Bayesian diagnostics in a partially linear model with first-order autoregressive skew-normal errors

This paper studies a Bayesian local influence method to detect influential observations in a partially linear model with first-order autoregressive skew-normal errors. This method appears suitable for small or moderate-sized data sets (n=200∼400) and overcomes some theoretical limitations, bridging...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics Vol. 40; no. 2; pp. 1021 - 1051
Main Authors Liu, Yonghui, Lu, Jiawei, Paula, Gilberto A., Liu, Shuangzhe
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.02.2025
Subjects
Online AccessGet full text
ISSN0943-4062
1613-9658
DOI10.1007/s00180-024-01504-2

Cover

Abstract This paper studies a Bayesian local influence method to detect influential observations in a partially linear model with first-order autoregressive skew-normal errors. This method appears suitable for small or moderate-sized data sets (n=200∼400) and overcomes some theoretical limitations, bridging the diagnostic gap for small or moderate-sized data in classical methods. The MCMC algorithm is employed for parameter estimation, and Bayesian local influence analysis is made using three perturbation schemes (priors, variances, and data) and three measurement scales (Bayes factor, ϕ-divergence, and posterior mean). Simulation studies are conducted to validate the reliability of the diagnostics. Finally, a practical application uses data on the 1976 Los Angeles ozone concentration to further demonstrate the effectiveness of the diagnostics.
AbstractList This paper studies a Bayesian local influence method to detect influential observations in a partially linear model with first-order autoregressive skew-normal errors. This method appears suitable for small or moderate-sized data sets (n=200∼400) and overcomes some theoretical limitations, bridging the diagnostic gap for small or moderate-sized data in classical methods. The MCMC algorithm is employed for parameter estimation, and Bayesian local influence analysis is made using three perturbation schemes (priors, variances, and data) and three measurement scales (Bayes factor, ϕ-divergence, and posterior mean). Simulation studies are conducted to validate the reliability of the diagnostics. Finally, a practical application uses data on the 1976 Los Angeles ozone concentration to further demonstrate the effectiveness of the diagnostics.
Author Liu, Shuangzhe
Paula, Gilberto A.
Lu, Jiawei
Liu, Yonghui
Author_xml – sequence: 1
  givenname: Yonghui
  surname: Liu
  fullname: Liu, Yonghui
– sequence: 2
  givenname: Jiawei
  surname: Lu
  fullname: Lu, Jiawei
– sequence: 3
  givenname: Gilberto A.
  surname: Paula
  fullname: Paula, Gilberto A.
– sequence: 4
  givenname: Shuangzhe
  orcidid: 0000-0002-4858-2789
  surname: Liu
  fullname: Liu, Shuangzhe
BookMark eNotkLtOAzEURC0UJMLjB6gsURuuH2tnS4h4SUg0UFuO7Q0OGztcb4jy9yyEapqjmdE5JZNcciTkksM1BzA3FYDPgIFQDHgDiokjMuWaS9bqZjYhU2iVZAq0OCGnta4AhDCCT4m_c_tYk8s0JLfMpQ7JV5oydXTjcEiu7_e0Tzk6pOsSYk93afigXcI6sIIhInXboWBcYqw1fUdaP-OO5YJr19OIWLCek-PO9TVe_OcZeX-4f5s_sZfXx-f57QvzQuiBuVYar7wJvhNq0YRuvCubznDnZNsYaFSQDTjT8SAWLkjtVdRmJkzgjfetlmfk6tC7wfK1jXWwq7LFPE5aybUZUanUSIkD5bHUirGzG0xrh3vLwf7KtAeZdpRp_2RaIX8A0qBqpg
Cites_doi 10.2307/3316064
10.1111/j.2517-6161.1986.tb01398.x
10.1002/asmb.887
10.1111/1467-9868.00279
10.18637/jss.v012.i03
10.1093/biomet/asr009
10.1007/BF02926104
10.1017/CBO9780511755453
10.1002/0471725315
10.1080/02664763.2023.2198178
10.1111/j.1751-5823.1998.tb00376.x
10.1111/stan.12102
10.1198/016214504000000656
10.1007/s00362-022-01300-4
10.1016/j.jmva.2021.104849
10.1007/978-0-387-71385-4
10.2307/2532783
10.18637/jss.v014.i14
10.3390/math10081306
10.1080/02664763.2016.1267124
10.1201/b16018
10.1080/00949655.2023.2205647
10.1007/s00180-021-01130-2
10.1007/s00180-021-01106-2
10.1016/j.jmva.2013.12.005
10.1016/S0167-9473(02)00303-1
10.3390/math8050693
10.1007/s00362-017-0880-1
10.1080/03610918.2022.2157015
10.1111/1467-9868.00162
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: Copyright Springer Nature B.V. Feb 2025
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s00180-024-01504-2
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1613-9658
EndPage 1051
ExternalDocumentID 10_1007_s00180_024_01504_2
GroupedDBID .86
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7WY
8C1
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BENPR
BEZIV
BGNMA
BPHCQ
BSONS
CITATION
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
KDC
KOV
L6V
LAS
LLZTM
M0C
M2O
M2P
M4Y
MA-
MK~
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P62
P9R
PF0
PQBIZ
PQQKQ
PROAC
PT4
PUEGO
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
7SC
7TB
8FD
ALIPV
FR3
JQ2
KR7
L7M
L~C
L~D
S1Z
ID FETCH-LOGICAL-c226t-a937c4c7dcf24b5df40635f71aa3957054d350a7f1d2bad36c4e67827d15cc963
ISSN 0943-4062
IngestDate Fri Jul 25 19:04:15 EDT 2025
Wed Oct 01 05:00:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c226t-a937c4c7dcf24b5df40635f71aa3957054d350a7f1d2bad36c4e67827d15cc963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4858-2789
PQID 3167782344
PQPubID 54096
PageCount 31
ParticipantIDs proquest_journals_3167782344
crossref_primary_10_1007_s00180_024_01504_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Computational statistics
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References S Liu (1504_CR17) 2000; 41
RD Cook (1504_CR4) 1986; 48
HX Hao (1504_CR14) 2019; 4
YH Liu (1504_CR20) 2020; 8
H Zhu (1504_CR36) 2001; 63
A Azzalini (1504_CR2) 1985; 12
C Crainiceanu (1504_CR5) 2005; 14
YH Liu (1504_CR22) 2024; 51
XW Dai (1504_CR6) 2019; 60
J Marriott (1504_CR25) 1998; 66
YH Liu (1504_CR23) 2023; 93
YY Ju (1504_CR15) 2022; 10
G Ferreira (1504_CR11) 2013; 8
N Tang (1504_CR33) 2014; 126
J Albert (1504_CR1) 2007
YH Liu (1504_CR24) 2022
SY Lee (1504_CR16) 2004; 45
RA Oliveira (1504_CR26) 2021; 36
H Zhu (1504_CR35) 2011; 98
S Sturtz (1504_CR32) 2005; 12
GA Paula (1504_CR27) 2012; 28
S Zeger (1504_CR34) 1994; 50
F Dominici (1504_CR7) 2004; 9
D Ruppert (1504_CR29) 2003
CS Ferreira (1504_CR10) 2022; 37
YH Liu (1504_CR21) 2017; 71
CS Ferreira (1504_CR8) 2022; 36
MP Galea (1504_CR12) 1997; 46
WY Poon (1504_CR28) 1999; 61
GAF Seber (1504_CR31) 1989
1504_CR13
SK Sahu (1504_CR30) 2003; 31
CA Cardozo (1504_CR3) 2022; 63
S Liu (1504_CR19) 2022; 188
S Liu (1504_CR18) 2004; 41A
CS Ferreira (1504_CR9) 2017; 44
References_xml – volume: 31
  start-page: 129
  year: 2003
  ident: 1504_CR30
  publication-title: Canadian Journal of Statistics
  doi: 10.2307/3316064
– volume: 48
  start-page: 133
  year: 1986
  ident: 1504_CR4
  publication-title: Journal of the Royal Statistical Society B
  doi: 10.1111/j.2517-6161.1986.tb01398.x
– volume: 8
  start-page: 1976
  year: 2013
  ident: 1504_CR11
  publication-title: Journal of Applied Statistics
– volume: 28
  start-page: 16
  issue: 1
  year: 2012
  ident: 1504_CR27
  publication-title: Applied Stochastic Models in Business & Industry
  doi: 10.1002/asmb.887
– volume: 63
  start-page: 111
  issue: 1
  year: 2001
  ident: 1504_CR36
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/1467-9868.00279
– volume: 12
  start-page: 1
  issue: 3
  year: 2005
  ident: 1504_CR32
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v012.i03
– volume: 46
  start-page: 71
  year: 1997
  ident: 1504_CR12
  publication-title: Journal of the Royal Statistical Society: Series D (The Statistician)
– volume: 98
  start-page: 307
  issue: 2
  year: 2011
  ident: 1504_CR35
  publication-title: Biometrika
  doi: 10.1093/biomet/asr009
– volume: 36
  start-page: 792
  issue: 4
  year: 2022
  ident: 1504_CR8
  publication-title: Brazilian Journal of Probability and Statistics
– volume: 41
  start-page: 211
  year: 2000
  ident: 1504_CR17
  publication-title: Statistical Papers
  doi: 10.1007/BF02926104
– volume-title: Semiparametric Regression
  year: 2003
  ident: 1504_CR29
  doi: 10.1017/CBO9780511755453
– volume: 41A
  start-page: 394
  year: 2004
  ident: 1504_CR18
  publication-title: Journal of Applied Probability
– volume-title: Nonlinear Regression
  year: 1989
  ident: 1504_CR31
  doi: 10.1002/0471725315
– volume: 51
  start-page: 1318
  issue: 7
  year: 2024
  ident: 1504_CR22
  publication-title: Journal of Applied Statistics
  doi: 10.1080/02664763.2023.2198178
– volume: 66
  start-page: 323
  issue: 3
  year: 1998
  ident: 1504_CR25
  publication-title: International Statistical Review
  doi: 10.1111/j.1751-5823.1998.tb00376.x
– volume: 71
  start-page: 86
  issue: 2
  year: 2017
  ident: 1504_CR21
  publication-title: Statistica Neerlandica
  doi: 10.1111/stan.12102
– volume: 9
  start-page: 938
  issue: 468
  year: 2004
  ident: 1504_CR7
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214504000000656
– volume: 63
  start-page: 1953
  issue: 6
  year: 2022
  ident: 1504_CR3
  publication-title: Statistical Papers
  doi: 10.1007/s00362-022-01300-4
– volume: 188
  year: 2022
  ident: 1504_CR19
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2021.104849
– volume-title: Bayesian Computation with R
  year: 2007
  ident: 1504_CR1
  doi: 10.1007/978-0-387-71385-4
– volume: 12
  start-page: 171
  year: 1985
  ident: 1504_CR2
  publication-title: Scandinavian Journal of Statistics
– volume: 50
  start-page: 689
  issue: 3
  year: 1994
  ident: 1504_CR34
  publication-title: Biometrics
  doi: 10.2307/2532783
– volume: 14
  start-page: 1
  issue: 14
  year: 2005
  ident: 1504_CR5
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v014.i14
– volume: 10
  start-page: 1306
  issue: 8
  year: 2022
  ident: 1504_CR15
  publication-title: Mathematics
  doi: 10.3390/math10081306
– volume: 44
  start-page: 3033
  issue: 16
  year: 2017
  ident: 1504_CR9
  publication-title: Journal of Applied Statistics
  doi: 10.1080/02664763.2016.1267124
– ident: 1504_CR13
  doi: 10.1201/b16018
– volume: 93
  start-page: 2751
  issue: 15
  year: 2023
  ident: 1504_CR23
  publication-title: Journal of Statistical Computation and Simulation
  doi: 10.1080/00949655.2023.2205647
– volume: 37
  start-page: 445
  year: 2022
  ident: 1504_CR10
  publication-title: Computational Statistics
  doi: 10.1007/s00180-021-01130-2
– volume: 36
  start-page: 2435
  issue: 4
  year: 2021
  ident: 1504_CR26
  publication-title: Computational Statistics
  doi: 10.1007/s00180-021-01106-2
– volume: 126
  start-page: 86
  year: 2014
  ident: 1504_CR33
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2013.12.005
– volume: 45
  start-page: 321
  year: 2004
  ident: 1504_CR16
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/S0167-9473(02)00303-1
– volume: 8
  start-page: 693
  issue: 5
  year: 2020
  ident: 1504_CR20
  publication-title: Mathematics
  doi: 10.3390/math8050693
– volume: 60
  start-page: 1423
  issue: 5
  year: 2019
  ident: 1504_CR6
  publication-title: Statistical Papers
  doi: 10.1007/s00362-017-0880-1
– volume: 4
  start-page: 602
  year: 2019
  ident: 1504_CR14
  publication-title: Journal of Mathematical Statistics and Management
– year: 2022
  ident: 1504_CR24
  publication-title: Communication in Statistics -Simulation and Computation
  doi: 10.1080/03610918.2022.2157015
– volume: 61
  start-page: 51
  year: 1999
  ident: 1504_CR28
  publication-title: Journal of the Royal Statistical Society B
  doi: 10.1111/1467-9868.00162
SSID ssj0022721
Score 2.359941
Snippet This paper studies a Bayesian local influence method to detect influential observations in a partially linear model with first-order autoregressive skew-normal...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1021
SubjectTerms Algorithms
Bayesian analysis
Datasets
Errors
Methods
Normal distribution
Parameter estimation
Random variables
Skewness
Time series
Title Bayesian diagnostics in a partially linear model with first-order autoregressive skew-normal errors
URI https://www.proquest.com/docview/3167782344
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1613-9658
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: AFBBN
  dateStart: 19990301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1613-9658
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: AGYKE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1613-9658
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: U2A
  dateStart: 20040212
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBahe9kexn6ybt3Qw96MSizLkfOYlm2l0L2sgb55Z1luzIJTkpjS_vW7k2zV6TpY92KMCGfH9_n0Sb77jrHPhTLSKgWiNNVYKCVBFBOYCsgQLjabFsbVV5x9n5zM1elFejEa_RxkLbXb4tDcPlhX8j9exTH0K1XJPsKzwSgO4Dn6F4_oYTz-k4-P4Ma6IsjSJ8w5yeW6iSC6ol_DcnkTEY2Ete9443ddqxoZn3CamxGQhIF1a25KIdr8steiIRq7jOx6veo-9fRKBq4DRL97SKVIXuU5JPXUrYvoq-Zy0dZh1A2e1nBtwxjlIzrW-q0mjS3kv7PDe1Z-LFpoLm8XdrgvIdM-lflug1EluDrtYq314RXJgyC5mQeDt8_XoF5o2RitUXZMOlZddeSOUva9GSzkFQYNZmcjRxu5s5HjJP1EYtyn5h5zOQtLcqldZV64166syhVX_nEfu9Rld-Z2dOT8BXverSP4zIPiJRvZ5hV7dhZEeDevmenhwQfw4HXDgQd4cA8P7uDBCR58AA--Cw8-gAf38HjD5l-_nB-fiK6nhjBItLcCkI4aZTS-mlIVaVnhv07SSscA9MUWCXyZpGPQVVzKAspkYpRFPiN1GafGYLR-y_aaVWPfMV6CrRTSSVBUzZ2pDBKdVLHWGiZTiIt9FvWPK7_y0in53x20zw76J5p3r9gmJ5kGvHii1PtHGfvAnt5B8oDtbdet_YjkcVt8cv7_DTeDbhA
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+diagnostics+in+a+partially+linear+model+with+first-order+autoregressive+skew-normal+errors&rft.jtitle=Computational+statistics&rft.au=Liu%2C+Yonghui&rft.au=Lu%2C+Jiawei&rft.au=Paula%2C+Gilberto+A.&rft.au=Liu%2C+Shuangzhe&rft.date=2025-02-01&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007%2Fs00180-024-01504-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00180_024_01504_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon