Community detection in multiplex networks by deep structure-preserving non-negative matrix factorization
Multiplex networks convey more valuable information than single-layer networks; thus, performing the community detection task involving these networks has become a subject of extensive research on the exploration of latent community structures. The non-negative matrix factorization (NMF) algorithm h...
Saved in:
| Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 55; no. 1; p. 26 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Boston
Springer Nature B.V
01.01.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-669X 1573-7497 |
| DOI | 10.1007/s10489-024-05870-8 |
Cover
| Abstract | Multiplex networks convey more valuable information than single-layer networks; thus, performing the community detection task involving these networks has become a subject of extensive research on the exploration of latent community structures. The non-negative matrix factorization (NMF) algorithm has proven successful in community detection scenarios by offering good interpretations of community structures. However, directly obtaining consensus community assignments using the traditional NMF algorithm poses a challenge due to the presence of complex structures spanning across different layers in the multiplex network. In this paper, we propose a novel algorithm called Deep Structure-Preserving Non-negative Matrix Factorization (DSP-NMF) to perform community detection in multiplex networks. Specifically, DSP-NMF constructs a deep autoencoder-like NMF model to generate meaningful network embeddings that are represented by multiple basis matrices and reconstructed by corresponding transposed basis matrices. By integrating the similarity relationships of nodes into the proposed DSP-NMF algorithm, the corresponding Laplacian matrices in each network layer are regularized to preserve the community structure during the learning process. Simultaneously, a consensus network embedding can be learned to obtain the final community partition. In this manner, the proposed DSP-NMF algorithm not only uncovers robust community structures in multiplex networks but also maintains the coherence between layers without losing complementary features. The experimental results obtained on five multiplex network datasets show that our proposed DSP-NMF algorithm outperforms other competitive methods in community detection tasks involving multiplex networks. |
|---|---|
| AbstractList | Multiplex networks convey more valuable information than single-layer networks; thus, performing the community detection task involving these networks has become a subject of extensive research on the exploration of latent community structures. The non-negative matrix factorization (NMF) algorithm has proven successful in community detection scenarios by offering good interpretations of community structures. However, directly obtaining consensus community assignments using the traditional NMF algorithm poses a challenge due to the presence of complex structures spanning across different layers in the multiplex network. In this paper, we propose a novel algorithm called Deep Structure-Preserving Non-negative Matrix Factorization (DSP-NMF) to perform community detection in multiplex networks. Specifically, DSP-NMF constructs a deep autoencoder-like NMF model to generate meaningful network embeddings that are represented by multiple basis matrices and reconstructed by corresponding transposed basis matrices. By integrating the similarity relationships of nodes into the proposed DSP-NMF algorithm, the corresponding Laplacian matrices in each network layer are regularized to preserve the community structure during the learning process. Simultaneously, a consensus network embedding can be learned to obtain the final community partition. In this manner, the proposed DSP-NMF algorithm not only uncovers robust community structures in multiplex networks but also maintains the coherence between layers without losing complementary features. The experimental results obtained on five multiplex network datasets show that our proposed DSP-NMF algorithm outperforms other competitive methods in community detection tasks involving multiplex networks. |
| ArticleNumber | 26 |
| Author | Zhou, Qinli Chen, Hao Zhu, Wenjie Peng, Bo |
| Author_xml | – sequence: 1 givenname: Qinli surname: Zhou fullname: Zhou, Qinli – sequence: 2 givenname: Wenjie surname: Zhu fullname: Zhu, Wenjie – sequence: 3 givenname: Hao surname: Chen fullname: Chen, Hao – sequence: 4 givenname: Bo surname: Peng fullname: Peng, Bo |
| BookMark | eNotkMtOwzAQRS0EEm3hB1hZYm0YP5rES1TxkiqxAYmd5cROcWnsYDul5etJKatZ3KN7R2eKTn3wFqErCjcUoLxNFEQlCTBBYF6VQKoTNKHzkpNSyPIUTUCOUVHI93M0TWkNAJwDnaCPRei6wbu8x8Zm22QXPHYed8Mmu35jd9jb_B3iZ8L1AbE9TjkOTR6iJX20ycat8ys8_kO8XensthZ3Oke3w61ucojuRx9KL9BZqzfJXv7fGXp7uH9dPJHly-Pz4m5JGsaKTLRhshDc8ALmjFdaQq2ZYFQKDS3nhWQ1aNZwsK2YM1MLo6WpdSOZYcZSw2fo-tjbx_A12JTVOgzRj5OKU85KyrioRoodqSaGlKJtVR9dp-NeUVAHo-poVI1G1Z9RVfFfdwNt2Q |
| Cites_doi | 10.1016/j.ins.2023.03.120 10.1007/s10618-017-0525-y 10.26599/BDMA.2019.9020020 10.1007/s10489-021-02946-7 10.1109/TNSE.2021.3130321 10.1109/BigComp.2018.00023 10.1016/j.micpath.2023.106115 10.1109/TKDE.2018.2832205 10.1109/TNSE.2019.2949036 10.1145/2464464.2464471 10.1103/PhysRevE.83.066114 10.1109/TNSE.2022.3210233 10.1109/TCSS.2020.3008860 10.1007/s10489-021-02266-w 10.1007/s10618-017-0528-8 10.1137/1.9781611972832.28 10.1109/TPAMI.2011.217 10.1016/j.ins.2023.119200 10.1145/3269206.3271697 10.1109/TNNLS.2020.3041360 10.1007/s10489-022-04403-5 10.1016/j.neunet.2022.06.021 10.1016/j.physa.2022.126887 10.1145/2566486.2567975 10.1016/j.patcog.2020.107676 10.1016/j.eswa.2020.113184 10.1007/s10489-022-04397-0 10.1007/s10489-021-02999-8 10.1016/j.eswa.2022.117452 10.1016/j.ins.2022.11.125 10.1007/s10489-021-02779-4 10.1016/j.ins.2021.08.031 10.1007/s10489-021-02250-4 10.1007/s10489-022-03381-y 10.1016/j.patcog.2022.108815 10.1016/j.physa.2022.126881 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10489-024-05870-8 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| ExternalDocumentID | 10_1007_s10489_024_05870_8 |
| GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77I 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PSYQQ PT4 PT5 PTHSS PUEGO Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZY4 ~A9 ~EX 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c226t-ad29643d3605238a90ba242194a0f33692b0a2c30ef452db4da9dbac92d2de1d3 |
| ISSN | 0924-669X |
| IngestDate | Fri Jul 25 12:11:03 EDT 2025 Wed Oct 01 04:10:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c226t-ad29643d3605238a90ba242194a0f33692b0a2c30ef452db4da9dbac92d2de1d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3132712348 |
| PQPubID | 326365 |
| ParticipantIDs | proquest_journals_3132712348 crossref_primary_10_1007_s10489_024_05870_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationYear | 2025 |
| Publisher | Springer Nature B.V |
| Publisher_xml | – name: Springer Nature B.V |
| References | G Baltsou (5870_CR6) 2022; 52 5870_CR9 G Salha-Galvan (5870_CR17) 2022; 153 5870_CR7 5870_CR4 5870_CR5 X-L Xu (5870_CR11) 2022; 52 X Luo (5870_CR27) 2021; 33 A Reihanian (5870_CR8) 2023; 622 5870_CR37 5870_CR16 K Berahmand (5870_CR28) 2022; 10 H Liu (5870_CR36) 2011; 34 5870_CR38 A Amini (5870_CR21) 2022; 1 X Ma (5870_CR29) 2018; 31 5870_CR35 5870_CR14 5870_CR33 A Dey (5870_CR2) 2023; 634 J Hao (5870_CR12) 2023; 53 5870_CR31 5870_CR32 D Kamuhanda (5870_CR30) 2020; 7 5870_CR39 J-P Attal (5870_CR15) 2021; 51 5870_CR18 L Huang (5870_CR24) 2019; 33 K Guo (5870_CR10) 2022; 52 S Kumar (5870_CR1) 2021; 51 J Zhu (5870_CR19) 2021; 9 Y Huang (5870_CR22) 2020; 7 Y Yue (5870_CR13) 2023; 53 5870_CR26 A Tagarelli (5870_CR20) 2017; 31 R Interdonato (5870_CR23) 2017; 31 5870_CR25 Z Guo (5870_CR34) 2020; 3 O Doluca (5870_CR3) 2021; 579 |
| References_xml | – volume: 1 start-page: 1 issue: 1 year: 2022 ident: 5870_CR21 publication-title: Bayesian Anal – volume: 634 start-page: 578 year: 2023 ident: 5870_CR2 publication-title: Inf Sci doi: 10.1016/j.ins.2023.03.120 – volume: 31 start-page: 1444 year: 2017 ident: 5870_CR23 publication-title: Data Mining and Knowl Disc doi: 10.1007/s10618-017-0525-y – volume: 3 start-page: 13 issue: 1 year: 2020 ident: 5870_CR34 publication-title: Big Data Mining and Anal doi: 10.26599/BDMA.2019.9020020 – volume: 52 start-page: 9599 year: 2022 ident: 5870_CR6 publication-title: Applied Intell doi: 10.1007/s10489-021-02946-7 – volume: 9 start-page: 689 issue: 2 year: 2021 ident: 5870_CR19 publication-title: IEEE Trans Netw Sci Eng doi: 10.1109/TNSE.2021.3130321 – ident: 5870_CR31 doi: 10.1109/BigComp.2018.00023 – ident: 5870_CR4 doi: 10.1016/j.micpath.2023.106115 – volume: 31 start-page: 273 issue: 2 year: 2018 ident: 5870_CR29 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2832205 – volume: 7 start-page: 1697 issue: 3 year: 2020 ident: 5870_CR22 publication-title: IEEE Trans Netw Sci Eng doi: 10.1109/TNSE.2019.2949036 – ident: 5870_CR37 doi: 10.1145/2464464.2464471 – ident: 5870_CR25 doi: 10.1103/PhysRevE.83.066114 – volume: 10 start-page: 372 issue: 1 year: 2022 ident: 5870_CR28 publication-title: IEEE Trans Netw Sci Eng doi: 10.1109/TNSE.2022.3210233 – volume: 7 start-page: 1220 issue: 5 year: 2020 ident: 5870_CR30 publication-title: IEEE Trans Comput Social Syst doi: 10.1109/TCSS.2020.3008860 – volume: 51 start-page: 7647 year: 2021 ident: 5870_CR1 publication-title: Applied Intell doi: 10.1007/s10489-021-02266-w – volume: 31 start-page: 1506 year: 2017 ident: 5870_CR20 publication-title: Data Mining and Knowl Disc doi: 10.1007/s10618-017-0528-8 – ident: 5870_CR32 doi: 10.1137/1.9781611972832.28 – ident: 5870_CR33 – volume: 34 start-page: 1299 issue: 7 year: 2011 ident: 5870_CR36 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2011.217 – ident: 5870_CR18 doi: 10.1016/j.ins.2023.119200 – ident: 5870_CR26 doi: 10.1145/3269206.3271697 – volume: 33 start-page: 1203 issue: 3 year: 2021 ident: 5870_CR27 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.3041360 – ident: 5870_CR5 doi: 10.1007/s10489-022-04403-5 – volume: 153 start-page: 474 year: 2022 ident: 5870_CR17 publication-title: Neural Netw doi: 10.1016/j.neunet.2022.06.021 – ident: 5870_CR7 doi: 10.1016/j.physa.2022.126887 – ident: 5870_CR38 doi: 10.1145/2566486.2567975 – ident: 5870_CR39 doi: 10.1016/j.patcog.2020.107676 – ident: 5870_CR9 doi: 10.1016/j.eswa.2020.113184 – volume: 53 start-page: 17935 year: 2023 ident: 5870_CR13 publication-title: Applied Intell doi: 10.1007/s10489-022-04397-0 – volume: 33 start-page: 9945 issue: 01 year: 2019 ident: 5870_CR24 publication-title: Proceed AAAI Conf Art Intell – volume: 52 start-page: 9919 year: 2022 ident: 5870_CR10 publication-title: Applied Intell doi: 10.1007/s10489-021-02999-8 – ident: 5870_CR16 doi: 10.1016/j.eswa.2022.117452 – volume: 622 start-page: 903 year: 2023 ident: 5870_CR8 publication-title: Inf Sci doi: 10.1016/j.ins.2022.11.125 – volume: 52 start-page: 8073 year: 2022 ident: 5870_CR11 publication-title: Applied Intell doi: 10.1007/s10489-021-02779-4 – volume: 579 start-page: 574 year: 2021 ident: 5870_CR3 publication-title: Inf Sci doi: 10.1016/j.ins.2021.08.031 – volume: 51 start-page: 8067 year: 2021 ident: 5870_CR15 publication-title: Applied Intell doi: 10.1007/s10489-021-02250-4 – volume: 53 start-page: 1336 year: 2023 ident: 5870_CR12 publication-title: Applied Intell doi: 10.1007/s10489-022-03381-y – ident: 5870_CR35 doi: 10.1016/j.patcog.2022.108815 – ident: 5870_CR14 doi: 10.1016/j.physa.2022.126881 |
| SSID | ssj0003301 |
| Score | 2.3757505 |
| Snippet | Multiplex networks convey more valuable information than single-layer networks; thus, performing the community detection task involving these networks has... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 26 |
| SubjectTerms | Algorithms Factorization Machine learning Multiplexing Networks |
| Title | Community detection in multiplex networks by deep structure-preserving non-negative matrix factorization |
| URI | https://www.proquest.com/docview/3132712348 |
| Volume | 55 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBauc-mlbfqgadOgQ29GZa3HPo5x2mAKCRQSGnpZpJU22ZKuTWNDyF_In-5oJe3KaQpNLssiL-O15vPMSJpvBqGPQoOPrPOUFJlJCNciI4rLnNRTLkWR10mmLcH56Didn_KvZ-JsNLqNspbWK_WpurmXV_IYrcIY6NWyZB-g2V4oDMA96BeuoGG4_peOPbsD4mhtVqYKeYshSfB60rok7ysbZGpjlhNXLnb92xCbAGvtRHs-aRctac25KwH-y9bsv_Z9eDxJM45gQ9jaxLU8IUz9DKtYsJ5upR_RiKOthh8Xi7X99FvTXjbDYDf23bQ_mx5kB54zMpeLwXY7qzRbxBsVVEQbFX7HkXKSpl3nXHA93t5mjGTcpegGg-zq9sbA-8vOJ4H3zG3GF8hNBBgekg9eLZzk33F2fQriUK7ZyihBRtnJKPMnaIuCi0jGaGv_cDY77h07Y1037f53eA6WZ2LeeZPNOGfTzXexy8kL9MwvOvC-Q9A2Gpn2JXoeGnpgb99foYseULgHFG5a3AMKB0BhZR8xS3wfoHAMKOwAhTcA9RqdHn45OZgT34qDVBCfr4jU9nieaZbaY4RcFomSNpmg4DKpGUsLqhJJK5aYmguqFdey0EpWBdVUm6lmb9AYvtu8RViYWk-p0pzxiqtpljNmLBdUgLvLBC120CRMXLl0FVfKfytrB-2GuS39P_OqtOVIMwjJeP7uQcLeo6cDcHfRGGbQfICYc6X2PBb-AI14gvI |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Community+detection+in+multiplex+networks+by+deep+structure-preserving+non-negative+matrix+factorization&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Zhou%2C+Qinli&rft.au=Zhu%2C+Wenjie&rft.au=Chen%2C+Hao&rft.au=Peng%2C+Bo&rft.date=2025-01-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=1&rft_id=info:doi/10.1007%2Fs10489-024-05870-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_024_05870_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |