Community detection in multiplex networks by deep structure-preserving non-negative matrix factorization

Multiplex networks convey more valuable information than single-layer networks; thus, performing the community detection task involving these networks has become a subject of extensive research on the exploration of latent community structures. The non-negative matrix factorization (NMF) algorithm h...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 55; no. 1; p. 26
Main Authors Zhou, Qinli, Zhu, Wenjie, Chen, Hao, Peng, Bo
Format Journal Article
LanguageEnglish
Published Boston Springer Nature B.V 01.01.2025
Subjects
Online AccessGet full text
ISSN0924-669X
1573-7497
DOI10.1007/s10489-024-05870-8

Cover

Abstract Multiplex networks convey more valuable information than single-layer networks; thus, performing the community detection task involving these networks has become a subject of extensive research on the exploration of latent community structures. The non-negative matrix factorization (NMF) algorithm has proven successful in community detection scenarios by offering good interpretations of community structures. However, directly obtaining consensus community assignments using the traditional NMF algorithm poses a challenge due to the presence of complex structures spanning across different layers in the multiplex network. In this paper, we propose a novel algorithm called Deep Structure-Preserving Non-negative Matrix Factorization (DSP-NMF) to perform community detection in multiplex networks. Specifically, DSP-NMF constructs a deep autoencoder-like NMF model to generate meaningful network embeddings that are represented by multiple basis matrices and reconstructed by corresponding transposed basis matrices. By integrating the similarity relationships of nodes into the proposed DSP-NMF algorithm, the corresponding Laplacian matrices in each network layer are regularized to preserve the community structure during the learning process. Simultaneously, a consensus network embedding can be learned to obtain the final community partition. In this manner, the proposed DSP-NMF algorithm not only uncovers robust community structures in multiplex networks but also maintains the coherence between layers without losing complementary features. The experimental results obtained on five multiplex network datasets show that our proposed DSP-NMF algorithm outperforms other competitive methods in community detection tasks involving multiplex networks.
AbstractList Multiplex networks convey more valuable information than single-layer networks; thus, performing the community detection task involving these networks has become a subject of extensive research on the exploration of latent community structures. The non-negative matrix factorization (NMF) algorithm has proven successful in community detection scenarios by offering good interpretations of community structures. However, directly obtaining consensus community assignments using the traditional NMF algorithm poses a challenge due to the presence of complex structures spanning across different layers in the multiplex network. In this paper, we propose a novel algorithm called Deep Structure-Preserving Non-negative Matrix Factorization (DSP-NMF) to perform community detection in multiplex networks. Specifically, DSP-NMF constructs a deep autoencoder-like NMF model to generate meaningful network embeddings that are represented by multiple basis matrices and reconstructed by corresponding transposed basis matrices. By integrating the similarity relationships of nodes into the proposed DSP-NMF algorithm, the corresponding Laplacian matrices in each network layer are regularized to preserve the community structure during the learning process. Simultaneously, a consensus network embedding can be learned to obtain the final community partition. In this manner, the proposed DSP-NMF algorithm not only uncovers robust community structures in multiplex networks but also maintains the coherence between layers without losing complementary features. The experimental results obtained on five multiplex network datasets show that our proposed DSP-NMF algorithm outperforms other competitive methods in community detection tasks involving multiplex networks.
ArticleNumber 26
Author Zhou, Qinli
Chen, Hao
Zhu, Wenjie
Peng, Bo
Author_xml – sequence: 1
  givenname: Qinli
  surname: Zhou
  fullname: Zhou, Qinli
– sequence: 2
  givenname: Wenjie
  surname: Zhu
  fullname: Zhu, Wenjie
– sequence: 3
  givenname: Hao
  surname: Chen
  fullname: Chen, Hao
– sequence: 4
  givenname: Bo
  surname: Peng
  fullname: Peng, Bo
BookMark eNotkMtOwzAQRS0EEm3hB1hZYm0YP5rES1TxkiqxAYmd5cROcWnsYDul5etJKatZ3KN7R2eKTn3wFqErCjcUoLxNFEQlCTBBYF6VQKoTNKHzkpNSyPIUTUCOUVHI93M0TWkNAJwDnaCPRei6wbu8x8Zm22QXPHYed8Mmu35jd9jb_B3iZ8L1AbE9TjkOTR6iJX20ycat8ys8_kO8XensthZ3Oke3w61ucojuRx9KL9BZqzfJXv7fGXp7uH9dPJHly-Pz4m5JGsaKTLRhshDc8ALmjFdaQq2ZYFQKDS3nhWQ1aNZwsK2YM1MLo6WpdSOZYcZSw2fo-tjbx_A12JTVOgzRj5OKU85KyrioRoodqSaGlKJtVR9dp-NeUVAHo-poVI1G1Z9RVfFfdwNt2Q
Cites_doi 10.1016/j.ins.2023.03.120
10.1007/s10618-017-0525-y
10.26599/BDMA.2019.9020020
10.1007/s10489-021-02946-7
10.1109/TNSE.2021.3130321
10.1109/BigComp.2018.00023
10.1016/j.micpath.2023.106115
10.1109/TKDE.2018.2832205
10.1109/TNSE.2019.2949036
10.1145/2464464.2464471
10.1103/PhysRevE.83.066114
10.1109/TNSE.2022.3210233
10.1109/TCSS.2020.3008860
10.1007/s10489-021-02266-w
10.1007/s10618-017-0528-8
10.1137/1.9781611972832.28
10.1109/TPAMI.2011.217
10.1016/j.ins.2023.119200
10.1145/3269206.3271697
10.1109/TNNLS.2020.3041360
10.1007/s10489-022-04403-5
10.1016/j.neunet.2022.06.021
10.1016/j.physa.2022.126887
10.1145/2566486.2567975
10.1016/j.patcog.2020.107676
10.1016/j.eswa.2020.113184
10.1007/s10489-022-04397-0
10.1007/s10489-021-02999-8
10.1016/j.eswa.2022.117452
10.1016/j.ins.2022.11.125
10.1007/s10489-021-02779-4
10.1016/j.ins.2021.08.031
10.1007/s10489-021-02250-4
10.1007/s10489-022-03381-y
10.1016/j.patcog.2022.108815
10.1016/j.physa.2022.126881
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10489-024-05870-8
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
ExternalDocumentID 10_1007_s10489_024_05870_8
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77I
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
PUEGO
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZY4
~A9
~EX
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c226t-ad29643d3605238a90ba242194a0f33692b0a2c30ef452db4da9dbac92d2de1d3
ISSN 0924-669X
IngestDate Fri Jul 25 12:11:03 EDT 2025
Wed Oct 01 04:10:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c226t-ad29643d3605238a90ba242194a0f33692b0a2c30ef452db4da9dbac92d2de1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3132712348
PQPubID 326365
ParticipantIDs proquest_journals_3132712348
crossref_primary_10_1007_s10489_024_05870_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-00
PublicationDecade 2020
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References G Baltsou (5870_CR6) 2022; 52
5870_CR9
G Salha-Galvan (5870_CR17) 2022; 153
5870_CR7
5870_CR4
5870_CR5
X-L Xu (5870_CR11) 2022; 52
X Luo (5870_CR27) 2021; 33
A Reihanian (5870_CR8) 2023; 622
5870_CR37
5870_CR16
K Berahmand (5870_CR28) 2022; 10
H Liu (5870_CR36) 2011; 34
5870_CR38
A Amini (5870_CR21) 2022; 1
X Ma (5870_CR29) 2018; 31
5870_CR35
5870_CR14
5870_CR33
A Dey (5870_CR2) 2023; 634
J Hao (5870_CR12) 2023; 53
5870_CR31
5870_CR32
D Kamuhanda (5870_CR30) 2020; 7
5870_CR39
J-P Attal (5870_CR15) 2021; 51
5870_CR18
L Huang (5870_CR24) 2019; 33
K Guo (5870_CR10) 2022; 52
S Kumar (5870_CR1) 2021; 51
J Zhu (5870_CR19) 2021; 9
Y Huang (5870_CR22) 2020; 7
Y Yue (5870_CR13) 2023; 53
5870_CR26
A Tagarelli (5870_CR20) 2017; 31
R Interdonato (5870_CR23) 2017; 31
5870_CR25
Z Guo (5870_CR34) 2020; 3
O Doluca (5870_CR3) 2021; 579
References_xml – volume: 1
  start-page: 1
  issue: 1
  year: 2022
  ident: 5870_CR21
  publication-title: Bayesian Anal
– volume: 634
  start-page: 578
  year: 2023
  ident: 5870_CR2
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2023.03.120
– volume: 31
  start-page: 1444
  year: 2017
  ident: 5870_CR23
  publication-title: Data Mining and Knowl Disc
  doi: 10.1007/s10618-017-0525-y
– volume: 3
  start-page: 13
  issue: 1
  year: 2020
  ident: 5870_CR34
  publication-title: Big Data Mining and Anal
  doi: 10.26599/BDMA.2019.9020020
– volume: 52
  start-page: 9599
  year: 2022
  ident: 5870_CR6
  publication-title: Applied Intell
  doi: 10.1007/s10489-021-02946-7
– volume: 9
  start-page: 689
  issue: 2
  year: 2021
  ident: 5870_CR19
  publication-title: IEEE Trans Netw Sci Eng
  doi: 10.1109/TNSE.2021.3130321
– ident: 5870_CR31
  doi: 10.1109/BigComp.2018.00023
– ident: 5870_CR4
  doi: 10.1016/j.micpath.2023.106115
– volume: 31
  start-page: 273
  issue: 2
  year: 2018
  ident: 5870_CR29
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2832205
– volume: 7
  start-page: 1697
  issue: 3
  year: 2020
  ident: 5870_CR22
  publication-title: IEEE Trans Netw Sci Eng
  doi: 10.1109/TNSE.2019.2949036
– ident: 5870_CR37
  doi: 10.1145/2464464.2464471
– ident: 5870_CR25
  doi: 10.1103/PhysRevE.83.066114
– volume: 10
  start-page: 372
  issue: 1
  year: 2022
  ident: 5870_CR28
  publication-title: IEEE Trans Netw Sci Eng
  doi: 10.1109/TNSE.2022.3210233
– volume: 7
  start-page: 1220
  issue: 5
  year: 2020
  ident: 5870_CR30
  publication-title: IEEE Trans Comput Social Syst
  doi: 10.1109/TCSS.2020.3008860
– volume: 51
  start-page: 7647
  year: 2021
  ident: 5870_CR1
  publication-title: Applied Intell
  doi: 10.1007/s10489-021-02266-w
– volume: 31
  start-page: 1506
  year: 2017
  ident: 5870_CR20
  publication-title: Data Mining and Knowl Disc
  doi: 10.1007/s10618-017-0528-8
– ident: 5870_CR32
  doi: 10.1137/1.9781611972832.28
– ident: 5870_CR33
– volume: 34
  start-page: 1299
  issue: 7
  year: 2011
  ident: 5870_CR36
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2011.217
– ident: 5870_CR18
  doi: 10.1016/j.ins.2023.119200
– ident: 5870_CR26
  doi: 10.1145/3269206.3271697
– volume: 33
  start-page: 1203
  issue: 3
  year: 2021
  ident: 5870_CR27
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.3041360
– ident: 5870_CR5
  doi: 10.1007/s10489-022-04403-5
– volume: 153
  start-page: 474
  year: 2022
  ident: 5870_CR17
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2022.06.021
– ident: 5870_CR7
  doi: 10.1016/j.physa.2022.126887
– ident: 5870_CR38
  doi: 10.1145/2566486.2567975
– ident: 5870_CR39
  doi: 10.1016/j.patcog.2020.107676
– ident: 5870_CR9
  doi: 10.1016/j.eswa.2020.113184
– volume: 53
  start-page: 17935
  year: 2023
  ident: 5870_CR13
  publication-title: Applied Intell
  doi: 10.1007/s10489-022-04397-0
– volume: 33
  start-page: 9945
  issue: 01
  year: 2019
  ident: 5870_CR24
  publication-title: Proceed AAAI Conf Art Intell
– volume: 52
  start-page: 9919
  year: 2022
  ident: 5870_CR10
  publication-title: Applied Intell
  doi: 10.1007/s10489-021-02999-8
– ident: 5870_CR16
  doi: 10.1016/j.eswa.2022.117452
– volume: 622
  start-page: 903
  year: 2023
  ident: 5870_CR8
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.11.125
– volume: 52
  start-page: 8073
  year: 2022
  ident: 5870_CR11
  publication-title: Applied Intell
  doi: 10.1007/s10489-021-02779-4
– volume: 579
  start-page: 574
  year: 2021
  ident: 5870_CR3
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2021.08.031
– volume: 51
  start-page: 8067
  year: 2021
  ident: 5870_CR15
  publication-title: Applied Intell
  doi: 10.1007/s10489-021-02250-4
– volume: 53
  start-page: 1336
  year: 2023
  ident: 5870_CR12
  publication-title: Applied Intell
  doi: 10.1007/s10489-022-03381-y
– ident: 5870_CR35
  doi: 10.1016/j.patcog.2022.108815
– ident: 5870_CR14
  doi: 10.1016/j.physa.2022.126881
SSID ssj0003301
Score 2.3757505
Snippet Multiplex networks convey more valuable information than single-layer networks; thus, performing the community detection task involving these networks has...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 26
SubjectTerms Algorithms
Factorization
Machine learning
Multiplexing
Networks
Title Community detection in multiplex networks by deep structure-preserving non-negative matrix factorization
URI https://www.proquest.com/docview/3132712348
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBauc-mlbfqgadOgQ29GZa3HPo5x2mAKCRQSGnpZpJU22ZKuTWNDyF_In-5oJe3KaQpNLssiL-O15vPMSJpvBqGPQoOPrPOUFJlJCNciI4rLnNRTLkWR10mmLcH56Didn_KvZ-JsNLqNspbWK_WpurmXV_IYrcIY6NWyZB-g2V4oDMA96BeuoGG4_peOPbsD4mhtVqYKeYshSfB60rok7ysbZGpjlhNXLnb92xCbAGvtRHs-aRctac25KwH-y9bsv_Z9eDxJM45gQ9jaxLU8IUz9DKtYsJ5upR_RiKOthh8Xi7X99FvTXjbDYDf23bQ_mx5kB54zMpeLwXY7qzRbxBsVVEQbFX7HkXKSpl3nXHA93t5mjGTcpegGg-zq9sbA-8vOJ4H3zG3GF8hNBBgekg9eLZzk33F2fQriUK7ZyihBRtnJKPMnaIuCi0jGaGv_cDY77h07Y1037f53eA6WZ2LeeZPNOGfTzXexy8kL9MwvOvC-Q9A2Gpn2JXoeGnpgb99foYseULgHFG5a3AMKB0BhZR8xS3wfoHAMKOwAhTcA9RqdHn45OZgT34qDVBCfr4jU9nieaZbaY4RcFomSNpmg4DKpGUsLqhJJK5aYmguqFdey0EpWBdVUm6lmb9AYvtu8RViYWk-p0pzxiqtpljNmLBdUgLvLBC120CRMXLl0FVfKfytrB-2GuS39P_OqtOVIMwjJeP7uQcLeo6cDcHfRGGbQfICYc6X2PBb-AI14gvI
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Community+detection+in+multiplex+networks+by+deep+structure-preserving+non-negative+matrix+factorization&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Zhou%2C+Qinli&rft.au=Zhu%2C+Wenjie&rft.au=Chen%2C+Hao&rft.au=Peng%2C+Bo&rft.date=2025-01-01&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=55&rft.issue=1&rft_id=info:doi/10.1007%2Fs10489-024-05870-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10489_024_05870_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon