Robust Hypergraph Regularized Deep Non-Negative Matrix Factorization for Multi-View Clustering

As the increasing heterogeneous data, mining valuable information from various views is in demand. Currently, deep matrix factorization (DMF) receives extensive attention because of its ability to discover latent hierarchical semantics of the data. However, the existing multi-view DMF methods have t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on emerging topics in computational intelligence Vol. 9; no. 2; pp. 1817 - 1829
Main Authors Che, Hangjun, Li, Chenglu, Leung, Man-Fai, Ouyang, Deqiang, Dai, Xiangguang, Wen, Shiping
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2471-285X
2471-285X
DOI10.1109/TETCI.2024.3451352

Cover

Abstract As the increasing heterogeneous data, mining valuable information from various views is in demand. Currently, deep matrix factorization (DMF) receives extensive attention because of its ability to discover latent hierarchical semantics of the data. However, the existing multi-view DMF methods have the following shortcomings: (1). Most of multi-view DMF methods exploit Frobenius norm as the reconstruction error measure, which is easily affected by noises and outliers. (2). A <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>NN-based graph keeps the geometric structure of the representation similar to the raw data, which fails to consider the higher-order relationships between instances. To solve these issues, in this research, a novel robust multi-view hypergraph regularized deep non-negative matrix factorization is proposed. Concretely, <inline-formula><tex-math notation="LaTeX">l_{2, 1}</tex-math></inline-formula>-norm is adopted to measure the factorization error for enhancing the robustness. A hypergraph regularization is designed to discover the higher-order relationships between the instances. Additionally, a pair-wise consistency learning term is utilized to mine consistency information in multi-view data. An optimization algorithm based on iterative updating rules is developed for solving the proposed model, which makes the objective function value monotonically non-increase until convergence. Moreover, the convergence of the proposed optimization algorithm is validated theoretically and experimentally. Finally, abundant experiments are performed on six real world and two synthetic multi-view datasets to evaluate the performance of the proposed method and the comparison methods.
AbstractList As the increasing heterogeneous data, mining valuable information from various views is in demand. Currently, deep matrix factorization (DMF) receives extensive attention because of its ability to discover latent hierarchical semantics of the data. However, the existing multi-view DMF methods have the following shortcomings: (1). Most of multi-view DMF methods exploit Frobenius norm as the reconstruction error measure, which is easily affected by noises and outliers. (2). A [Formula Omitted]NN-based graph keeps the geometric structure of the representation similar to the raw data, which fails to consider the higher-order relationships between instances. To solve these issues, in this research, a novel robust multi-view hypergraph regularized deep non-negative matrix factorization is proposed. Concretely, [Formula Omitted]-norm is adopted to measure the factorization error for enhancing the robustness. A hypergraph regularization is designed to discover the higher-order relationships between the instances. Additionally, a pair-wise consistency learning term is utilized to mine consistency information in multi-view data. An optimization algorithm based on iterative updating rules is developed for solving the proposed model, which makes the objective function value monotonically non-increase until convergence. Moreover, the convergence of the proposed optimization algorithm is validated theoretically and experimentally. Finally, abundant experiments are performed on six real world and two synthetic multi-view datasets to evaluate the performance of the proposed method and the comparison methods.
As the increasing heterogeneous data, mining valuable information from various views is in demand. Currently, deep matrix factorization (DMF) receives extensive attention because of its ability to discover latent hierarchical semantics of the data. However, the existing multi-view DMF methods have the following shortcomings: (1). Most of multi-view DMF methods exploit Frobenius norm as the reconstruction error measure, which is easily affected by noises and outliers. (2). A <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>NN-based graph keeps the geometric structure of the representation similar to the raw data, which fails to consider the higher-order relationships between instances. To solve these issues, in this research, a novel robust multi-view hypergraph regularized deep non-negative matrix factorization is proposed. Concretely, <inline-formula><tex-math notation="LaTeX">l_{2, 1}</tex-math></inline-formula>-norm is adopted to measure the factorization error for enhancing the robustness. A hypergraph regularization is designed to discover the higher-order relationships between the instances. Additionally, a pair-wise consistency learning term is utilized to mine consistency information in multi-view data. An optimization algorithm based on iterative updating rules is developed for solving the proposed model, which makes the objective function value monotonically non-increase until convergence. Moreover, the convergence of the proposed optimization algorithm is validated theoretically and experimentally. Finally, abundant experiments are performed on six real world and two synthetic multi-view datasets to evaluate the performance of the proposed method and the comparison methods.
Author Dai, Xiangguang
Li, Chenglu
Wen, Shiping
Che, Hangjun
Ouyang, Deqiang
Leung, Man-Fai
Author_xml – sequence: 1
  givenname: Hangjun
  orcidid: 0000-0002-8930-0039
  surname: Che
  fullname: Che, Hangjun
  email: hjche123@swu.edu.cn
  organization: Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China
– sequence: 2
  givenname: Chenglu
  surname: Li
  fullname: Li, Chenglu
  email: chenglulcl@email.swu.edu.cn
  organization: Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China
– sequence: 3
  givenname: Man-Fai
  orcidid: 0000-0002-7753-0136
  surname: Leung
  fullname: Leung, Man-Fai
  email: man-fai.leung@aru.ac.uk
  organization: School of Computing and Information Science, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, U.K
– sequence: 4
  givenname: Deqiang
  orcidid: 0000-0003-2259-886X
  surname: Ouyang
  fullname: Ouyang, Deqiang
  email: deqiangouyang@cqu.edu.cn
  organization: College of Computer Science, Chongqing University, Chongqing, China
– sequence: 5
  givenname: Xiangguang
  surname: Dai
  fullname: Dai, Xiangguang
  email: daixiangguang@163.com
  organization: School of Computer Science and Engineering, Chongqing Three Gorges University, Chongqing, China
– sequence: 6
  givenname: Shiping
  orcidid: 0000-0002-5048-0319
  surname: Wen
  fullname: Wen, Shiping
  email: shiping.wen@uts.edu.au
  organization: University of Technology Sydney, Ultimo, NSW, Australia
BookMark eNp9kE1PwkAQhjcGExH5A8bDJp6L-9VlezQoQgKYEDSebJZ2iktqt263Kv56y8eBePA0k8n7vDPznqNWYQtA6JKSHqUkulncLwbjHiNM9LgIKQ_ZCWoz0acBU-FL66g_Q92qWhNCWLTViTZ6ndtlXXk82pTgVk6Xb3gOqzrXzvxAiu8ASjyzRTCDlfbmE_BUe2e-8VAn3jaaZmgLnFmHp3XuTfBs4AsP8sYSnClWF-g003kF3UPtoKdhc-0omDw-jAe3kyBhTPqAc9GXWmohuZZCyj5N9ZIxvgxJmoYZo1FGpVQM0ogpQrOUKqJAES6SJYRS8Q663vuWzn7UUPl4bWtXNCtjThUVMmIsalRqr0qcrSoHWZwYv_vAO23ymJJ4G2i8CzTeBhofAm1Q9gctnXnXbvM_dLWHDAAcAVJGSvT5L7iAg1Y
CODEN ITETCU
CitedBy_id crossref_primary_10_1016_j_dsp_2025_105083
Cites_doi 10.1016/j.knosys.2022.110145
10.1609/aaai.v34i04.6104
10.1109/TETCI.2022.3221491
10.1145/3474085.3475516
10.1109/ICIP.2015.7351455
10.1016/j.inffus.2019.09.005
10.1609/aaai.v31i1.10867
10.1016/j.knosys.2020.105582
10.1109/JBHI.2021.3110766
10.1016/j.neucom.2019.12.054
10.1137/1.9781611972832.28
10.1016/j.neucom.2018.05.072
10.1109/TETCI.2021.3077909
10.1016/j.patcog.2022.108984
10.1109/TKDE.2023.3238416
10.1109/TIP.2020.3045631
10.1016/j.patcog.2022.108815
10.1109/TPAMI.2016.2554555
10.1016/j.patcog.2019.107015
10.1109/TNNLS.2017.2777489
10.1145/2601434
10.1016/j.eswa.2021.114783
10.1145/3474085.3475548
10.1016/j.ins.2023.03.119
10.1016/j.asoc.2022.109806
10.1016/j.ins.2019.01.018
10.1109/TPAMI.2019.2962679
10.1109/TCYB.2020.3000799
10.1109/TCYB.2018.2842052
10.1016/j.knosys.2021.106807
10.1109/TIP.2020.3029883
10.1038/44565
10.1109/TKDE.2020.2983366
10.1109/TPAMI.2021.3132503
10.1109/TIP.2018.2877335
10.1109/TSMC.2018.2875452
10.1109/TPAMI.2008.277
10.1016/j.ins.2022.07.177
10.1109/JAS.2022.105980
10.1109/TETCI.2022.3201620
10.1109/TIP.2021.3131941
10.1109/TCYB.2017.2685521
10.1109/TCYB.2017.2747400
10.1016/j.neunet.2023.02.016
10.1109/TCBB.2020.3010509
10.1109/TNNLS.2023.3244021
10.1109/TPAMI.2020.3039374
10.1016/j.neucom.2021.08.113
10.1109/JAS.2021.1004308
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TETCI.2024.3451352
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL(IEEE/IET Electronic Library )
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEL(IEEE/IET Electronic Library )
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2471-285X
EndPage 1829
ExternalDocumentID 10_1109_TETCI_2024_3451352
10669847
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62003281
  funderid: 10.13039/501100001809
– fundername: Open Fund of Key Laboratory of Cyber-Physical Fusion Intelligent Computing
– fundername: State Ethnic Affairs Commission
  grantid: CPFIC202303
– fundername: Natural Science Foundation of Chongqing, China
  grantid: cstc2021jcyj-msxmX1169
– fundername: Science and Technology Research Program of Chongqing Municipal Education Commission
  grantid: KJQN202200207
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c226t-33476a6a463a646671dab223b50dd5f219f16682ed92801fd1808e8034cbe5683
IEDL.DBID RIE
ISSN 2471-285X
IngestDate Mon Jun 30 12:03:48 EDT 2025
Wed Oct 01 06:38:53 EDT 2025
Thu Apr 24 22:55:43 EDT 2025
Wed Aug 27 02:03:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c226t-33476a6a463a646671dab223b50dd5f219f16682ed92801fd1808e8034cbe5683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2259-886X
0000-0002-5048-0319
0000-0002-8930-0039
0000-0002-7753-0136
PQID 3181469229
PQPubID 4437216
PageCount 13
ParticipantIDs proquest_journals_3181469229
crossref_citationtrail_10_1109_TETCI_2024_3451352
crossref_primary_10_1109_TETCI_2024_3451352
ieee_primary_10669847
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on emerging topics in computational intelligence
PublicationTitleAbbrev TETCI
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
Chen (ref30) 2022; 610
ref11
ref10
ref17
ref16
ref19
Kumar (ref43) 2011; 24
ref18
Huang (ref33) 2020; 97
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref8
ref7
ref9
ref4
Kong (ref34) 2011
ref3
ref6
ref5
ref40
ref35
ref37
ref36
ref31
ref32
ref2
ref1
ref39
ref38
ref24
ref23
Chang (ref28) 2021; 217
ref26
ref25
ref20
ref22
ref21
Liu (ref49) 2023; 260
ref27
ref29
References_xml – volume: 260
  year: 2023
  ident: ref49
  article-title: Auto-weighted collective matrix factorization with graph dual regularization for multi-view clustering
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.110145
– ident: ref32
  doi: 10.1609/aaai.v34i04.6104
– ident: ref15
  doi: 10.1109/TETCI.2022.3221491
– ident: ref44
  doi: 10.1145/3474085.3475516
– ident: ref42
  doi: 10.1109/ICIP.2015.7351455
– ident: ref16
  doi: 10.1016/j.inffus.2019.09.005
– ident: ref19
  doi: 10.1609/aaai.v31i1.10867
– ident: ref25
  doi: 10.1016/j.knosys.2020.105582
– ident: ref4
  doi: 10.1109/JBHI.2021.3110766
– ident: ref22
  doi: 10.1016/j.neucom.2019.12.054
– ident: ref41
  doi: 10.1137/1.9781611972832.28
– ident: ref36
  doi: 10.1016/j.neucom.2018.05.072
– ident: ref3
  doi: 10.1109/TETCI.2021.3077909
– ident: ref13
  doi: 10.1016/j.patcog.2022.108984
– ident: ref14
  doi: 10.1109/TKDE.2023.3238416
– ident: ref48
  doi: 10.1109/TIP.2020.3045631
– ident: ref21
  doi: 10.1016/j.patcog.2022.108815
– ident: ref11
  doi: 10.1109/TPAMI.2016.2554555
– volume: 97
  year: 2020
  ident: ref33
  article-title: Auto-weighted multi-view clustering via deep matrix decomposition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107015
– ident: ref46
  doi: 10.1109/TNNLS.2017.2777489
– ident: ref35
  doi: 10.1145/2601434
– volume: 24
  start-page: 1413
  volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst.
  year: 2011
  ident: ref43
  article-title: Co-regularized multi-view spectral clustering
– ident: ref6
  doi: 10.1016/j.eswa.2021.114783
– ident: ref29
  doi: 10.1145/3474085.3475548
– start-page: 673
  volume-title: Proc. 20th ACM Int. Conf. Inf. Knowl. Manage.
  year: 2011
  ident: ref34
  article-title: Robust nonnegative matrix factorization using L21-norm
– ident: ref40
  doi: 10.1016/j.ins.2023.03.119
– ident: ref20
  doi: 10.1016/j.asoc.2022.109806
– ident: ref17
  doi: 10.1016/j.ins.2019.01.018
– ident: ref12
  doi: 10.1109/TPAMI.2019.2962679
– ident: ref38
  doi: 10.1109/TCYB.2020.3000799
– ident: ref24
  doi: 10.1109/TCYB.2018.2842052
– volume: 217
  year: 2021
  ident: ref28
  article-title: Multi-view clustering via deep concept factorization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106807
– ident: ref51
  doi: 10.1109/TIP.2020.3029883
– ident: ref9
  doi: 10.1038/44565
– ident: ref47
  doi: 10.1109/TKDE.2020.2983366
– ident: ref2
  doi: 10.1109/TPAMI.2021.3132503
– ident: ref50
  doi: 10.1109/TIP.2018.2877335
– ident: ref37
  doi: 10.1109/TSMC.2018.2875452
– ident: ref10
  doi: 10.1109/TPAMI.2008.277
– volume: 610
  start-page: 114
  year: 2022
  ident: ref30
  article-title: Diversity embedding deep matrix factorization for multi-view clustering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.07.177
– ident: ref31
  doi: 10.1109/JAS.2022.105980
– ident: ref1
  doi: 10.1109/TETCI.2022.3201620
– ident: ref45
  doi: 10.1109/TIP.2021.3131941
– ident: ref8
  doi: 10.1109/TCYB.2017.2685521
– ident: ref23
  doi: 10.1109/TCYB.2017.2747400
– ident: ref7
  doi: 10.1016/j.neunet.2023.02.016
– ident: ref18
  doi: 10.1109/TCBB.2020.3010509
– ident: ref27
  doi: 10.1109/TNNLS.2023.3244021
– ident: ref39
  doi: 10.1109/TPAMI.2020.3039374
– ident: ref26
  doi: 10.1016/j.neucom.2021.08.113
– ident: ref5
  doi: 10.1109/JAS.2021.1004308
SSID ssj0002951354
Score 2.35723
Snippet As the increasing heterogeneous data, mining valuable information from various views is in demand. Currently, deep matrix factorization (DMF) receives...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1817
SubjectTerms Algorithms
Clustering
Consistency learning
Convergence
Data mining
Error analysis
Factorization
Graph theory
Graphs
hypergraph regularization
Manifolds
Matrix decomposition
Measurement uncertainty
multi-view clustering
Noise
Optimization
Optimization algorithms
Regularization
robust deep matrix factorization
Robustness
Semantics
Title Robust Hypergraph Regularized Deep Non-Negative Matrix Factorization for Multi-View Clustering
URI https://ieeexplore.ieee.org/document/10669847
https://www.proquest.com/docview/3181469229
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL(IEEE/IET Electronic Library )
  customDbUrl:
  eissn: 2471-285X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951354
  issn: 2471-285X
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7akxcfqFhf5OBNUjfP3RxFLVWwh9JKTy67SVZEaUvdRfHXO8luiw8UbwubQJhJ5puZZL5B6ETS2JhIZASgRxKhpCY61pSwIjaSAcRnxuchb_uqNxI3YzluitVDLYxzLjw-cx3_Ge7y7dRUPlUGJ1wpDeZ0Fa3GiaqLtZYJFQa-ApdiURgT6bPh1fDiGkJAJjpc-J_sC_iEbio_THDAle4G6i9WVD8neepUZd4x79_IGv-95E203niY-LzeEltoxU220f1gmlcvJe5B2DkPJNV4ELrQzx_fncWXzs1wfzohffcQmMDxrafuf8Pd0I6nqdXE4ODiULFL7h7dK754rjzNAoDfDhp1QQw90rRWIAb8rZJwLmKVqUwonimhVExtloO6chlZKwswYwVVKmHOagYYVliaRIlLIi5M7qRK-C5qTaYTt4cw11ZzUCkcfSsoDKT-rjDPsyiLCkNpG9GFzFPT8I779hfPaYg_Ip0GPaVeT2mjpzY6Xc6Z1awbf47e8YL_NLKWeRsdLnSbNifzJQUbBuCgGdP7v0w7QGvMN_kNz3MOUaucV-4IPI8yPw477gMhzNP7
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swELYGexgvsIkiOmDzw96QS_wz8SMCqrLRPFQt6hNRYjsIDbVVmwjEX8_ZSRHbxMRbpNiSdWffd3f2fYfQD0ljYyKRE4AeSYSSmuhYU8LK2EgGEJ8bn4ccpmowET-nctoWq4daGOdceHzmev4z3OXbual9qgxOuFIazOkG-iiFELIp13pJqTDwFrgU69KYSJ-ML8ZnlxAEMtHjwv9kf8BP6KfyjxEOyNLfQel6Tc2Dkt-9uip65ukvusZ3L_oz2m59THzabIov6IOb7aKb0byoVxUeQOC5DDTVeBT60C_vnpzF584tcDqfkdTdBi5wPPTk_Y-4HxrytNWaGFxcHGp2yfWde8Bn97UnWgD466BJH8QwIG1zBWLA46oI5yJWucqF4rkSSsXU5gUorJCRtbIEQ1ZSpRLmrGaAYqWlSZS4JOLCFE6qhO-hzdl85vYR5tpqDkqFw28FhYHU3xYWRR7lUWko7SK6lnlmWuZx3wDjPgsRSKSzoKfM6ylr9dRFxy9zFg3vxn9Hd7zgX41sZN5Fh2vdZu3ZXGVgxQAeNGP66xvTvqNPg_HwKru6TH8doC3mW_6GxzqHaLNa1u4I_JCq-BZ23zNkitdI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Hypergraph+Regularized+Deep+Non-Negative+Matrix+Factorization+for+Multi-View+Clustering&rft.jtitle=IEEE+transactions+on+emerging+topics+in+computational+intelligence&rft.au=Che%2C+Hangjun&rft.au=Li%2C+Chenglu&rft.au=Man-Fai+Leung&rft.au=Ouyang%2C+Deqiang&rft.date=2025-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2471-285X&rft.volume=9&rft.issue=2&rft.spage=1817&rft_id=info:doi/10.1109%2FTETCI.2024.3451352&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2471-285X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2471-285X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2471-285X&client=summon