Robust Hypergraph Regularized Deep Non-Negative Matrix Factorization for Multi-View Clustering
As the increasing heterogeneous data, mining valuable information from various views is in demand. Currently, deep matrix factorization (DMF) receives extensive attention because of its ability to discover latent hierarchical semantics of the data. However, the existing multi-view DMF methods have t...
        Saved in:
      
    
          | Published in | IEEE transactions on emerging topics in computational intelligence Vol. 9; no. 2; pp. 1817 - 1829 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        01.04.2025
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2471-285X 2471-285X  | 
| DOI | 10.1109/TETCI.2024.3451352 | 
Cover
| Abstract | As the increasing heterogeneous data, mining valuable information from various views is in demand. Currently, deep matrix factorization (DMF) receives extensive attention because of its ability to discover latent hierarchical semantics of the data. However, the existing multi-view DMF methods have the following shortcomings: (1). Most of multi-view DMF methods exploit Frobenius norm as the reconstruction error measure, which is easily affected by noises and outliers. (2). A <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>NN-based graph keeps the geometric structure of the representation similar to the raw data, which fails to consider the higher-order relationships between instances. To solve these issues, in this research, a novel robust multi-view hypergraph regularized deep non-negative matrix factorization is proposed. Concretely, <inline-formula><tex-math notation="LaTeX">l_{2, 1}</tex-math></inline-formula>-norm is adopted to measure the factorization error for enhancing the robustness. A hypergraph regularization is designed to discover the higher-order relationships between the instances. Additionally, a pair-wise consistency learning term is utilized to mine consistency information in multi-view data. An optimization algorithm based on iterative updating rules is developed for solving the proposed model, which makes the objective function value monotonically non-increase until convergence. Moreover, the convergence of the proposed optimization algorithm is validated theoretically and experimentally. Finally, abundant experiments are performed on six real world and two synthetic multi-view datasets to evaluate the performance of the proposed method and the comparison methods. | 
    
|---|---|
| AbstractList | As the increasing heterogeneous data, mining valuable information from various views is in demand. Currently, deep matrix factorization (DMF) receives extensive attention because of its ability to discover latent hierarchical semantics of the data. However, the existing multi-view DMF methods have the following shortcomings: (1). Most of multi-view DMF methods exploit Frobenius norm as the reconstruction error measure, which is easily affected by noises and outliers. (2). A [Formula Omitted]NN-based graph keeps the geometric structure of the representation similar to the raw data, which fails to consider the higher-order relationships between instances. To solve these issues, in this research, a novel robust multi-view hypergraph regularized deep non-negative matrix factorization is proposed. Concretely, [Formula Omitted]-norm is adopted to measure the factorization error for enhancing the robustness. A hypergraph regularization is designed to discover the higher-order relationships between the instances. Additionally, a pair-wise consistency learning term is utilized to mine consistency information in multi-view data. An optimization algorithm based on iterative updating rules is developed for solving the proposed model, which makes the objective function value monotonically non-increase until convergence. Moreover, the convergence of the proposed optimization algorithm is validated theoretically and experimentally. Finally, abundant experiments are performed on six real world and two synthetic multi-view datasets to evaluate the performance of the proposed method and the comparison methods. As the increasing heterogeneous data, mining valuable information from various views is in demand. Currently, deep matrix factorization (DMF) receives extensive attention because of its ability to discover latent hierarchical semantics of the data. However, the existing multi-view DMF methods have the following shortcomings: (1). Most of multi-view DMF methods exploit Frobenius norm as the reconstruction error measure, which is easily affected by noises and outliers. (2). A <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>NN-based graph keeps the geometric structure of the representation similar to the raw data, which fails to consider the higher-order relationships between instances. To solve these issues, in this research, a novel robust multi-view hypergraph regularized deep non-negative matrix factorization is proposed. Concretely, <inline-formula><tex-math notation="LaTeX">l_{2, 1}</tex-math></inline-formula>-norm is adopted to measure the factorization error for enhancing the robustness. A hypergraph regularization is designed to discover the higher-order relationships between the instances. Additionally, a pair-wise consistency learning term is utilized to mine consistency information in multi-view data. An optimization algorithm based on iterative updating rules is developed for solving the proposed model, which makes the objective function value monotonically non-increase until convergence. Moreover, the convergence of the proposed optimization algorithm is validated theoretically and experimentally. Finally, abundant experiments are performed on six real world and two synthetic multi-view datasets to evaluate the performance of the proposed method and the comparison methods.  | 
    
| Author | Dai, Xiangguang Li, Chenglu Wen, Shiping Che, Hangjun Ouyang, Deqiang Leung, Man-Fai  | 
    
| Author_xml | – sequence: 1 givenname: Hangjun orcidid: 0000-0002-8930-0039 surname: Che fullname: Che, Hangjun email: hjche123@swu.edu.cn organization: Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China – sequence: 2 givenname: Chenglu surname: Li fullname: Li, Chenglu email: chenglulcl@email.swu.edu.cn organization: Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China – sequence: 3 givenname: Man-Fai orcidid: 0000-0002-7753-0136 surname: Leung fullname: Leung, Man-Fai email: man-fai.leung@aru.ac.uk organization: School of Computing and Information Science, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, U.K – sequence: 4 givenname: Deqiang orcidid: 0000-0003-2259-886X surname: Ouyang fullname: Ouyang, Deqiang email: deqiangouyang@cqu.edu.cn organization: College of Computer Science, Chongqing University, Chongqing, China – sequence: 5 givenname: Xiangguang surname: Dai fullname: Dai, Xiangguang email: daixiangguang@163.com organization: School of Computer Science and Engineering, Chongqing Three Gorges University, Chongqing, China – sequence: 6 givenname: Shiping orcidid: 0000-0002-5048-0319 surname: Wen fullname: Wen, Shiping email: shiping.wen@uts.edu.au organization: University of Technology Sydney, Ultimo, NSW, Australia  | 
    
| BookMark | eNp9kE1PwkAQhjcGExH5A8bDJp6L-9VlezQoQgKYEDSebJZ2iktqt263Kv56y8eBePA0k8n7vDPznqNWYQtA6JKSHqUkulncLwbjHiNM9LgIKQ_ZCWoz0acBU-FL66g_Q92qWhNCWLTViTZ6ndtlXXk82pTgVk6Xb3gOqzrXzvxAiu8ASjyzRTCDlfbmE_BUe2e-8VAn3jaaZmgLnFmHp3XuTfBs4AsP8sYSnClWF-g003kF3UPtoKdhc-0omDw-jAe3kyBhTPqAc9GXWmohuZZCyj5N9ZIxvgxJmoYZo1FGpVQM0ogpQrOUKqJAES6SJYRS8Q663vuWzn7UUPl4bWtXNCtjThUVMmIsalRqr0qcrSoHWZwYv_vAO23ymJJ4G2i8CzTeBhofAm1Q9gctnXnXbvM_dLWHDAAcAVJGSvT5L7iAg1Y | 
    
| CODEN | ITETCU | 
    
| CitedBy_id | crossref_primary_10_1016_j_dsp_2025_105083 | 
    
| Cites_doi | 10.1016/j.knosys.2022.110145 10.1609/aaai.v34i04.6104 10.1109/TETCI.2022.3221491 10.1145/3474085.3475516 10.1109/ICIP.2015.7351455 10.1016/j.inffus.2019.09.005 10.1609/aaai.v31i1.10867 10.1016/j.knosys.2020.105582 10.1109/JBHI.2021.3110766 10.1016/j.neucom.2019.12.054 10.1137/1.9781611972832.28 10.1016/j.neucom.2018.05.072 10.1109/TETCI.2021.3077909 10.1016/j.patcog.2022.108984 10.1109/TKDE.2023.3238416 10.1109/TIP.2020.3045631 10.1016/j.patcog.2022.108815 10.1109/TPAMI.2016.2554555 10.1016/j.patcog.2019.107015 10.1109/TNNLS.2017.2777489 10.1145/2601434 10.1016/j.eswa.2021.114783 10.1145/3474085.3475548 10.1016/j.ins.2023.03.119 10.1016/j.asoc.2022.109806 10.1016/j.ins.2019.01.018 10.1109/TPAMI.2019.2962679 10.1109/TCYB.2020.3000799 10.1109/TCYB.2018.2842052 10.1016/j.knosys.2021.106807 10.1109/TIP.2020.3029883 10.1038/44565 10.1109/TKDE.2020.2983366 10.1109/TPAMI.2021.3132503 10.1109/TIP.2018.2877335 10.1109/TSMC.2018.2875452 10.1109/TPAMI.2008.277 10.1016/j.ins.2022.07.177 10.1109/JAS.2022.105980 10.1109/TETCI.2022.3201620 10.1109/TIP.2021.3131941 10.1109/TCYB.2017.2685521 10.1109/TCYB.2017.2747400 10.1016/j.neunet.2023.02.016 10.1109/TCBB.2020.3010509 10.1109/TNNLS.2023.3244021 10.1109/TPAMI.2020.3039374 10.1016/j.neucom.2021.08.113 10.1109/JAS.2021.1004308  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M  | 
    
| DOI | 10.1109/TETCI.2024.3451352 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL(IEEE/IET Electronic Library ) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEL(IEEE/IET Electronic Library ) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2471-285X | 
    
| EndPage | 1829 | 
    
| ExternalDocumentID | 10_1109_TETCI_2024_3451352 10669847  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62003281 funderid: 10.13039/501100001809 – fundername: Open Fund of Key Laboratory of Cyber-Physical Fusion Intelligent Computing – fundername: State Ethnic Affairs Commission grantid: CPFIC202303 – fundername: Natural Science Foundation of Chongqing, China grantid: cstc2021jcyj-msxmX1169 – fundername: Science and Technology Research Program of Chongqing Municipal Education Commission grantid: KJQN202200207  | 
    
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M  | 
    
| ID | FETCH-LOGICAL-c226t-33476a6a463a646671dab223b50dd5f219f16682ed92801fd1808e8034cbe5683 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2471-285X | 
    
| IngestDate | Mon Jun 30 12:03:48 EDT 2025 Wed Oct 01 06:38:53 EDT 2025 Thu Apr 24 22:55:43 EDT 2025 Wed Aug 27 02:03:23 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c226t-33476a6a463a646671dab223b50dd5f219f16682ed92801fd1808e8034cbe5683 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-2259-886X 0000-0002-5048-0319 0000-0002-8930-0039 0000-0002-7753-0136  | 
    
| PQID | 3181469229 | 
    
| PQPubID | 4437216 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | proquest_journals_3181469229 crossref_citationtrail_10_1109_TETCI_2024_3451352 crossref_primary_10_1109_TETCI_2024_3451352 ieee_primary_10669847  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-04-01 | 
    
| PublicationDateYYYYMMDD | 2025-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE transactions on emerging topics in computational intelligence | 
    
| PublicationTitleAbbrev | TETCI | 
    
| PublicationYear | 2025 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 Chen (ref30) 2022; 610 ref11 ref10 ref17 ref16 ref19 Kumar (ref43) 2011; 24 ref18 Huang (ref33) 2020; 97 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref8 ref7 ref9 ref4 Kong (ref34) 2011 ref3 ref6 ref5 ref40 ref35 ref37 ref36 ref31 ref32 ref2 ref1 ref39 ref38 ref24 ref23 Chang (ref28) 2021; 217 ref26 ref25 ref20 ref22 ref21 Liu (ref49) 2023; 260 ref27 ref29  | 
    
| References_xml | – volume: 260 year: 2023 ident: ref49 article-title: Auto-weighted collective matrix factorization with graph dual regularization for multi-view clustering publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.110145 – ident: ref32 doi: 10.1609/aaai.v34i04.6104 – ident: ref15 doi: 10.1109/TETCI.2022.3221491 – ident: ref44 doi: 10.1145/3474085.3475516 – ident: ref42 doi: 10.1109/ICIP.2015.7351455 – ident: ref16 doi: 10.1016/j.inffus.2019.09.005 – ident: ref19 doi: 10.1609/aaai.v31i1.10867 – ident: ref25 doi: 10.1016/j.knosys.2020.105582 – ident: ref4 doi: 10.1109/JBHI.2021.3110766 – ident: ref22 doi: 10.1016/j.neucom.2019.12.054 – ident: ref41 doi: 10.1137/1.9781611972832.28 – ident: ref36 doi: 10.1016/j.neucom.2018.05.072 – ident: ref3 doi: 10.1109/TETCI.2021.3077909 – ident: ref13 doi: 10.1016/j.patcog.2022.108984 – ident: ref14 doi: 10.1109/TKDE.2023.3238416 – ident: ref48 doi: 10.1109/TIP.2020.3045631 – ident: ref21 doi: 10.1016/j.patcog.2022.108815 – ident: ref11 doi: 10.1109/TPAMI.2016.2554555 – volume: 97 year: 2020 ident: ref33 article-title: Auto-weighted multi-view clustering via deep matrix decomposition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107015 – ident: ref46 doi: 10.1109/TNNLS.2017.2777489 – ident: ref35 doi: 10.1145/2601434 – volume: 24 start-page: 1413 volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst. year: 2011 ident: ref43 article-title: Co-regularized multi-view spectral clustering – ident: ref6 doi: 10.1016/j.eswa.2021.114783 – ident: ref29 doi: 10.1145/3474085.3475548 – start-page: 673 volume-title: Proc. 20th ACM Int. Conf. Inf. Knowl. Manage. year: 2011 ident: ref34 article-title: Robust nonnegative matrix factorization using L21-norm – ident: ref40 doi: 10.1016/j.ins.2023.03.119 – ident: ref20 doi: 10.1016/j.asoc.2022.109806 – ident: ref17 doi: 10.1016/j.ins.2019.01.018 – ident: ref12 doi: 10.1109/TPAMI.2019.2962679 – ident: ref38 doi: 10.1109/TCYB.2020.3000799 – ident: ref24 doi: 10.1109/TCYB.2018.2842052 – volume: 217 year: 2021 ident: ref28 article-title: Multi-view clustering via deep concept factorization publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106807 – ident: ref51 doi: 10.1109/TIP.2020.3029883 – ident: ref9 doi: 10.1038/44565 – ident: ref47 doi: 10.1109/TKDE.2020.2983366 – ident: ref2 doi: 10.1109/TPAMI.2021.3132503 – ident: ref50 doi: 10.1109/TIP.2018.2877335 – ident: ref37 doi: 10.1109/TSMC.2018.2875452 – ident: ref10 doi: 10.1109/TPAMI.2008.277 – volume: 610 start-page: 114 year: 2022 ident: ref30 article-title: Diversity embedding deep matrix factorization for multi-view clustering publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.07.177 – ident: ref31 doi: 10.1109/JAS.2022.105980 – ident: ref1 doi: 10.1109/TETCI.2022.3201620 – ident: ref45 doi: 10.1109/TIP.2021.3131941 – ident: ref8 doi: 10.1109/TCYB.2017.2685521 – ident: ref23 doi: 10.1109/TCYB.2017.2747400 – ident: ref7 doi: 10.1016/j.neunet.2023.02.016 – ident: ref18 doi: 10.1109/TCBB.2020.3010509 – ident: ref27 doi: 10.1109/TNNLS.2023.3244021 – ident: ref39 doi: 10.1109/TPAMI.2020.3039374 – ident: ref26 doi: 10.1016/j.neucom.2021.08.113 – ident: ref5 doi: 10.1109/JAS.2021.1004308  | 
    
| SSID | ssj0002951354 | 
    
| Score | 2.35723 | 
    
| Snippet | As the increasing heterogeneous data, mining valuable information from various views is in demand. Currently, deep matrix factorization (DMF) receives... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1817 | 
    
| SubjectTerms | Algorithms Clustering Consistency learning Convergence Data mining Error analysis Factorization Graph theory Graphs hypergraph regularization Manifolds Matrix decomposition Measurement uncertainty multi-view clustering Noise Optimization Optimization algorithms Regularization robust deep matrix factorization Robustness Semantics  | 
    
| Title | Robust Hypergraph Regularized Deep Non-Negative Matrix Factorization for Multi-View Clustering | 
    
| URI | https://ieeexplore.ieee.org/document/10669847 https://www.proquest.com/docview/3181469229  | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL(IEEE/IET Electronic Library ) customDbUrl: eissn: 2471-285X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002951354 issn: 2471-285X databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7akxcfqFhf5OBNUjfP3RxFLVWwh9JKTy67SVZEaUvdRfHXO8luiw8UbwubQJhJ5puZZL5B6ETS2JhIZASgRxKhpCY61pSwIjaSAcRnxuchb_uqNxI3YzluitVDLYxzLjw-cx3_Ge7y7dRUPlUGJ1wpDeZ0Fa3GiaqLtZYJFQa-ApdiURgT6bPh1fDiGkJAJjpc-J_sC_iEbio_THDAle4G6i9WVD8neepUZd4x79_IGv-95E203niY-LzeEltoxU220f1gmlcvJe5B2DkPJNV4ELrQzx_fncWXzs1wfzohffcQmMDxrafuf8Pd0I6nqdXE4ODiULFL7h7dK754rjzNAoDfDhp1QQw90rRWIAb8rZJwLmKVqUwonimhVExtloO6chlZKwswYwVVKmHOagYYVliaRIlLIi5M7qRK-C5qTaYTt4cw11ZzUCkcfSsoDKT-rjDPsyiLCkNpG9GFzFPT8I779hfPaYg_Ip0GPaVeT2mjpzY6Xc6Z1awbf47e8YL_NLKWeRsdLnSbNifzJQUbBuCgGdP7v0w7QGvMN_kNz3MOUaucV-4IPI8yPw477gMhzNP7 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELYGexgvsIkiOmDzw96QS_wz8SMCqrLRPFQt6hNRYjsIDbVVmwjEX8_ZSRHbxMRbpNiSdWffd3f2fYfQD0ljYyKRE4AeSYSSmuhYU8LK2EgGEJ8bn4ccpmowET-nctoWq4daGOdceHzmev4z3OXbual9qgxOuFIazOkG-iiFELIp13pJqTDwFrgU69KYSJ-ML8ZnlxAEMtHjwv9kf8BP6KfyjxEOyNLfQel6Tc2Dkt-9uip65ukvusZ3L_oz2m59THzabIov6IOb7aKb0byoVxUeQOC5DDTVeBT60C_vnpzF584tcDqfkdTdBi5wPPTk_Y-4HxrytNWaGFxcHGp2yfWde8Bn97UnWgD466BJH8QwIG1zBWLA46oI5yJWucqF4rkSSsXU5gUorJCRtbIEQ1ZSpRLmrGaAYqWlSZS4JOLCFE6qhO-hzdl85vYR5tpqDkqFw28FhYHU3xYWRR7lUWko7SK6lnlmWuZx3wDjPgsRSKSzoKfM6ylr9dRFxy9zFg3vxn9Hd7zgX41sZN5Fh2vdZu3ZXGVgxQAeNGP66xvTvqNPg_HwKru6TH8doC3mW_6GxzqHaLNa1u4I_JCq-BZ23zNkitdI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Hypergraph+Regularized+Deep+Non-Negative+Matrix+Factorization+for+Multi-View+Clustering&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Che%2C+Hangjun&rft.au=Li%2C+Chenglu&rft.au=Man-Fai+Leung&rft.au=Ouyang%2C+Deqiang&rft.date=2025-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2471-285X&rft.volume=9&rft.issue=2&rft.spage=1817&rft_id=info:doi/10.1109%2FTETCI.2024.3451352&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon |