Routing algorithm for sparse unstructured P2P networks using honey bee behavior
Summary Unstructured peer‐to‐peer (P2P) networks pose unique challenges for efficient and scalable routing. In this study, we introduce a novel routing algorithm inspired by the foraging behavior of honey bees named Honey Bee Optimization in P2P Networks (HBO_P2P) to address the inherent limitations...
        Saved in:
      
    
          | Published in | International journal of communication systems Vol. 38; no. 2 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        25.01.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1074-5351 1099-1131  | 
| DOI | 10.1002/dac.5978 | 
Cover
| Abstract | Summary
Unstructured peer‐to‐peer (P2P) networks pose unique challenges for efficient and scalable routing. In this study, we introduce a novel routing algorithm inspired by the foraging behavior of honey bees named Honey Bee Optimization in P2P Networks (HBO_P2P) to address the inherent limitations of routing in unstructured P2P networks, focusing on improving packet delivery, minimizing hop count, reducing message overhead, and optimizing overall throughput. To evaluate the performance of our proposed algorithm, we conducted comprehensive experiments comparing it with existing algorithms commonly used in P2P networks, namely, particle swarm optimization (PSO), genetic algorithm (GA), and ant colony optimization (ACO). After the simulation, we got the results as follows: Our algorithm outperforms ACO, GA, and PSO by exhibiting the highest number of data hops indicating potential efficiency in route optimization. Routing overhead is also minimal as compared to ACO, GA, and PSO. The average data packet delay is also low in our algorithm as compared to ACO, GA, and PSO. HBO_P2P achieves the highest throughput, nearly reaching 100 Mbps. While ACO and GA exhibit similar throughput of around 80 Mbps, and PSO has the lowest throughput, approximately 60 Mbps.
We worked on the scalable and efficient routing in unstructured network. We used the Honey Bee Optimization in P2P Networks (HBO_P2P) to address the inherent limitations of routing in unstructured P2P networks. | 
    
|---|---|
| AbstractList | Summary
Unstructured peer‐to‐peer (P2P) networks pose unique challenges for efficient and scalable routing. In this study, we introduce a novel routing algorithm inspired by the foraging behavior of honey bees named Honey Bee Optimization in P2P Networks (HBO_P2P) to address the inherent limitations of routing in unstructured P2P networks, focusing on improving packet delivery, minimizing hop count, reducing message overhead, and optimizing overall throughput. To evaluate the performance of our proposed algorithm, we conducted comprehensive experiments comparing it with existing algorithms commonly used in P2P networks, namely, particle swarm optimization (PSO), genetic algorithm (GA), and ant colony optimization (ACO). After the simulation, we got the results as follows: Our algorithm outperforms ACO, GA, and PSO by exhibiting the highest number of data hops indicating potential efficiency in route optimization. Routing overhead is also minimal as compared to ACO, GA, and PSO. The average data packet delay is also low in our algorithm as compared to ACO, GA, and PSO. HBO_P2P achieves the highest throughput, nearly reaching 100 Mbps. While ACO and GA exhibit similar throughput of around 80 Mbps, and PSO has the lowest throughput, approximately 60 Mbps.
We worked on the scalable and efficient routing in unstructured network. We used the Honey Bee Optimization in P2P Networks (HBO_P2P) to address the inherent limitations of routing in unstructured P2P networks. Unstructured peer‐to‐peer (P2P) networks pose unique challenges for efficient and scalable routing. In this study, we introduce a novel routing algorithm inspired by the foraging behavior of honey bees named Honey Bee Optimization in P2P Networks (HBO_P2P) to address the inherent limitations of routing in unstructured P2P networks, focusing on improving packet delivery, minimizing hop count, reducing message overhead, and optimizing overall throughput. To evaluate the performance of our proposed algorithm, we conducted comprehensive experiments comparing it with existing algorithms commonly used in P2P networks, namely, particle swarm optimization (PSO), genetic algorithm (GA), and ant colony optimization (ACO). After the simulation, we got the results as follows: Our algorithm outperforms ACO, GA, and PSO by exhibiting the highest number of data hops indicating potential efficiency in route optimization. Routing overhead is also minimal as compared to ACO, GA, and PSO. The average data packet delay is also low in our algorithm as compared to ACO, GA, and PSO. HBO_P2P achieves the highest throughput, nearly reaching 100 Mbps. While ACO and GA exhibit similar throughput of around 80 Mbps, and PSO has the lowest throughput, approximately 60 Mbps.  | 
    
| Author | Thakur, Sanat Prasad Mahato, Dharmendra Kumar, Ankush Verma, Aman  | 
    
| Author_xml | – sequence: 1 givenname: Aman surname: Verma fullname: Verma, Aman organization: National Institute of Technology Hamirpur – sequence: 2 givenname: Sanat surname: Thakur fullname: Thakur, Sanat organization: National Institute of Technology Hamirpur – sequence: 3 givenname: Ankush surname: Kumar fullname: Kumar, Ankush organization: National Institute of Technology Hamirpur – sequence: 4 givenname: Dharmendra orcidid: 0000-0002-1847-0524 surname: Prasad Mahato fullname: Prasad Mahato, Dharmendra email: dpm@nith.ac.in organization: National Institute of Technology Hamirpur  | 
    
| BookMark | eNp1kMtOwzAQRS1UJNqCxCd4ySbFj9hxllV4SpVaIVhbjmM3gTSu7IQqf49D2bIYzSzOzFydBZh1rjMA3GK0wgiR-0rpFcszcQHmGOV5gjHFs2nO0oRRhq_AIoRPhJAgnM3B9s0NfdPtoWr3zjd9fYDWeRiOygcDhy70ftD94E0Fd2QHO9OfnP8KcAjTUh1_j7A0Jlatvhvnr8GlVW0wN399CT6eHt-Ll2SzfX4t1ptEE8JFgsuYkTBrrNBMMYpiYk5NxXhJGMc4I0iXRGiTUiQ0sQKVOFVaKMK54GlOl-DufFd7F4I3Vh59c1B-lBjJSYSMIuQkIqLJGT01rRn_5eTDuvjlfwBQJ2CG | 
    
| Cites_doi | 10.1016/j.physletb.2005.11.055 10.1007/978-3-540-85954-3_2 10.1007/s11721-010-0040-x 10.1016/j.micpro.2020.103325 10.4159/harvard.9780674418776 10.1016/j.ins.2010.07.005 10.3390/s110403498 10.1177/105971230401200308 10.1109/SIU.2017.7960156 10.2339/politeknik.635065 10.1007/s00500-012-0887-4 10.1007/978-3-540-28646-2_8 10.1109/TSMCA.2003.817391 10.1007/978-3-540-74089-6_4 10.1007/978-3-642-02457-3_37 10.1007/978-0-387-09751-0_1 10.1126/science.286.5439.509 10.2507/IJSIMM06(3)2.087 10.1093/oso/9780195131581.001.0001 10.1145/1041680.1041681 10.1007/978-3-642-20344-2_8 10.1007/978-3-540-24855-2_153 10.1016/j.jnca.2012.03.004 10.1007/s11721-011-0063-y 10.1016/j.aej.2022.08.009 10.1109/AMS.2008.27  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 John Wiley & Sons Ltd. | 
    
| Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1002/dac.5978 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1099-1131 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | 10_1002_dac_5978 DAC5978  | 
    
| Genre | researchArticle | 
    
| GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ESX F00 F01 F04 G-S G.N GNP GODZA H.T H.X HGLYW HHY HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c2268-1b59725fef8c5a53097863ed56b25611720cb28ce4308c2f80b14ac8a26686493 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 1074-5351 | 
    
| IngestDate | Wed Oct 01 03:18:09 EDT 2025 Wed Aug 20 07:24:12 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2268-1b59725fef8c5a53097863ed56b25611720cb28ce4308c2f80b14ac8a26686493 | 
    
| Notes | Aman Verma, Sanat Thakur, and Ankush Kumar are equally contributing authors. Abbreviations: ABC, a black cat; DEF, does not ever fret; GHI, goes home immediately.  | 
    
| ORCID | 0000-0002-1847-0524 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | crossref_primary_10_1002_dac_5978 wiley_primary_10_1002_dac_5978_DAC5978  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 25 January 2025 2025-01-25  | 
    
| PublicationDateYYYYMMDD | 2025-01-25 | 
    
| PublicationDate_xml | – month: 01 year: 2025 text: 25 January 2025 day: 25  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | International journal of communication systems | 
    
| PublicationYear | 2025 | 
    
| References | 2021; 24 2011 2010 2009 1999; 286 2008 2011; 11 2020; 79 1993 2004 2006; 633 2012; 35 2008; 2008 2011; 5 2003; 33 1999 2009; 2009 2023; 63 2013; 17 2004; 36 2004; 12 2007; 6 2017 2011; 181 2012; 6 2010; 4 e_1_2_9_11_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Ayob A (e_1_2_9_10_1) 2012; 6 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 Farooq M (e_1_2_9_7_1) 2008; 2008 e_1_2_9_27_1  | 
    
| References_xml | – start-page: 3 year: 2010 end-page: 45 – volume: 286 start-page: 509 issue: 5439 year: 1999 end-page: 512 article-title: Emergence of scaling in random networks publication-title: Science – volume: 33 start-page: 560 issue: 5 year: 2003 end-page: 572 article-title: Ant colony optimization for routing and load‐balancing: survey and new directions publication-title: IEEE Trans Syst, Man, Cybern‐Part A: Syst Humans – volume: 11 start-page: 3498 issue: 4 year: 2011 end-page: 3526 article-title: A survey on routing protocols for large‐scale wireless sensor networks publication-title: Sensors – volume: 181 start-page: 4597 issue: 20 year: 2011 end-page: 4624 article-title: Swarm intelligence based routing protocol for wireless sensor networks: survey and future directions publication-title: Inform Sci – volume: 4 start-page: 173 issue: 3 year: 2010 end-page: 198 article-title: Principles and applications of swarm intelligence for adaptive routing in telecommunications networks publication-title: Swarm Intell – volume: 17 start-page: 199 issue: 2 year: 2013 end-page: 211 article-title: A multiobjective approach based on artificial bee colony for the static routing and wavelength assignment problem publication-title: Soft Comput – volume: 6 start-page: 154 issue: 3 year: 2007 end-page: 164 article-title: Honey‐bees optimization algorithm applied to path planning problem publication-title: Int J Simul Model (IJSIMM) – volume: 633 start-page: 1 issue: 1 year: 2006 end-page: 8 article-title: Cosmological model with viscosity media (dark fluid) described by an effective equation of state publication-title: Phys Lett B – start-page: 1334 year: 2004 end-page: 1335 – volume: 12 start-page: 223 issue: 3‐4 year: 2004 end-page: 240 article-title: On honey bees and dynamic server allocation in internet hosting centers publication-title: Adaptive Behav – start-page: 818 year: 2008 end-page: 823 – volume: 79 start-page: 103325 year: 2020 article-title: Map‐ACO: an efficient protocol for multi‐agent pathfinding in real‐time WSN and decentralized IoT systems publication-title: Microprocess Microsyst – start-page: 83 year: 2004 end-page: 94 – volume: 6 start-page: 94 issue: 2 year: 2012 end-page: 99 article-title: Creativity enhancement through experiential learning publication-title: Adv Natural Appl Sci – start-page: 1 year: 2017 end-page: 4 – volume: 63 start-page: 339 year: 2023 end-page: 357 article-title: Optimal data transmission and pathfinding for WSM and decentralized IoT systems using i‐GWO and ex‐GWO algorithms publication-title: Alex Eng J – start-page: 195 year: 2011 end-page: 224 – volume: 24 start-page: 779 issue: 3 year: 2021 end-page: 784 article-title: Optimization of ant colony for next generation wireless cognitive networks publication-title: Politeknik Dergisi – volume: 36 start-page: 335 issue: 4 year: 2004 end-page: 371 article-title: A survey of peer‐to‐peer content distribution technologies publication-title: ACM Comput Surv – year: 1993 – volume: 2008 start-page: 101 year: 2008 end-page: 160 article-title: Routing protocols for next‐generation networks inspired by collective behaviors of insect societies: an overview publication-title: Swarm Intell: Introduct Appl – start-page: 432 year: 2009 end-page: 442 – volume: 5 start-page: 183 year: 2011 end-page: 223 article-title: Slime mold inspired routing protocols for wireless sensor networks publication-title: Swarm Intell – volume: 2009 start-page: 19 year: 2009 end-page: 52 article-title: A comprehensive survey of nature‐inspired routing protocols publication-title: Bee‐Inspired Protocol Eng: From Nature Netw – year: 1999 – volume: 35 start-page: 1508 issue: 5 year: 2012 end-page: 1536 article-title: Classical and swarm intelligence based routing protocols for wireless sensor networks: A survey and comparison publication-title: J Netw Comput Appl – ident: e_1_2_9_13_1 doi: 10.1016/j.physletb.2005.11.055 – ident: e_1_2_9_6_1 doi: 10.1007/978-3-540-85954-3_2 – ident: e_1_2_9_18_1 doi: 10.1007/s11721-010-0040-x – ident: e_1_2_9_25_1 doi: 10.1016/j.micpro.2020.103325 – ident: e_1_2_9_4_1 doi: 10.4159/harvard.9780674418776 – ident: e_1_2_9_11_1 doi: 10.1016/j.ins.2010.07.005 – ident: e_1_2_9_14_1 doi: 10.3390/s110403498 – ident: e_1_2_9_28_1 doi: 10.1177/105971230401200308 – ident: e_1_2_9_23_1 doi: 10.1109/SIU.2017.7960156 – ident: e_1_2_9_22_1 doi: 10.2339/politeknik.635065 – ident: e_1_2_9_15_1 doi: 10.1007/s00500-012-0887-4 – ident: e_1_2_9_16_1 doi: 10.1007/978-3-540-28646-2_8 – ident: e_1_2_9_17_1 doi: 10.1109/TSMCA.2003.817391 – volume: 2008 start-page: 101 year: 2008 ident: e_1_2_9_7_1 article-title: Routing protocols for next‐generation networks inspired by collective behaviors of insect societies: an overview publication-title: Swarm Intell: Introduct Appl doi: 10.1007/978-3-540-74089-6_4 – ident: e_1_2_9_20_1 doi: 10.1007/978-3-642-02457-3_37 – ident: e_1_2_9_3_1 doi: 10.1007/978-0-387-09751-0_1 – ident: e_1_2_9_2_1 doi: 10.1126/science.286.5439.509 – volume: 6 start-page: 94 issue: 2 year: 2012 ident: e_1_2_9_10_1 article-title: Creativity enhancement through experiential learning publication-title: Adv Natural Appl Sci – ident: e_1_2_9_21_1 doi: 10.2507/IJSIMM06(3)2.087 – ident: e_1_2_9_8_1 doi: 10.1093/oso/9780195131581.001.0001 – ident: e_1_2_9_5_1 doi: 10.1145/1041680.1041681 – ident: e_1_2_9_26_1 doi: 10.1007/978-3-642-20344-2_8 – ident: e_1_2_9_12_1 doi: 10.1007/978-3-540-24855-2_153 – ident: e_1_2_9_19_1 doi: 10.1016/j.jnca.2012.03.004 – ident: e_1_2_9_9_1 doi: 10.1007/s11721-011-0063-y – ident: e_1_2_9_24_1 doi: 10.1016/j.aej.2022.08.009 – ident: e_1_2_9_27_1 doi: 10.1109/AMS.2008.27  | 
    
| SSID | ssj0008265 | 
    
| Score | 2.3549678 | 
    
| Snippet | Summary
Unstructured peer‐to‐peer (P2P) networks pose unique challenges for efficient and scalable routing. In this study, we introduce a novel routing... Unstructured peer‐to‐peer (P2P) networks pose unique challenges for efficient and scalable routing. In this study, we introduce a novel routing algorithm...  | 
    
| SourceID | crossref wiley  | 
    
| SourceType | Index Database Publisher  | 
    
| SubjectTerms | bee routing algorithm comparative analysis intelligent routing optimization swarm‐based algorithms  | 
    
| Title | Routing algorithm for sparse unstructured P2P networks using honey bee behavior | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdac.5978 | 
    
| Volume | 38 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1074-5351 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1131 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008265 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kJz34FuuLFcRb2mQ3k26PpVqKBy1ioeAh7CutqKk07UF_vbN52CoI4ik5bNjhY3fnm_DNt4RcGOMbQCrvgeXKCxUkngSReDrgloGJRCvJBbK3UX8Y3oxgVKoqXS9M4Q_x9cPN7Yz8vHYbXKqsuTQNNTgfsmHX5xvwKK-m7pfOUciaoZIbAoeg8p31WbP68FsmWmWmeWrpbZHHKqhCUfLcWMxVQ3_88Gv8X9TbZLNknLRTLJEdsmbTXbKx4kO4R-6cLgjfqHwZT2dP88krRS5L8bCZZZYuSpPZxcwaOmADmhbS8Yw60fyYTqapfafKWlr1_O-TYe_6odv3ypsWPI30C8tIhTExSGwiNEjgrrkj4tZApJASBUhyfK2Y0DbkvtAsEb4KQqmFxPQuorDND0gtxckOCW1LZB02AhUGMtRKK2ON5tJvG9PC2tDWyXmFevxWGGrEhXUyixGc2IFTJ5c5hr8OiK86Xfc8-uvAY7LO3MW9fuAxOCE1hM2eIpuYq7N83XwC9tXG6g | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMcfcx7Ug7_F-TOCeOvWpk2X4WlMZeqcQzbYQSjNj26idrIfB_3rfWlXNwVBPLWHhIRHkvd54b1vAE6VshVDlLeYdoXlCRZZIeORJR1XU6Z8Xo6SBNmmX-94N13WzcF5VguT6kN8XbiZnZGc12aDmwvp0kw1VOGAiMN8ARY9H8MUQ0QPM-0o5GaWJRwylzmZ8qxNS1nPb75onk0T53K1Bo_ZtNKckufiZCyK8uOHYuM_570Oq1PoJNV0lWxATsebsDInRbgF9yY1CP9I-NIbDJ_G_VeCOEvwvBmONJlMdWYnQ61Ii7ZInGaPj4jJm--R_iDW70RoTbKy_23oXF22a3Vr-tiCJZHAMJIUOCfKIh1xyULmmvoO39WK-QKpyEHOsaWgXGrPtbmkEbeF44WSh-jhue9V3B3IxzjYLpBKiOChfSY8J_SkkEJpJd3QrihVxvBQF-AkM3vwlmpqBKl6Mg3QOIExTgHOEiP-2iC4qNbMd--vDY9hqd6-awSN6-btPixT846v7ViUHUAeTagPES7G4ihZRJ-AX8sL | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bS8MwFMYPc4Log3dxXiOIb93atOlSfBqbY16YQxzsQSjNpZuo29jlQf96T9rVTUEQn9qHlIRDkvNL-c4XgHOlbMUQ5S2mXWF5gsVWxHhsScfVlCmfl-NEINv0G23vpsM6ObjMamFSf4ivH25mZST7tVngeqji0tw1VGGHiMN8CZY9FnCj56s9zL2jkJtZJjhkLnMy51mblrIvv-WiRTZNkkt9A56yYaWakpfidCKK8uOHY-M_x70J6zPoJJV0lmxBTve3YW3BinAH7o00CN9I9NodjJ4nvTeCOEtwvxmNNZnOfGanI61Ii7ZIP1WPj4nRzXdJb9DX70RoTbKy_11o168eqw1rdtmCJZHA8CQpcEyUxTrmkkXMNfUdvqsV8wVSkYOcY0tBudSea3NJY24Lx4skjzDDc98L3D3I97GzfSBBhOChfSY8J_KkkEJpJd3IDpQq4_FQF-AsC3s4TD01wtQ9mYYYnNAEpwAXSRB_bRDWKlXzPPhrw1NYadXq4d118_YQVqm5xtd2LMqOII8R1MfIFhNxksyhT3Bkyo8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Routing+algorithm+for+sparse+unstructured+P2P+networks+using+honey+bee+behavior&rft.jtitle=International+journal+of+communication+systems&rft.au=Verma%2C+Aman&rft.au=Thakur%2C+Sanat&rft.au=Kumar%2C+Ankush&rft.au=Prasad%C2%A0Mahato%2C+Dharmendra&rft.date=2025-01-25&rft.issn=1074-5351&rft.eissn=1099-1131&rft.volume=38&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fdac.5978&rft.externalDBID=10.1002%252Fdac.5978&rft.externalDocID=DAC5978 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1074-5351&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1074-5351&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1074-5351&client=summon |