AFKRA
AFRAH
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ATCPS
AVUZU
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IDLOA
IEP
IPLJI
ITC
L6V
LAI
M43
M7S
MCNEO
O9-
OK1
P2P
P62
PATMY
PHGZM
PHGZT
PQGLB
PTHSS
PYCSY
RNS
ROL
RUI
S0W
WIN
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c226t-c761e587e3bd3e7d9489076733ab434410e4328833b20040bfc0c17e5600c6213
IEDL.DBID UNPAY
ISSN 1752-1416
1752-1424
IngestDate Sun Sep 07 11:05:57 EDT 2025
Wed Oct 29 21:31:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c226t-c761e587e3bd3e7d9489076733ab434410e4328833b20040bfc0c17e5600c6213
ORCID 0000-0002-8409-0298
0000-0001-6850-7922
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1049/rpg2.70002
ParticipantIDs unpaywall_primary_10_1049_rpg2_70002
crossref_primary_10_1049_rpg2_70002
PublicationCentury 2000
PublicationDate 2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-00
PublicationDecade 2020
PublicationTitle IET renewable power generation
PublicationYear 2025
References e_1_2_13_25_1
e_1_2_13_24_1
e_1_2_13_27_1
e_1_2_13_26_1
e_1_2_13_21_1
e_1_2_13_20_1
e_1_2_13_23_1
e_1_2_13_22_1
e_1_2_13_9_1
e_1_2_13_8_1
e_1_2_13_7_1
e_1_2_13_6_1
e_1_2_13_17_1
e_1_2_13_18_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_14_1
e_1_2_13_15_1
e_1_2_13_16_1
e_1_2_13_10_1
e_1_2_13_11_1
e_1_2_13_5_1
e_1_2_13_4_1
e_1_2_13_3_1
e_1_2_13_2_1
Ouyang T. (e_1_2_13_12_1) 2017; 37
e_1_2_13_29_1
e_1_2_13_28_1
References_xml – ident: e_1_2_13_23_1
  doi: 10.3390/en13236449
– ident: e_1_2_13_9_1
  doi: 10.3390/en15197233
– ident: e_1_2_13_2_1
– ident: e_1_2_13_10_1
  doi: 10.1109/REPE48501.2019.9025143
– ident: e_1_2_13_19_1
– ident: e_1_2_13_11_1
  doi: 10.1109/SGES51519.2020.00169
– ident: e_1_2_13_4_1
– ident: e_1_2_13_18_1
  doi: 10.1260/030952409789685681
– ident: e_1_2_13_22_1
  doi: 10.1109/IREC48820.2020.9310449
– ident: e_1_2_13_28_1
  doi: 10.3390/en15218165
– ident: e_1_2_13_16_1
  doi: 10.1016/j.renene.2021.02.123
– ident: e_1_2_13_20_1
– ident: e_1_2_13_17_1
  doi: 10.1109/GreenTech.2013.30
– ident: e_1_2_13_13_1
  doi: 10.1088/1742-6596/555/1/012040
– ident: e_1_2_13_5_1
  doi: 10.1016/j.egyr.2021.08.137
– ident: e_1_2_13_27_1
  doi: 10.1007/s10994-007-5040-8
– ident: e_1_2_13_29_1
  doi: 10.1016/j.segan.2023.101071
– ident: e_1_2_13_26_1
  doi: 10.1007/s40565-015-0138-7
– ident: e_1_2_13_25_1
  doi: 10.1201/9781315139470
– ident: e_1_2_13_24_1
  doi: 10.1109/UPEC.2018.8542057
– ident: e_1_2_13_6_1
  doi: 10.1016/j.energy.2023.128075
– ident: e_1_2_13_15_1
  doi: 10.3390/en16031166
– ident: e_1_2_13_21_1
  doi: 10.1002/we.235
– ident: e_1_2_13_8_1
  doi: 10.1049/iet-rpg.2019.0941
– volume: 37
  start-page: 572
  issue: 2
  year: 2017
  ident: e_1_2_13_12_1
  article-title: Wind power ramps prediction method based on amendment of similar events
  publication-title: Proc. CSEE
– ident: e_1_2_13_3_1
– ident: e_1_2_13_7_1
  doi: 10.1002/we.2760
– ident: e_1_2_13_14_1
  doi: 10.1016/j.renene.2023.03.131
SSID ssj0059086
Score 2.3885312
Snippet Accurate prediction of short‐term wind power ramps is essential for effective smart grid management. This study introduces the swinging door algorithm for ramp...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
Title Enhancing wind power forecasting and ramp detection using long short‐term memory networks and the swinging door algorithm
URI https://doi.org/10.1049/rpg2.70002
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1752-1424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059086
  issn: 1752-1424
  databaseCode: IDLOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1752-1424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059086
  issn: 1752-1424
  databaseCode: AVUZU
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1752-1424
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059086
  issn: 1752-1424
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QDsaD30aMkka5Dre1a7cjIRBiIuEgCZ6WtitghG0ZIwS9-BP8jf4S2zIMeDBelmV5mzR9u_V516fPA0CdSIQJk8KiLlcFSmBLixOfWzaPmC98EQjzv-OxR7oD_DD0hiVwuzkLs7N_j4P7LB27DWobvcgK8RTeLoPKoNdvPpuTjp5rOdj4mxb3Lt5okO403ll19hdxylZLNp1uLSWdI9DadGLNIHltLHLeEG-_9Bn_7uUxOCyQJGyuU38CSjI-BQdb-oJn4L0dT7SeRjyGS1V7w1RbokEFU6Vgc813hkw9zdgshZHMDSkrhpoJP4bTRF3mEwXOvz4-9ecbzjQndwXjNW98bpoq9AjnS-15pKKjJMkgm46T7CWfzM7BoNN-anWtwm3BEgqC5ZagxJGeTyXiEZI0CrCvCmdCEWIcI4WabImR8Sbm-s2y-UjYwqFSQyZBXAddgHKcxPISQOb6nCARcSpGCqC4jOJIFUZMjAhznJFXBXebbITpWlQjNJvhOAj1UIZmKKug_pOoP8Ku_hd2Dcp5tpA3CkLkvAb2XNyvFTPpGzOIyCE
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5jO4gHv8WJStBdO9smTdrjGBtDcHhwME8lSbNN3NrSdozpxZ_gb_SXmGSrbB6Gl1LKGwh50-Z5myfPA0CDSIQJk8KiLlcFSmBLixOfWzaPmC98EQjzv-OxT3oD_DD0hhVwW56F2dq_x8F9lo7dJrWNXmSNeApvV0Ft0H9qvZiTjp5rOdj4m67vXVxqkG413lp19uZxypYLNp1uLCXdQ9AuO7FikLw15wVvivc_-oy7e3kEDtZIErZWqT8GFRmfgP0NfcFT8NGJJ1pPIx7Dhaq9Yaot0aCCqVKwXPOdIVNPMzZLYSQLQ8qKoWbCj-E0UZd8osD59-eX_nzDmebkLmG84o3npqlCjzBfaM8jFR0lSQbZdJxkr8VkdgYG3c5zu2et3RYsoSBYYQlKHOn5VCIeIUmjAPuqcCYUIcYxUqjJlhgZb2Ku3yybj4QtHCo1ZBLEddA5qMZJLC8AZK7PCRIRp2KkAIrLKI5UYcTEiDDHGXl1cFdmI0xXohqh2QzHQaiHMjRDWQeN30TtCLv8X9gVqBbZXF4rCFHwm_Uc-gGI28dK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+wind+power+forecasting+and+ramp+detection+using+long+short%E2%80%90term+memory+networks+and+the+swinging+door+algorithm&rft.jtitle=IET+renewable+power+generation&rft.au=Pandit%2C+Ravi&rft.au=Mu%2C+Shikun&rft.au=Astolfi%2C+Davide&rft.date=2025-01-01&rft.issn=1752-1416&rft.eissn=1752-1424&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1049%2Frpg2.70002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_rpg2_70002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-1416&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-1416&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-1416&client=summon